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Anisotropic quasiparticle lifetimes in Fe-based superconductors
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We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within
a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from
the second-order diagrams with the polarization operator calculated in the random-phase approximation. We find
one-particle scattering rates which are highly anisotropic on each Fermi surface sheet due to the momentum
dependence of the spin susceptibility and the multiorbital composition of each Fermi pocket. This fact, combined
with the anisotropy of the effective mass, produces disparity between electrons and holes in conductivity, the
Hall coefficient, and the Raman initial slope, in qualitative agreement with experimental data.
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I. INTRODUCTION

The presence of several electronic orbitals in bands near
the Fermi level of a metallic system provides both a rich set
of properties and complications in revealing the underlying
physics. Some of the most widely discussed examples of such
systems are the recently discovered Fe-based superconductors
with T, up to 55 K,'> where multiorbital effects cannot be
disregarded. In these quasi-two-dimensional compounds, Fe
d orbitals form a Fermi surface (FS) consisting of nearly
compensated small electron and hole pockets.>* Since the
sizes of the hole and electron FS pockets are roughly identical
in the undoped system, one might expect a vanishingly
small Hall coefficient and a roughly electron-hole symmetric
doping dependence. However, in the intensively studied 122
systems [Ba(Fe;_,Co,),As,, Ba(Fe;_,Ni,);As,] and 1111
systems (LaFeAsO;_,F, and SmFeAsO,_,F,), Hall effect
measurements find that transport is dominated by the electrons
even for the parent compounds.>™'° In the compensated case,
this result can be explained only if the mobilities of holes and
electrons are remarkably different, which suggests an order of
magnitude disparity in relaxation times, 7, > 7,.° A similar
large asymmetry of electronic and hole scattering rates has
been suggested also in the analysis of the electronic Raman
measurements, which can selectively probe different parts of
the Brillouin zone (BZ) using various polarizations.'' Optical
conductivity as measured by THz spectrometry provides an
estimate of 7, ~ 41,,'2 and reflectivity measurements also
suggest the presence of two distinct scattering rates with a large
disparity between them.!*~!> Theoretical analysis of the normal
state resistivity p in the two-band model for Ba;_,K,Fe,As,
shows that the experimental temperature dependence p(7') can
be reproduced only if one assumes an order of magnitude larger
scattering in the hole band.'® Finally, quantum oscillation
experiments on P-doped systems indicate that the electron
pockets have a longer mean free path.'””!? It is clearly
important to understand whether this conjectured dichotomy
between electron and hole transport properties is real, and if it
is universal to the Fe-based superconductors.

There are two main sources for quasiparticle decay:
(i) electron-electron inelastic processes and (ii) impurity
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scattering. We will concentrate on the first case and mention
impurity scattering only briefly. Experimentally, the apparent
disparity in mobilities for holes and electrons becomes smaller
as one dopes away from the magnetically ordered parent
compounds.® This suggests that the spin fluctuations, which
also decrease upon doping, play an important role in the
scattering rate asymmetry. Spin fluctuations due to the nearby
spin-density-wave (SDW) state have also been considered as
the most probable source of superconducting pairing.?’->?

In this paper we study the inelastic quasiparticle scattering
in Fe-based superconductors by calculating the scattering rate
on different FS sheets within the generalized spin-fluctuation
theory. The self-energy is approximated via the second-order
diagrams, with the polarization operator treated in the random-
phase approximation (RPA). We show that there are two
ingredients which provide strong anisotropy of the scattering
rate.

The most important one is that one-particle scattering is
strongly affected by the orbital character of the initial and
final states, in analogy to orbital pair scattering effects which
have been discussed recently,”*?* leading to a momentum de-
pendence of the effective interaction. Second, the polarization
bubble itself is momentum dependent. The combination results
in a highly anisotropic scattering rate on the electron Fermi-
surface sheets, including some very long-lived quasiparticle
states. Although our results indicate that on the average 7,
is of the same order as t;, the transport properties still may
be dominated by small parts of the electron pockets where
the lifetimes are long and the Fermi velocities are high. This
combination causes a disparity between holes and electrons
in the transport properties (conductivity and Hall coefficient).
Furthermore, analysis of the Raman response shows that the
quasiparticle lifetime effects can be clearly observed in both
the B, and B, polarizations.

