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Formation of bound states in the continuum for a quantum dot with variable width
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We consider mechanisms of formation of the bound states in the continuum in open rectangular quantum dots
with variable width. Because of symmetry there might be bound states in the continuum (BSCs) embedded into
one, two, and three continua because of the symmetry of system. These BSCs arise for selected values of the
width. We show numerically that the BSCs can be excited for transmission of wave packets if the quantum dot
width is varied in time and reaches these selected values of dot width. Moreover, we consider numerically a
decay process of different eigenstates in the closed quantum dot to show that some of them trap in the BSC after
the quantum dot is opened.
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I. INTRODUCTION

In 1929, von Neumann and Wigner1 claimed that the
single-particle Schrödinger equation could possess localized
solutions that correspond to isolated discrete eigenvalues
embedded in the continuum of positive energy states for some
artificial oscillation bounded potential. Extension and some
correction of this work was done by Stillinger and Herrick2

who presented a few examples of spherically symmetric
attractive local potentials with bound states embedded in
the continuum (BSCs) of scattering states in the context of
possible BSCs in atoms and molecules (e.g., Refs. 3–6).
Friedrich and Wintgen7 discussed the realization of BSCs
in a hydrogen atom in a magnetic field. Afterward, it was
suggested that BSCs might be found in certain two-electron
systems.2,8 Later in 1973 Herrik9 and Stillinger10 predicted
a BSC in semiconductor heterostructure superlattices with
specific choices of each layer in the superlattice in analogy with
the von Neumann and Wigner oscillating potential.1 This BSC
was observed by Capasso et al. as a very narrow absorption
peak.11

Examples of BSCs can be more easily found if one
goes beyond the one-dimensional Schrödinger equation; for
example, in model systems12–20 or in real two-dimensional
(2D) systems.21–31 In the hard-wall approximation they are the
solutions of the two-dimensional equation

−∇2ψ(x,y) = (Eπ2)ψ(x,y). (1)

Here, E is measured in units of the characteristic electron
energy E0 = π2h̄2/(2md2) with d being the width of the
leads. A typical view of the open system is presented in
Fig. 1. Note that the Helmholz equation (1) is applied not
only for electron transmission through the quantum dot (QD)
but also for microwave and acoustic transmission through
billiards32 and optical transmission in photonic crystals.31,33

It is widely accepted that, below the well-defined threshold
for the propagating states equal to 1, the eigenenergies of
the Schrödinger equation are discrete and the corresponding
eigenfunctions are square-integrable bound states. Above the
threshold, the eigenenergies are distributed continuously and
the corresponding eigenfunctions are extended. However,
there might be bound states with discrete energies above
the threshold (i.e., BSCs). Numerous considerations in model

and real 2D open systems have demonstrated the BSC by a
vanishing of the resonance width.12–30

The main feature of the BSC is that an incident wave passing
through the QD has no coupling with the BSC; that is, the BSC
can not be excited by this wave. We can say that the BSC is
a “true dark state” as was proposed by Muraguchi et al.34

Therefore, there is a question of excitement of the BSC by the
incident wave. If even to transmit a wave packet (WP) through
the scattering system the BSC cannot be excited. However, we
can violate the orthogonality of the BSC to the scattering state
by varying the QD’s shape for transmission of the WP. We
show numerically that this strategy is able to excite the BSC.
Another strategy to achieve the BSC is to excite an eigenstate
of the closed QD and open the QD afterward. However, before
a study of these processes we consider mechanisms by which
BSCs arise in open rectangular QDs.