A calculation of the lifetime on the Fermi surface was
previously reported by Onari et al.,>> where the scattering
due to spin fluctuations was considered within the fluctuation-
exchange approximation (FLEX). Our results reveal a similar
momentum dependence of the lifetimes, but exhibit a much
larger anisotropy due to the absence of self-consistency.
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FIG. 1. (Color online) Fermi surface for electron-doped (doping
x = 0.03, left-hand side) and hole-doped (doping x = —0.08, right-
hand side) systems calculated within the five-orbital model.

II. MODEL

We will use the five-orbital tight-binding model of Graser
et al.,”* which is based on the ab initio band-structure
calculations®® within the local density approximation (LDA)
for the prototypical iron pnictide, LaOFeAs. Our interaction
Hamiltonian is

H = H() +U Zl’limﬂ’lim¢ + U/ Z NipNim

i,m<n

+J E § Cino ,mgfcma’clma

IWL<VIUO'

+J' Z CjnTcszCimiCimTv (1)

i,m#n

where im = Nimy +nim¢, Nime = ijacima, with i, m, and
o denoting site, orbital, and spin indices, respectively. The
on-site intra- and interorbital Hubbard repulsions (U and U’),
Hund’s rule coupling (J), and the pair hopping (J’) correspond
to the notations of Kuroki et al.?! Below we will consider
cases which obey spin-rotation invariance (SRI) through the
relations U’ = U — 2J and J' = J and those which do not.
The kinetic energy Hj includes the chemical potential © and
is described by a tight-binding model spanned by five Fe d
orbitals (dy., dy., dy2—y2, dyy, d32_,2).*2 The d., dy., and dy,
bands dominate near the Fermi level, as seen in Fig. 1, where
we show the FS which arises from Hj in the one-Fe BZ. For
the electron- and undoped systems the FS consists of two small
hole pockets ¢« and «; around the I' = (0, 0) point, and two
small electron pockets B, and 8, around the X = (=, 0) and

= (0, ) points, respectively. Upon hole doping a different
hole FS pocket, y, emerges around the (7, ) point, which has
been shown to strongly affect the pairing state.>*?’

III. METHOD

The leading nonvanishing contribution to the quasiparticle
scattering rate 1/t comes from the imaginary part of the
second-order self-energy diagram (Im X) with the polarization
bubble (see Fig. 2). To take scattering from spin fluctuations
into account we renormalize the bubble within the RPA. Note
that second-order diagrams with crossing interaction lines
are not included in Fig. 2. We have chosen to work in this
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FIG. 2. Orbital (a) and spin (b) structure of the second-order
diagram for the self-energy in the multiorbital system, Xy (k, ).
Interaction lines contain four orbital indices, U = U= The shaded
bubble denotes the RPA susceptibility, #(¢) = x,,.(q, wq) Incoming
and outgoing indices 71 and 77’ carry the same spin o. {1, %2, and X3
are the different susceptibility channels [see Eq. (5)], 6 = —o.

approximation to preserve consistency with calculations of the
spin-fluctuation pairing vertex.?> The bubble then represents
the RPA susceptibility which in the multiorbital system is
Xua(q, @g), with w, z, v, u being the orbital indices, and q
and w, are the momentum and frequency, respectively. The
same susceptibility was calculated in Ref. 22 and was shown
to produce superconductivity with an A, order parameter
symmetry, in accord with several experiments®® and other
spin-fluctuation calculations.?'>*?7> Here and below the
orbital (band) indices are denoted by latin (greek) letters.

Since we focus on the lifetime effects, we consider only
Im X, neglecting the real part of the self-energy Re X. The
renormalization of the band structure due to the real part of
the self-energy has been discussed in some detail in Refs. 30
and 31 and is not considered in the present study. We note that
our calculations are based on the LDA band structure which
already contains important Hartree corrections and agrees
fairly well with quantum oscillation experiments.'’~!?

There are important consequences of the multiorbital nature
of the system which deserve comment. First, the single-particle
noninteracting Green function is diagonal in band sEace but
not in orbital space. The orbital matrix elements g, ", which
describe the transformation from one space to another, are
given by ckye = Zx aﬁ’kdk;ﬂ, where dy;, is the annihilation
operator for a particle with band index A, momentum k, and
energy &;. Second, the interactions in Hamiltonian (1) have
a complicated orbital structure; to condense the expressions
we deﬁne the local matrix interaction in orbital space,

U;‘;Z two, lmzc,wc,,w, which accounts for all the quartic
terms.

The noninteracting part of the Hamiltonian, Hy, is a
complex matrix??> which in general has complex eigenvectors
al"*, although the eigenvalues &} are real. In order to use
a simple form of the spectral representation of the Green
function below, we choose a gauge in which the Hamiltonian
is real by performing a unitary transformation Hy = ¢~ Hyd,
where ¢3 is the diagonal matrix ¢3 = diag(i, i, 1, 1, 1). The
interaction part of the Hamiltonian (1) must then also be rotated
by ¢. Having completed the rotation, the eigenvectors and

interactions are now real, and after calculating the diagram in
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Fig. 2, we arrive at the multiband extension of the standard
zero-temperature expressions for the self-energy:

Im Sk, ) =Y > URUZG* o,
QA W,,0,0,7,5
x Im x 3% (q.0 aﬁ_q)
x [®(Sk7q) - ®(8l}€7q o a))] @

For simplicity, we have introduced the notation § = (s,0y),
where s and oy are the orbital and spin index, respectively. The
initial and final spins o, and o,/, since we are considering the
paramagnetic state, have been kept equal.

The momentum dependence of the orbital matrix elements
generates an effective momentum-dependent interaction from
the bare local Coulomb interactions,

Viik = = Ui, 3)
in terms of which (2) may be written

= Z Z Vﬁlf’f(Q)Vﬁ%(Q)

q,A W,Z,i,0

Im %5 (K, )

X Imx'f‘f(k —q,w— 83)

wz

x [0(gl) — O(e; — o)]. “)

The effective interaction enhances the anisotropy of the
scattering rate, as will be demonstrated below.

We now discuss briefly the spin structure of the diagram
in Fig. 2 which is important for the calculation of Im ¥ using
Eq. (2). The susceptibility can be divided into charge and spin
channels, and subsequently into singlet and triplet parts:

g;g 2(X0)uu6 o, 8{7”(7,, +
X2 = (Xc o
e )wz,

1 K - -
E(X V)uu rzru.(r; * To,00

6()(Y e, triplet,
singlet,

&)

where x¢ and x° are the charge and spin parts of the
susceptibility, respectively, and 7, are Pauli spin matrices.

For the purpose of the self-energy calculation, the inter-
actions can be grouped into three channels. If we denote
the incoming spins as o) and o3, and the outgoing as o,
and oy, the channels are (1) o0y = 0y =03 =04, 2) 01 = 0>
# 03 = oy, and (3) 0| # 0, = 03 # 04. Then the orbital part
of interactions in each channel, U L L72, and 173, are

(U =0, (Uayie =U, (Us)ia =—U,
U =0 =1, Wl = U, (W =,

(U =0, Wt =0, (s ==,
Ut =J-U, Wl =J, U5 =-U",

where orbital indices a # b.

To combine the interactions with the susceptibility, we first
note that due to the spin structure of the diagram, the interaction
channels (1)—(3) decouple. Second, we see by inspection that
channels (1) and (2) couple to X; 2, and channel (3) couples
to 3. Thus, the self-energy will contain the following matrix
structure:

URU < U, 3,01 + U202 + Uy 22U + Us 22Uy + U3 33U,
(6)
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This expression by construction resolves the spin sum-
mation and only sums over orbital indices remain. Com-
bining it with the calculation of x,%(q,w,) for a given
doping we use Eq. (2) to obtain ImX,, straightfor-
wardly. Then we convert it to a band representation,
Im 25, (k, 0) = Z,pap Im T, (k, w)al " For the energy
range where there are no band crossings, there is a unique band
A corresponding to the momentum k. The self-energy describes
the scattering of the particle with k back to the same momen-
tum Kk, and thus back to the same band, A’ = A. For the small
energies around the Fermi level considered, there are no band
crossings, so the major contribution to the scattering rate in the
full Green function in band space, G = (Ga - f))’l, comes
from diagonal, A = A/, matrix elements of Im 3. We denote
them as X/(k, w) = Im %;, (k, w). The momentum sums in
Eq. (4) were performed on a 256 x 256 grid with an artificial
broadening in all susceptibilities of 5 meV. The undoped
material has completely filled d® orbitals, which corresponds
to n, = 6. To present our results as a function of doping, we
defineitas x = n, — 6.