II. MECHANISMS OF BOUND STATES IN CONTINUUM IN
OPEN QUANTUM DOTS

The first, most obvious mechanism for the BSC is related to
a symmetry of the system. Let us write the total Hamiltonian
of the system of QD plus two leads (see Fig. 1) as follows:35,36

H =
∑

C=L,R

∑
pC

∫ ∞

p2
C

dE|E,C,pC〉E〈pC,E,C| +
∑

b

|b〉εb〈b|

+
∑

C=L,R

∑
b

∑
pC

∫ ∞

p2
C

dE|b〉 VbpC
〈pC,E,C| + H.c., (2)

where the index b enumerates the eigenstates of the closed
QD, the index pC = 1,2,3, . . . does the continua (the channels
of propagation) of the right and left lead, and VbpC

are the
coupling matrix elements between the eigenstates of closed
QD and mode pC of semi-infinite lead C. We consider that the
leads are identical. Then the coupling matrix elements do not
depend on the lead C = L,R and are as follows:35,36

Vbp =
√

1

2πkp

∫ 1/2

−1/2
dy sin[πp(y − 1/2)]

∂φb(0,y)

∂x
. (3)

Here, E = p2 + k2
p/π2, and kp is the dimensionless wave

number of channel p in units of the lead’s width, 1/d.
We consider that the system is symmetric relative to an
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FIG. 1. Schematic view of rectangular QD with attached waveg-
uides in hard-wall approximation.

inversion of the axis x, which is perpendicular to the transport
axis x, as shown in Fig. 1. Then the eigenstates of the closed
QD and the eigenmodes of the semi-infinite leads can be
classified as even and odd states. In particular, the first, third,
fifth, . . . modes which define channels of the straight leads are
even modes, while the second, fourth, . . . modes are odd ones.

Let us consider the odd eigenstate φb of the closed QD
with εb < 4. Then the matrix element coupling that state
with the first even-channel mode is Vb1 = 0. Respectively,
the state will not leak into the leads and could be defined
as the BSC. However, the state φb is not eigen for the total
Hamiltonian because of coupling with closed (evanescent)
channels with p = 3,5, . . .. As a result the last will slightly
distort the odd eigenstate φb, transforming it into the BSC that
is the eigenstate of the total Hamiltonian (2). We refer to the
paper by Moiseyev37 where an analysis of these BSCs based
on symmetry arguments was presented.

The second mechanism of the BSC comes from a coupling
of the eigenstate with the channel mode, which might go to
zero upon varying the QD’s width. For numerical purposes we
take the model potential along the y axis in the following form:

V (y) = V0{1 + 0.5[tanh[C(y − W/2)]

− tanh[C(y + W/2)]]}, (4)

which is shown in Fig. 2(a) where W is the effective width
of the QD. This potential makes a QD with soft walls along
the y axis. Let the eigenstate parity of the QD and the parity

of the channel mode coincide so that Vb,p �= 0. We start with
the first even channel. For variation of the QD’s width, the
coupling matrix element might go to zero. It is clear that this
might happen only for high eigenenergy to provide enough
oscillations of the derivative ∂φb(0,y)

∂x
in the integral over y.

Numerics shows that Vb,1 indeed goes to zero for εb > 4.
Assume that, owing to the second mechanism, there is

an odd BSC with the eigenenergy Ec uncoupled from the
odd mode of the second-channel continuum at some fixed
width W . Then, because of the parity of the first- and third-
channel modes, this odd BSC is decoupled from the first- and
third-channel continua. Therefore, by varying the QD’s width,
we can obtain a BSC embedded into two continua (p = 1,2)
if Ec < 9 or even three continua (p = 1,2,3) if EC < 16. We
define these BSCs as second or third order, respectively. This
contrasts with the quasibound states in a two-channel quantum
wire that have been previously reported.20

The third mechanism of the BSC is the more sophisticated.
Let each eigenstate of the QD be coupled with the continuum.
Upon opening of the QD, they become resonances given by
poles of the S-matrix in the complex energy plane. Then the
BSC is the result of destructive interference of the resonances,
which might be full with variation of the QD’s width. That
mechanism for the BSC was shown analytically in a two-level
approximation for QDs coupled with one continuum38–42 and
was realized in two-dimensional systems. In particular, the
third mechanism for the BSC has been realized in a quasi-one-
dimensional constriction with an attractive, finite-size impurity
by varying the size of the impurity,21 in a bend waveguide for
variation of bending,22 and in an open QD for variation of the
QD’s width.24 In Fig. 2(a) we present the pattern of a BSC with
eigenenergy Ec = 1.5845 embedded into the continuum of the
first channel, which is the result of the full destructive inter-
ference of two resonance states at W = Wc = 2.7498,L = 4.
For the varying of the QD’s width the conductance displayes
avoided crossing of zero conductance with unit one.24 This
phenomenon was recently observed by Lepetit et al. in
high-permettivity dielectric metamaterial resonator.43