IV. SELF-ENERGY

Because interband transitions are negligible in the range
of energies considered here, the calculated scattering rate
follows the Fermi-liquid relation X”(k, w)  w® + w2T?;
thus, some finite frequency or temperature is needed for
nonvanishing results. Here, and below, the quantities we report
will be calculated at @ = 20 meV, which is equivalent to T
~ 74 K at zero frequency We have verified numerically
that our results scale as w?, and that interband transitions
indeed do not contribute at low energies. The results below
are qualitatively independent of the exact frequency chosen,
since we are below the range of frequencies where interband
scattering plays a large role.

For several dopings and few sets of interaction parameters,
the calculated scattering rate along the Fermi surface is shown
in Fig. 3. Here, U and J are in eV and were chosen to be close
to the SDW instability in the spin susceptibility.

We observe that the average scattering rate increases
monotonically with doping. Figure 4 shows the average
lifetime for holes and electrons on the Fermi surface, as well
as a measure of the anisotropy on each sheet, which we have
defined as the normalized standard deviation of the lifetime,
At/{t), where 1, = —1/2%"(k, w), scaled by the average.
We see a clear increase in the quasiparticle lifetime on all
Fermi surface sheets as the system is electron doped. On the
electron-doped side, the average scattering rates are essentially
controlled by the degree of nesting. As more electrons are
doped into the system, the hole pockets shrink and the nesting
between the o and B sheets deteriorates. The hole-doped
systems have a smaller lifetime due to the presence of the
y pocket; in addition to (r, 0) scattering between « and B
sheets, a unique phase space for scattering opens up and the
average rate increases. Thus, one expects the resistivity due to
spin fluctuations to increase with hole doping.

Aside from the overall change in scale, Fig. 4 shows that
the ratio of electron to hole scattering rate changes as one
goes from hole to electron doping; electrons have a higher
average scattering rate on the hole-doped side, and vice versa.
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FIG. 3. (Color online) Imaginary part of the self-energy X at w = 20 meV along the Fermi surface for various dopings (x = —0.14, 0.04,
and 0.13 from left to right) and for three sets of interaction parameters (in eV). All reported values are in meV. Note that the color scale is
different for each plot. First and second row interaction parameters are SRI; third row is non-SRI.
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FIG. 4. (Color online) Average scattering rate for holes
(a1, a2, v) and electrons (B, Bz) atw = 20 meV and U = 1.0 eV and
J =0.25 eV. Inset: Lifetime anisotropy At/(t), where At ((t)) is
the standard deviation (average) over the appropriate Fermi surface.

Although there is already an anisotropy between the hole and
electron pockets in terms of lifetimes, it is not enough to cause
the experimentally observed anisotropy, as will be discussed
below. With electron doping, electron sheets 8 and 8, increase
in size as well as d,, portions. Since electrons on the d,,
portions of the FS are long-lived as will be discussed below,
the number of states with long lifetime for electrons increases
monotonically. On the other hand, hole pockets decrease in
size and the phase space for scattering decreases, while for
small pockets the intraband scattering starts to dominate. The
competition of these two effects leads to saturation and then to
a decrease of lifetime for holes, indicating that the intraband
scattering dominates.

Next, we observe a clear anisotropy in the scattering rate
going around the Fermi surfaces as shown in Fig. 3 and in
the inset of Fig. 4. Focusing first on the undoped and electron-
doped systems, the ) sheet exhibits strong anisotropy between
the I'-X and X-M directions. From Fig. 1, we observe that
this is where the Fermi-surface orbital composition changes
from d,, to d,, character. There is a strong minimum in the
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scattering rate in the dy, portions of the B sheets; this is due
to the above-mentioned anisotropy of the effective interaction,
Eq. (3). The orbital matrix elements tend to restrict scattering
to be maximal for intraorbital processes. For the d,, electrons,
there is very little phase space to scatter as compared to other
orbitals (see Fig. 1) because the spin-fluctuation scattering
intensity x (q) is peaked at q = (;r,0). Thus, they behave more
as free electrons. When the system is sufficiently hole doped to
create the (dy,) y hole pocket, (r,0) spin fluctuations couple
them strongly to other d,, states, causing the scattering rate
there to increase. Throughout the doping range, d,,; and d,,
states on the o pockets scatter strongly with their counterparts
on the S pockets, and vice versa.

Finally, we discuss the interaction dependence in Fig. 3. The
top row of panels shows a case where J = 0, and the middle
has finite J = 0.25. As the Hund’s rule coupling J is turned
on, we observe two effects. First, the overall scattering rate
decreases (note that the color scale on each plot is different).
This is due to the SRI relation U’ = U — 2J, so that U’ is
decreased in the middle row of panels. Although different
scattering channels open up through J itself, this is more than
compensated for by the decrease in the interorbital scattering
U'. This is confirmed by the third row in the figure, where J
is finite but the system is non-SRI because U’ = U, as in the
first row. Here, the scattering rate increases for all dopings,
indicating that it is indeed the decrease in U’ that is the cause
of the X" decrease in the second row.

Second, we consider the effect of J on the B sheet
anisotropy for the hole-doped system. When J =0, the
minimum scattering rate occurs near the d, sections of
the Fermi surfaces for all dopings. Once J is turned on,
the anisotropy reverses, and instead a maximum scattering rate
is found on the same sections. This reversal of anisotropy can
be explained by the same argument as above. When J = 0, the
intraorbital and interorbital scattering (U and U") are the same.
Thus, there is a strong scattering from both the d,./d,, portions
as well as the d,, portions of the B sheets to the y pocket (of
dy, character). Since the d,/d,, portions additionally scatter
to the « sheets, a stronger scattering rate occurs there. When J
is finite, the effective interorbital scattering rate U’ decreases
through the SRI relation. Thus, the scattering on the d,./d,.
portions is decreased while that on the d, sections remains the
same. With sufficiently large J, the anisotropy on the § sheets
is reversed. Note, however, that this argument depends on the
existence of the y pocket. When the pocket is not present, such
as in the undoped and electron-doped cases, no such reversal
occurs, and thus the d;, states have the longest lifetimes for
the configurations investigated.

V. COMPARISON WITH EXPERIMENT
A. Conductivity

We next consider the effect of the calculated scattering rates
on the electric conductivity. The total conductivity is the sum
of the band conductivities, o (w) = Y, oy (w),

62
o) = = f dk N 7o), ™
kekp;
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where 1y = —1/2X/(k, w), kp; is the Fermi momentum for
a particular band index A, we integrate over k; which is the
component of momentum along the FS, vk is the velocity,
and Ny,, = 1/|vk,,| is the momentum- and band-dependent
density of states (DOS) at the Fermi level. Note that we have
approximated the transport lifetime with the one-electron life-
time 7y, neglecting forward-scattering corrections, as well as
the distinction between normal and umklapp processes. Such
an approximation can only give the crude qualitative effect of
the scattering from spin fluctuations on the conductivity.

To analyze the doping dependence of the conductivity, we
now keep the interactions constant at values which do not
produce a RPA instability over the range of dopings consid-
ered. We evaluate the dc conductivities at finite temperature
by replacing 1/tx(w) in Eq. (7) by 1/7¢(x T'). It is important to
ask which aspects of the doping dependence of transport arise
from purely kinematic effects such as carrier density and Fermi
velocity, which evolve with doping, and which arise from
interactions. To illustrate this, we first plot in the top panel
of Fig. 5 the separate contributions to the total conductivity
from the electron and hole sheets, with an assumed constant
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FIG. 5. (Color online) Top: Conductivity for holes and electrons
as a function of doping x = n, — 6 for constant relaxation rate 1/t
= 1eV. Bottom: Conductivity for holes and electrons as a function of
doping x for the two sets of parameters (in eV): U = 1.0,J = 0 and
U =1.0,J = 0.25, at effective temperature 7 = 74 K. The shaded
region marks the rough experimental SDW region in 122 systems.
Solid lines are guides to the eye.
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relaxation time. Here the conductivities evolve more or less
as expected with electron doping as the volumes of hole
sheets shrink and electron sheets grow. On the other hand, it is
important that the “perfectly compensated” situation of equal
kinetic conductivity of electrons and holes does not occur for
the undoped case, but rather for x >~ —0.05 hole doping. We
have indicated in the figure the range of doping over which the
122 systems display long-range magnetic order, which is not
included in the current theory, and thus where the results are
not directly applicable.