Again, similar to the second mechanism, the BSC has
zero coupling with the even first- and third-channel modes
because of the destructive interference of odd-resonance states.

FIG. 2. (Color online) Patterns of BSCs with eigenenergy attributable to the third mechanism. (a) BSC with eigenenergy Ec = 1.5845 is
the result of interference of two resonances that become full for the QD width W = Wc = 2.7498,L = 4. The width is governed by the soft
potential (4), which squeezes the QD as schematically shown at left. (b) Extremely excited BSC with eigenenergy Ec = 13.329 embedded into
three continua p = 1,2,3 for W = 2.8731,L = 4.
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Therefore, such a BSC might be embedded simultaneously
into the first-, second-, and third-continuum channels. We
present in Fig. 2(b) a pattern of this extremely excited third-
order BSC with eigenenergy Ec = 13.329. However, the most
interesting thing is that this BSC is the result of full destructive
interference of, at least, three resonance states. Thus, we
report the numerical solution of the problem formulated by
Miyamoto:44 could the BSC exist because of the multilevel
interference effect b = 1,2,3, . . . for Vb,p �= 0?

The concept of a Fano mirror is the fourth mechanism
for BSCs.13,45,46 Let the closed system be composed of
two identical scattering centers connected by a wire. If the
transmission through each scattering center becomes zero, they
can serve as ideal mirrors as in a Fabry-Perot interferometer.
Then BSCs arise if an integer number of half waves are
spaced between the Fano mirrors. This mechanism, exclusively
transparent, was applied to a typical one-dimensional double-
barrier structure with a periodically driven potential barrier,45

to a photonic crystal structure with a waveguide coupled with
two single-mode cavities,13,46 and to two coupled identical
quantum dots.15,25,27,47–49

Irrespective of the physical mechanism of the BSC, a
general theory of BSCs can be formulated as follows: The
scattering wave function in the interior of the QD obeys the
Lippmann-Schwinger equation36

(Heff − E)|ψ〉 = V̂ |E,p〉, (5)

where |E,p〉 is the state of channel p, and V is the coupling
matrix given in Eq. (3). This formulation of the Lippmann-
Schwinger equation implies that the wave is incident at channel
p of the left lead and excites the state in the interior of the QD.
The effective non-Hermitian Hamiltonian Heff is the result of
the Feshbach projection of the total Hamiltonian into the inner
space of the closed QD:35,36,42,50–52

〈b|Heff|b′〉 = εbδbb′ + 2
∞∑

p=1

Vbp

1

E+ − Hp

Vpb′ . (6)

Here the factor 2 takes into account that the leads are
identical. After some algebra the effective Hamiltonian takes
the form36,53

〈b|Heff|b′〉 = εbδbb′ − 2
∞∑

p=1

eikpVbpVb′p. (7)

The BSC that occurs for the inversion of matrix Heff − E

does not exist [i.e., det(Heff − E) = 0].18,24,31 That equation is
a special case of the equation for the complex eigenvalues of
the effective Hamiltonian

Heff|λ) = zλ|λ), (8)

provided that one of the complex zλ becomes real. Here, the
complex eigenvalues zλ = Eλ − i	λ/2 where Eλ define the
energy positions of resonances with resonance widths 	λ

51,52

if the resonance width is sufficiently small compared to the
distance between resonances. The right eigenstates |λ) with
the left eigenstates (λ| form the biorthogonal basis.36,51

Therefore, the condition for a BSC det(Heff − E) = 0 is
equivalent to the often-used definition of a BSC as a resonance
state |λ) with vanishing width,38,39,44,54 which is an eigenstate
of the effective Hamiltonian

Heff(Ec,Wc)|BSC〉 = Ec|BSC〉. (9)

〈BSC|V |E,p〉 = 0 for those channels p to which continuum
the BSC is embedded. Comparison with Eq. (5) shows that the
BSC is a homogeneous solution of the Lippmann-Schwinger
equation. The solutions of Eq. (9) are shown in Fig. 2.