By contrast, the bottom panel of Fig. 5 shows the separate
conductivities on the hole and electron FS as a function of
doping. We immediately notice that conductivity for electrons
grows quite strongly upon electron doping. Quite unlike the
purely kinetic case in the top panel, the hole conductivity
varies only weakly as compared to that of the electrons. It
is this asymmetry, due to a combination of the kinetic effects
illustrated in the top panel of Fig. 5 and lifetime effects
calculated here, which lead to the rapid domination of the
conductivity by electrons; this has led transport experiments
for Co-doped Ba-122 to be interpreted in terms of a one-band
model with electrons only>® with some validity. The feature
that greatly affects the doping dependence is the fact that
the maximum of the Fermi velocity is precisely where the
lifetime is largest on the electron FS sheets, namely, the d,,
sections of the B sheets. We also calculated the conductivity
and Hall coefficient for a case where SRI is violated (U = 1.0,
J =0.25, U’ = U, not shown in the figure). The results are
qualitatively similar to the case where U = 1.0, J = 0.

The conductivities obtained show a large disparity between
the hole- and electron-doped sides. It is important to note
that what we calculate here is the spin-fluctuation contribution
to the scattering rate, i.e. inelastic scattering. Resistivity
experiments on K-doped and Co-doped Bal22 show that the
elastic scattering is much larger in the Co-doped (e-doped)
samples, presumably due to the fact that the Co dopants sit
in the FeAs plane. This elastic scattering will correspondingly
reduce the e-doped side of Fig. 5, and thus bring the overall
scattering rate more in line with the experimentally observed
trends. We have not attempted to fit experiments directly due
to the current uncertainty in the details of the dopant scattering
potential.

The calculated conductivity shown in the lower panel of
Fig. 5 was obtained for interaction parameters chosen suffi-
ciently small to show the effect of doping while avoiding the
RPA instability. For these parameters, the absolute scale of o
is much larger than in experiments on 1111 or 122 samples.
Clearly increasing the overall scale of the interactions will
increase the scattering rates and decrease the conductivity.
However, to obtain the observed values of the conductivity
requires approaching the RPA instability extremely closely.
We have not attempted to fine tune the interaction strengths,
but merely to illustrate the possible qualitative behavior. It
seems more likely that a more complete theory will require
a renormalization of the susceptibility akin to that seen in
quantum Monte Carlo (QMC) studies of the Hubbard model,
which indicated that the RPA form of the dynamical magnetic
response was qualitatively correct, but that the “U” driving the
instability (through the RPA denominator) needed to be taken
independent of the U? prefactor in the effective interaction.*
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FIG. 6. (Color online) Doping dependence of the Hall coefficient.
The theoretical calculations are for two sets of parameters (in eV):
U=10,J=0and U =1.0, J =0.25. For the first set we also
show result of the multiband approximation for Ry from Eq. (10).
Experimental data points are from (i) Ref. 6 for Ba(Fe,_,Co,),As, at
100K, (ii) Ref. 9, and (iii) Ref. 8 for SmFeAsO,_,F, at 125 K, and (iv)
Ref. 7 for BaFe,(As;_,P,), at 150 K. The shaded region tentatively
marks the experimental SDW region. Solid lines are guides for the
eye.

A similar effect should occur in multiorbital Hubbard models,
such that the overall scales of scattering rates, and degree
of proximity to the instability, should not be taken overly
seriously.

B. Hall coefficient

Any disparity between the scattering rates of electrons and
holes manifests itself in the Hall coefficient

Ry = —op(w)/o*(w), ®)

where oy (w) is the Hall conductivity.**** For a multiband
system, oy (w) = Y, oy (w) and the expression for the band
Hall conductivity has the form

3
ou(w) = ;— / dkNyvy - [Tr(M; ') — My '] - vierd(o),
kekp;

€))

where (M, l)aﬂ =h! 0y, /9kg is the inverse mass tensor.