Let the energy be below the bottom of the second
propagation band: E < 4 [i.e., p = 1 in Eq. (5)]. Then all
kp are imaginary except the first-channel wave number k1.
In particular, for the BSC energy we obtain k2 = 2.3926i.
Assume we can disregard all channels except the first because
of the small value of exp(−|kp|),p > 1 and write the effective
Hamiltonian as follows:36,43

〈b|Heff|b′〉 = εbδbb′ − 2eik1Vb1Vb′1. (10)
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FIG. 3. (Color online) (a) Eigenfunctions φ33 and φ5,1 (in insets) and eigenenergies ε3,3 and ε5,1 of the closed QD versus the QD’s width W

are shown by dashed lines. The resonance energies Er are shown by solid lines. The lower line is the resonance position whose width goes to
zero at W = Wc = 2.7498, as shown in (b), and therefore gives rise to the BSC marked by the open star. The upper solid line corresponds to
the superradiant solution24,41 shown in inset. The corresponding resonance width with maximal width is not shown. Inset in bottom copies the
BSC in Fig. 2.
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FIG. 4. Time evolution of the QD width (solid line). QD width
starts with W = 3.2, then linearly decreases and reaches the width
Wc = 2.7498 at which the BSC occurs.

For the effective Hamiltonian (10) the equation for the BSC
takes the following form:

det(Heff − E) =
∏
b

(E − εb)

(
1 + 2eik1

∑
b

V 2
b1

E − εb

)
= 0.

(11)

The equation is satisfied if the closed QD becomes degenerate
(i.e., εb = εb′ ).43 Mathematically, this result is based on the
contribution of the continuum in the effective Hamiltonian
being given by products of the matrix elements.

However, there is in fact an avoided crossing of the nearest
resonance positions Eλ, as shown in Fig. 3(a) by solid lines.
The first resonance width reaches zero at W = Wc as shown
in Fig. 3(b). Respectively, with correspondence to Eq. (9), the
resonance state becomes a BSC as shown in bottom inset of
Fig. 3(a). While the second resonance takes maximal width38,39

[not shown in Fig. 3(b)] with the corresponding eigenstate (the
superradiant state41) shown in Fig. 3(a) by the top inset. The
BSC with eigenenergy Ec = 1.5845 is marked by the star in
Fig. 3(a) and does not coincide with the crossing point of
the nearest eigenenergies of the closed QD, shown by dashed

FIG. 5. (Color online) Snapshots of transmission of the wave
packet by absolute value through the QD for the QD temporal
squeezing shown in Fig. 4. Dark blue in snapshots corresponds to
zero of wave function. (a) t = 0, (b) t = 1, and (c) t = 5.
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FIG. 6. Time evolution of the probability to be a quantum particle
in the interior of QD for the wave-packet propagation shown in Fig. 5.

lines. The channels with p > 1 are the reason for this slight
discrepancy. In fact, the effective Hamiltonian has the the
following form:

〈b|Heff|b′〉 = εbδbb′ − 2eik1Vb1Vb′1 − 2
∞∑

p=2

e−|kp |VbpVb′p,

(12)

for E < 4. Then the determinant of the matrix (Heff − E) can-
not be rigorously reduced to Eq. (11), and equation (9) for the
BSC can be solved only numerically with the results presented
in Fig. 3. Numerics give that the BSC has energy Ec = 1.5845
and the resonance width goes to zero at W = Wc = 2.7498.
These values at the BSC point are slightly different from
the degeneracy point Wd = 2.7405,εd = 1.5921. Thus, the
evanescent modes of leads shift the BSC point from the
degeneracy point. These results are in full agreement with the
BSC occurring at those points where the resonance width goes
to zero while the resonances undergo avoided crossings.24,39

The effect of evanescent modes might be more profound for
BSCs of higher eigenenergies, as shown later. In fact, even for
the bound state with energy below the propagation band of
closed channels, their contribution might be important.55
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FIG. 7. Time evolution of the mean energy of the wave packet.
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FIG. 8. (Color online) (a) Even eigenstate φ43 (a) with the eigenenergy ε43 = 1.9975. (b) The state after t = 100. Sizes of the rectangular
soft quantum dot are L = 4,Wc = 2.7498.

III. PROPAGATION OF WAVE PACKET THROUGH
QUANTUM DOT WITH TIME-DEPENDENT SHAPE

The BSC is the square-integrable; that is, a localized eigen-
function of the total Hamiltonian (2) with the corresponding
discrete eigenenergy embedded into the propagation band of
scattering states. The BSC is orthogonal to other extended
eigenstates of the total Hamiltonian, which are plane waves
far from the scattering region presented by the QD under
consideration. In other words, the BSC is “invisible” for
waves transmited through the QD. Therefore, the BSC is
orthogonal to the WP that is an expansion over the waves.
For the propagating WP that could “see” the BSC, we violate
temporarily this orthogonality for the transmission. One can
apply a laser field of dipole type e�r · �E0 sin ωt that breaks
the parity of bound states and therefore mixes the bound
state with the transport solution.56 A similar approach was
used recently by Muraguchi et al.34 It was shown that, for
transmission through the lozenge QD, the WP populates the
even eigenstate of the QD that was transited into the odd
bound state by absorbing a photon quantum. This last state
has zero coupling with the first channel of leads and could
therefore be the BSC if its energy were below 4. However,
in Ref. 34 the energy of the stimulated odd bound state
exceeded 4 to give rise to a decay into the second channel.
In order to trap this state in the interior of the QD, sufficiently
large potential barriers between the QD and leads were
applied. That state was defined in Ref. 34 as a “quasi dark
state.”

We consider propagation of the WP through the symmetric
rectangular QD and show that the BSC (true dark state)
can be excited. In order to violate the orthogonality of the
BSC to the WP we apply a slow time-dependent variation
of the width of the QD. For that we apply the potential
(4), which squeezes the QD’s width W linearly in time as
shown in Fig. 4. The parameters of the potential are the
following: V0 = 10, C = 17. For the QD, time dependence
of the QD’s shape can be easily achieved by an application of
time-dependent gate voltage.

The final width of the billiard exactly corresponds to the
BSC point shown in Fig. 3(a) by the star. For t = 0 the WP
was taken as follows:

ψWP(x,y,t = 0)

= sin[π (y − 1/2)] exp[−(x + x0)2/(2σ 2) + ik0x], (13)

with x0 = 5, σ = 1.5, and k0 = 2.5. It is located in the left
input lead as shown in Fig. 5(a). In the next snapshots
[Figs. 5(b) and 5(c)] one can see that, after the process of
the WP transmission and the squeezing of the QD’s width W ,
some part of the wave packet is trapped in the interior of the
QD roughly after t = 4. Quantitatively, the process of trapping
is shown in Fig. 6 as the time evolution of the probability to
find the particle in the interior of the QD. Around time t = 2
the probability reaches a sharp maximum and afterward falls
down and keeps constant for t � 4. The corresponding trapped
wave function is shown in Fig. 5(c). Based on these figures we
can conclude that these two processes of WP propagation and
squeezing of the QD’s width are able to excite the bound state
with discrete energy within the first-channel continuum.