Figure 6 shows calculated Ry as a function of doping
for = 20 meV (the corresponding effective temperature is
74 K). One can qualitatively understand the doping depen-
dence of Ry by analyzing the approximate equation for the
band Hall conductivity,

om.(w) ~ R0l (w). (10)

where 1/R; = *en; is the Hall coefficient for an electron
(hole) band A, and n, is the occupation of that band. For the
simple case of two bands (hole and electron) we have

106?/n, —o?/n,

R]Z_[bandz_ h/ h E/ ) (11)

e (Uh + Ue)z
Since conductivity for the hole band o), « n,t,/m; and
for the electron band o, x n.t./m, with 7,, and my,
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FIG. 7. (Color online) Doping dependence of the Hall coefficient
for three distinct cases: (1) original calculated Ry from Fig. 6, (2)
the one with the artificially increased scattering rate for all orbitals
except for dyy, Tizy: = Tizy:/2, and (3) Ry with added constant
impurity scattering 1/7in, = 1 meV. For all cases parameters are
U =1.0eV, J =0.25 eV. Experimental data points (i) are from
Ref. 6 for Ba(Fe;_,Co,),As; at 100 K. The shaded region tentatively
marks the experimental SDW region. Solid lines are guides for the
eye.

being the corresponding lifetimes and band masses, R}}’and
is a decreasing function of electron doping if 7, ~ 7, and
m, ~ my. This is what we see in Fig. 6 forthe U = 1.0,J =0
case. On the other hand, experimental data for 1111 and 122

. . t . . . .
compounds indicate that chp is an increasing function of

electron doping (i.e., the magnitude |RZP[| decreases with
increasing x) away from the SDW state. According to the
simple analysis of Eq. (11), this may be due to (i) 7. > 71
and/or (ii) my, > m,. Note that use of Eq. (9) gives a different
result from Eq. (10) due to the mass anisotropy across the
FS which contributes to factor (ii). Factor (i) starts to play a
role when we consider non-zero J. For the case of U = 1.0
and J = 0.25, Ry(x) becomes slightly increasing function
of x for x > 0 (Fig. 6). However, it is not in quantitative
agreement with experimental data. To see whether the present
approach can provide the correct slope of Ry (x), we artificially
increased the scattering rate on all orbitals except dy, twice,
so that the anisotropy between the hole and electron sheets
becomes more pronounced. The resulting doping dependence
of the Hall coefficient is shown in Fig. 7. Now the slope of
Ry (x) is in good agreement with experimental data.

The fact that we underestimate the disparity between holes
and electrons by a factor of 2 is not very discouraging. There
are several factors not included in the present theory. In
the interest of studying the doping dependence, we have kept
the interactions fairly low to avoid the instability which occurs
for relatively small interaction strengths on the hole-doped
side. Furthermore, we have neglected impurity scattering. In
multiband impurity models,*-3® the ratio of intra- to interband
scattering is taken as a parameter, and the scattering rate
asymmetry between electrons and holes is weak. One might
expect that an “orbital impurity” model, where an impurity
introduces a local Coulomb potential for electrons in all
d orbitals, might produce a scattering rate anisotropy in k
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10

U=1.0, J=0.25
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FIG. 8. (Color online) Calculated dependence of the Hall co-
efficient on the effective temperature for several dopings x with
U=10eV,J =025eV.

space due to the matrix elements aﬁ’k, just as in the inelastic
scattering case. By investigating simple models similar to
those considered in Ref. 37, we have concluded that both
average elastic scattering rate asymmetry and elastic scattering
rate anisotropy on any given Fermi surface sheet are small.
To address the effect of isotropic impurities on the Hall
coefficient, we introduced a constant impurity scattering with
a strength comparable to the calculated spin-fluctuation scat-
tering rate 1/ty. Since concurring scattering processes add to
the self-energy, the scattering rate is 1/7.°% = 1/%jmp + 1/7k.
Substituting rli"‘al in Egs. (7) and (9), we find Ry (x) shown
in Fig. 7 for 1/7jm, =1 meV. Clearly, increasing disorder
leads to a monotonically decreasing Hall coefficient with
doping similar to Eq. (11) with 7, ~ t;,. Thus dirtier samples
will show a decrease of Rpy(x) with increasing electron
doping.