The BSC pattern shown in Fig. 2 is very close to the trapped
wave function shown in Fig. 5 (c). Moreover, in Figure 7 we
plotted the time evolution of the mean energy

〈E(t)〉 =
∫
A

dxdyψ∗
WP(x,y,t)HψWP(x,y,t)∫

A
dxdy|ψWP(x,y,t)|2 ,

for the transmission of the wave packet through the QD. Here A

is the area of the QD. The mean energy converges into the BSC
eigenenergy Ec = 1.5844. Thus, these results unambiguously
show that a part of the wave packet trapped in the QD is the
BSC.
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FIG. 9. Time evolution of the probability to find the quantum
particle in the interior of the QD for the even initial state φ4,3 (solid
line) and for the odd initial state φ3,4 (dashed line).
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FIG. 10. (Color online) (a) Initial state is taken as the odd eigenstate φ3,4 with eigenenergy ε3,4 = 2.5735. (b) Temporary state after t = 100
that is the BSC. QD sizes are the same as in Fig. 8.

IV. DECAY OF EIGENSTATES OF CLOSED QD
AFTER OPENING

It is possible to achieve the BSC by decay of the eigenstates
of the closed QD after opening an access to the attaching
leads. The coupling can be governed by a voltage applied to
the quantum point contact gates between the QD and electron
waveguide. In microwave billiards the coupling can be varied
via an electrooptic shutter as a diaphragm between the billiard
and the waveguide.32

As given by Eq. (9), the BSC is the eigenstate of the effective
non-Hermitian Hamiltonian. Therefore, it is reasonable to
use the biorthogonal basis of the eigenstates of the effective
Hamiltonian35,36,51,57

Heff|λ) = zλ|λ), (λ|Heff = zλ(λ|, zλ = Eλ − i	λ/2,

(λ|λ′) = δλ,λ′ . (14)

From the biorthogonality condition it follows that∑
λ

|λ)(λ| = 1. (15)

Moreover, by Hermitian conjugation of Eq. (14) we have

(λ|∗H †
eff = z∗

λ(λ|∗. (16)

These conjugated eigenstates form a biorthogonal basis, too.
Then, for the probability, we have to find the particle in the

interior of the QD:

p(t) = 〈ψB(t)|ψB(t)〉 =
∑
λ,λ′

〈ψB(0)|λ∗)(λ∗| exp(iH †
eff t)

× exp(−iHeff t)|λ′)(λ′|ψB(0)〉=
∑
λ,λ′

〈ψB(0)|λ∗)(λ∗|λ′)

× exp[i(Eλ − Eλ′)t − (	λ + 	λ′)t](λ′|ψB(0)〉. (17)

FIG. 11. (Color online) (a) Even eigenstate φ51 with the eigenenergy ε51 = 1.59 for W = 3. (b) That state fast decays into the quasi BSC
close to the exact BSC shown in Fig. 2 after t = 1. (c) After this, the quasi BSC decays over a long time and evolves into the truly bound state
below the propagation band of the first channel after t = 100.
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FIG. 12. Time evolution of the probability to find a quantum
particle in the interior of the QD for the initial state φ5,1 and
eigenenergy ε5,1 = 1.59. The parameters of the QD are W = 3,

L = 4.

where a subscript “B” means the state projected into the
interior of the QD. Therefore, for the limit t → ∞ we obtain
that only the state with 	λ = 0 will survive in the interior of the
QD. This result is in full correspondence with the definition of
the BSC given by Eq. (9).

At first, we consider the decay of the even eigenstate φb of
the closed QD with the eigenenergy εb < 4. The eigenstates
of the closed QD with soft walls along the y axis are

φm,n(x,y) =
√

2

L
sin

(
mπ (x − L/2)

L

)
φn(y; W ). (18)

We assume that, for the initial time, the pure state ψm,n

with odd integer n is populated, and after an access into
the leads is arisen. We can expect the probability to decay
because of leakage into the leads with the characteristic
decay time τb,1 = 1

	b,1
with 	b,1 = 2π |Vb1|2.35 The factor 2 in

the decay time is because two identical leads are attached to
the QD. The subscript “1” means the first-channel mode of the
leads.