The temperature dependence of Ry deserves additional
discussion. Recent phenomenological calculations of the self-
energy in a two-band model for the pnictides suggest that to re-
produce experimentally observed Ry (T') one needs to assume
the non-Fermi-liquid behavior of the spin susceptibility.*®
In particular, for large electron dopings, Ry(T) is almost
constant but for small x it become an increasing function of
temperature.®>° Here we argue that the observed temperature
dependence can be qualitatively reproduced within our Fermi-
liquid approach. The resulting Ry (T) from our calculations
is shown in Fig. 8. Note that the band which forms the y FS
pocket for x < O is slightly below the Fermi level for small
positive x. Thus at finite energy or temperature the scattering
to that band contributes to the self-energy and consequently
to the transport properties. That is the main reason why
Ry (T) for x = 0.03 is a rapidly changing function of 7 in
Fig. 8.

C. Raman response

A momentum-sensitive probe of the scattering rate is
provided by Raman spectroscopy. In particular, one can extract
a scattering rate I' from Raman measurements by considering
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FIG. 9. (Color online) Inverse of the Raman scattering rate as
function of doping for U = 1.0 eV, J = 0.25 eV. The B,, curve has
been scaled by 20 for visibility.

the slope of the Raman response in the limit as the energy loss
Q — 0.%0 This quantity can be calculated as

1 v/
— — lim ﬂ
T, a0 0Q
N 2
= lim N dk—KNe (12)
Q-0 kek, 27K, Q)

where y, denotes the Raman vertex related to the incident
and scattering polarizations (see, e.g., Ref. 41), and Np is the
density of states at the Fermi level. Here, we have taken the
simplest form for the Raman vertices allowed by symmetry,
namely, cos(k,) — cos(k,) and sin(k,) sin(k,) for the B;, and
B», channels, respectively (note that we are using the 1 Fe unit-
cell conventions). We do not calculate the A, response due to
the difficulties involved in calculating the backflow effects.*?
In general, the backflow correction to the A, channel involves
the full susceptibility, not just the imaginary part. Although this
can in principle be obtained, it is computationally expensive.
Figure 9 shows the lifetimes obtained from Raman
scattering according to the expression above. As dis-
cussed in Muschler ef al.,''¥ the Bj, measurements probe
the regions of the BZ containing the electron sheets.
The B,, measurements probe the region around (7/2, 7 /2),
where there nominally are no Fermi surfaces. This causes a
decrease in the overall magnitude of the By, Raman signal
compared to By,, as reflected in Fig. 9. However, the tails
of the By, Raman vertex extend out to the zone edges, and
thus some information can nevertheless be gleaned. On the
hole-doped side, the hole pockets are large, and the By, vertex
probes the edges of the hole pockets. Similarly, when the
system is electron doped, the electron pockets grow and the
B, vertex is thus larger there. The numerator of Eq. (12)
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would give a symmetric doping dependence; therefore, the
strong asymmetry is due to the lifetime effects.

We observe that the presence of the y pocket has a large
effect in the Raman response, for the same reasons as in the
conductivity above. In particular, the B, signal shows a large
increase around zero doping. In the B,, channel the effect is
not as strong, since there sections of both hole and electron
sheets are probed.

VI. CONCLUSIONS

We have shown that the quasiparticle scattering due to
spin fluctuations in a multiorbital model with local inter-
actions can be significantly anisotropic. Two factors which
produce this effect are the orbital matrix elements, which
make interactions effectively momentum-dependent, and the
momentum dependence of the dynamic susceptibility. In the
particular case of our model for LaOFeAs, the d,, portions
of the electron FS experience little scattering due to the small
scattering phase space in undoped and electron-doped cases,
since there are no dy, states on the hole sheets available for
scattering. This anisotropy on the electron sheets appears to
have profound consequences for transport in at least some
Fe-pnictide systems. We have noted that there are several
factors which together determine the experimentally observed
disparity between holes and electrons. The first is the longer
lifetime of the d, states on the electron FS sheets. Another is
the fact that the maximum of the Fermi velocity is precisely
where the lifetime for electrons is largest.

Our calculations suggest that we underestimate slightly the
asymmetry between d,, and d,./d, states seen in the analysis
of the Hall coefficient doping dependence. We have discussed
and critically analyzed factors which can provide additional
anisotropy. Finally, we discussed aspects of the electronic
Raman scattering rate, and showed that the lifetime effects
should be visible in both the B;, and B», channels in varying
amounts.
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