Let us take, for example, the even eigenfunction as b =
(4,3) with the corresponding eigenenergy ε4,3 = 1.9975 for
W = Wc = 2.7498,L = 4. We evaluated the resonance width
	b1 ≈ 0.22 in units of E0/h̄ where we used Eq. (3) to obtain
k1 ≈ π

√
εb − 1. The initial state φ4,3 evolves after long time

t = 100 into the state shown in Fig. 8(b) that is close to the
eigenstate φ4,1. However, because of evanescent modes of
the waveguides it blows up into the bound state below the
propagation band of the first channel, as seen from Fig. 8(b).
The corresponding probability p(t) = ∫

A
|ψ(x,y,t)|2dxdy to

find a quantum particle in the interior of the QD has typical
exponential behavior p(t) ≈ e−	b1t , as shown in Fig. 9. This
result allows us to evaluate 	b1 ≈ 0.223, which agrees with
the earlier evaluated result for 	b1.

Next, we consider the odd eigenstate φ3,4 that has zero
coupling with the first-channel mode of leads: 	b,1 = 0.
Therefore, the particle in this state will not leak into the leads.
In other words, the odd eigenstates of the closed QD with the
eigenenergies below 4 are expected to be the BSCs. In fact,
they are not truly the eigenstates of the total Hamiltonian (2)
because of their coupling with the next evanescent modes of
the leads with p > 1. As a result, the initial state ψ(0) = φ3,4

will slightly blow up from the QD and distort as shown in
Figs. 10(a) and 10(b) to finally transfer into the true BSC. The
corresponding time evolution of the probability is shown in
Fig. 9 by the dashed line.

As for the third initial state, we take the eigenstate φ5,1, the
parity of which coincides with the parity of the first-channel
continuum. We take the width W = 3 close to the BSC
point Wc = 2.7405. The eigenenergy ε5,1 = 1.59 for W = 3 is
slightly above the BSC energy Ec = 1.5844. Therefore, for an
expansion of φ5,1 over the eigenstates of the effective Hamil-
tonian we may expect that the contribution of that eigenstate
|λc(W )) is important, which transfers into the BSC for W →
Wc. Indeed, the snapshot in Fig. 11(b) reveal a fast recovery of
the state close to the BSC shown in Fig. 2. Nevertheless, the
state |λc(W )) is not the true BSC for W �= Wc and has therefore
small but finite 	λ(W ). Then, in correspondence with Eq. (17),
we have a slow decay of that state into some truly bound
state with energy below the propagation band, as shown in
Fig. 11(c). Indeed, the time evolution of the probability to find
a particle in the interior of the QD reveals two decay times, as
Fig. 12 shows.

Finally, we consider the decay of the highly excited eigen-
states whose eigenenergies are embedded into the propagation
band of the second- and third-continuum channels. In order for
the soft potential V (y) to confine the particle, we take V0 = 10
if εb < 9 and V0 = 25 if 9 < εb < 16. Let us take, first, the
even eigenstate φ6,7 with the eigenenergy ε6,7 = 6.9253 that
is below the third-channel propagation band. The state is
uncoupled with the second channel, but is coupled with the first

FIG. 13. (Color online) (a) Initial state is taken as the even eigenstate φ6,7 with eigenenergy ε6,7 = 7.02. (b) Temporary state after t = 100.
QD sizes are L = 4,Wc = 2.9728. This width corresponds to the second-order BSC with energy Ec = 6.9253.
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FIG. 14. (Color online) (a) Pattern of eigenstate φ4,10 with eigenenergy ε4,10 = 11.753 that undergoes noticeable distortion upon decay to
become the BSC with eigenenergy Ec = 11.7105 embedded into three continua p = 1,2,3 for Wc = 2.9183,L = 4 (b).

channel. Therefore, the state will decay into the first-channel
continuum. However, for variation of the QD width, the state
might become uncoupled with the first channel for W =
2.9728. Thereby we can obtain the second-order BSC. Indeed,
Fig. 13 shows that, after t = 100, the eigenstate φ6,7 undergoes
noticeable changes but finally is trapped in the interior of
the QD. An effect of evanescent modes is substantially more
profound for the BSC with high eigenenergies, as seen from
Figs. 13 and 14. The strong effect of evanescent modes is seen
also in Fig. 2(b).

The time evolution of the probability agrees with that result.
If we took the QD’s width W different from Wc = 2.9728 the
eigenstate φ6,7 would decay. The closer W is to Wc the longer
is the decay process.

Next, let us take the odd eigenstate φ4,10 with eigenenergy
ε4,10 = 11.753 that is uncoupled with the first-, second-,
and third-channel modes for W = 2.9183. It also undergoes
noticeable change (e.g., in energy and in wave-function
pattern) to become a third-order BSC, as shown in Fig. 14.

V. CONCLUDING REMARKS

The bound state in continuum (BSC) has a similarity
with the bound states below the propagation band of the
continuum. They are both eigenstates of the total Hamiltonian
(2), which describes the QD with leads attached. They are
also both localized mainly in the QD, but have exponential
tails in the leads because of coupling of the QD with the
leads, and they are orthogonal to other extended eigenstates
of the total Hamiltonian. The difference between them is in
the positions of their discrete eigenenergies. The BSC has
the energy within the propagation band of the continuum.
Moreover, because of the symmetry of the QD, the BSC may
be embedded simultaneously into two or three continua. We
defined these BSCs as being of second or third order. As was
considered in Sec. II, there might be at least four mechanisms
for the BSC. The first two are similar mechanisms that are
related to orthogonality of the eigenstate of the closed QD to
the continuum channel mode. The third mechanism is related
to the full destructive interference of at least two nearest
resonance states.38,39 Moreover, we present in Fig. 2(b) a
pattern of the BSC that is the result of full destructive

interference of at least three states. Finally, the Fabry-Perot
mechanism is the fourth mechanism.

Irrespective of the origin of the BSC, it does not decay.
This obvious result is a direct consequence of the resonance
width going to zero upon approaching the BSC point (in
the present case W → Wc). The property of orthogonality
of the BSC to the extended states of the system means that,
if a plane wave is incident from the lead it has no coupling
with the bound states. In other words, the bound states are
“invisible” for incident waves. We can say that they are “true
dark states,” as was proposed by Muraguchi et al.34 That
statement is correct even if a quantum particle is incident in
the form of a WP that is a linear superposition of the plane
waves.

There is a simple way to “observe” the bound states below
the continuum. One can apply a time-periodic perturbation
whose frequency exceeds the distance between the bottom
of propagation band and the energy of the bound state.56 A
similar approach was used in Ref. 34 where a laser field
was applied to transfer the even bound state of the closed
QD into the odd quasi BSC. Then the propagating wave
packet is able to “see” this quasi BSC via the laser field
mixing.

For the BSC we used two ways to “observe” the BSC. The
first is to shrink the WD’s width in time in order to reach the
point of the BSC. If, for this time process, the wave packet is
passing through the QD, it is able to excite the BSC, as our
numerics show. Another way is the process of time decay of the
proper bound states of the closed QD when at the initial time
connection between the QD and leads is opened. This can be
done if the gate voltage applied to quantum point contacts
between the QD and the electron waveguide is decreased
too fast. To use the microwave analog of the open QD32

one can use an electrooptic shutter between the leads and
microwave billiard in the case of microwave open billiards.
Consideration shows that the decay processes are not simple
exponential ones. For the proper choice of QD width, some
eigenstates successfully evolve into true BSCs. One can use
linear superposition of the eigenstates of the closed QD instead
of the bare eigenstate at the initial time. This choice will yield
BSCs for the time evolution. This process will be successful
provided the QD width is chosen so that the equation for the
BSC (9) has a solution.
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