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Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities
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We consider light transmission in a T-shaped photonic waveguide coupled with two identical symmetrically
positioned nonlinear microcavities. We present two types of symmetry breaking. The first one is a result of mixing
of the symmetric input wave with antisymmetric bound states in the Fabry-Pérot interferometer architecture.
Similarly, the second mechanism of the symmetry breaking is the result of mixing the symmetrical input wave
with the antibonding bound state in a straight waveguide coupled with two cavities positioned perpendicular
to the waveguide. In both cases the mixing is due to nonlinearity. In turn, the symmetry-breaking solutions
give rise to nonsymmetrical outputs in the T-shape waveguide. These effects are directly demonstrated by the
electromagnetic field solutions which are complimented by coupled mode theory for the light transmission.
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I. INTRODUCTION

Symmetry breaking in a nonlinear quantum system is a
fundamental effect caused by the interplay of nonlinearity with
linear potential which defines the symmetry. It is commonly
known that the ground state in one-dimensional linear quantum
mechanics is nodeless and follows the symmetry of the poten-
tial. However, the self-attractive nonlinearity in the nonlinear
Schrödinger equation breaks the symmetry of the ground state,
replacing it by a new asymmetric state minimizing the systems
energy. For example, the nonlinear Schrödinger equation in
double-well potential reveals anti-symmetric ground state with
variation of normalization of the state.1 The phenomenon of
the spontaneous symmetry breaking in analog with the double-
well potential are realized in a nonlinear dual-core directional
fiber.2–4 Spontaneous symmetry breaking was demonstrated
recently by Brazhnyi and Malomed in a linear discrete chain
(Schrödinger lattice) with two nonlinear sites.5 They have
shown as analytically as well as numerically the existence
of symmetric, antisymmetric, and nonsymmetric eigenmodes
with eigenfrequencies below the propagation band of the chain,
and that a variation of the population of modes can give rise
to a bifurcation from one to another mode. The system can
be applied to photonic crystal (PhC) waveguides with two
in-channel nonlinear cavities.

A similar phenomenon of symmetry breaking occurs in
the nonlinear system with injection of input power. That
phenomenon is developed in nonlinear optics with the estab-
lishment of one or more asymmetric states which no longer
preserve the symmetry properties of the original state.6–10 In
particular, Maes et al.11,12 considered symmetry breaking for
the nonlinear cavities aligned along the waveguide, that is
a Fabry-Pérot architecture close to the system considered in
Ref. 8. That system is symmetric relative to the inversion of
the transport axis if equal power is injected on both sides of the
coupled cavities. The symmetry breaking was found also for
the case of many coupled nonlinear optical cavities in ringlike
architecture.13,14 The most simple underlying mechanism of
the symmetry breaking in such a system was considered in
Refs. 15 and 16 as an example of the optical guide coupled
with two nonlinear off-channel cavities aligned symmetrically
relative to the guide. For the linear case there are, at least,

two eigenmodes of the coupled cavities, bonding (even
symmetrical), and antibonding (odd antisymmetrical) ones.
As we take the input light to be a symmetric wave relative to a
mirror symmetry of the system, it is coupled with the bonding
mode only. In other words, the antibonding mode cannot be
excited by the input wave, and therefore it is the simplest bound
state in continuum (BSC).15,17,18 The mirror symmetry cannot
be broken in the linear system. However, for the nonlinear
cavities the principle of linear superposition is broken to give
rise to a mixing of the antibonding mode with symmetrical
light wave transmitted over the waveguide. Obviously, the
mixing gives a total state which is neither symmetrical nor
antisymmetrical, breaking the mirror symmetry. It was shown
that the symmetry can be broken because of different light
intensities or because of different phases of light oscillations
at the cavities to provoke the Josephson-like current between
cavities.16

In the present paper we consider the T-shaped photonic
waveguide with two identical nonlinear cavities positioned
symmetrically as shown in Fig. 1. That system combines
two systems. The first one is the Fabry-Pérot interferom-
eter (FPI) consising of two nonlinear off-channel cavities
aligned along the straightforward waveguide considered in
Refs. 11,12, and 19. As was shown in Ref. 19 there is a discrete
set of the self-induced bound states in continuum (BSC) which
are standing waves between off-channel cavities. We define
these BSC as the FPI BSC below. In the second system
two nonlinear cavities are aligned perpendicular to the input
waveguide. As was said above there is the antibonding BSC.
Here we show that both types of the BSC might be important
for the breaking of symmetry. Preliminarily, we considered a
simplified system in which the cavities were coupled only
with output waveguides while the coupling with the input
waveguide was disregarded.20 With use of the coupled mode
theory (CMT) all-optical switching based on the symmetry
breaking was reported. For the case presented in Figs. 1(a)
and 1(b) we show here that the mirror symmetry breaking
is the result of mixing of the antisymmetric FPI BSC with
the symmetric transport solution. However, with growth of
the coupling of the cavities with the input waveguide the
symmetry-breaking solution occurs because of the mixing of
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FIG. 1. Two defect rods made from a Kerr media marked by solid
circles are inserted into the photonic crystal (PhC) of square lattice
dielectric GaAs rods. The T-shape waveguide is formed by removing
linear chains of GaAs rods. The cases (a)–(c) differ by the positions
of the nonlinear defects.

the symmetrical transport solution with the antibonding BSC,
too. That case corresponds to Fig. 1(c). The main aim is to
demonstrate both mechanisms of the symmetry breaking by
direct solution of the Maxwell equations complemented by the
CMT consideration.

II. THE T-SHAPE PHOTONIC CRYSTAL WAVEGUIDE
COUPLED WITH TWO NONLINEAR CAVITIES

We consider the PhC shown in Fig. 1 with the following
parameters: the lattice constant a = 0.5 μm, the cylindrical
dielectric rods have radius 0.18a, and dielectric constant ε0 =
11.56 (GaAs at the wavelength 1.5 μm in air). Removing a
row of rods fabricates the PhC waveguide.19,21 The waveguide

supports a single band of guided TM mode spanning from the
bottom band edge 0.315 to the upper one 0.41 in terms of
2πc/a. We substitute two defect rods of the same radius as
shown in Fig. 1 made from an instantaneous Kerr media with
the nonlinear refractive index n = n0 + n2I where n0 = √

3
and n2 = 2 × 10−12 cm2/W ; I is the light intensity averaged
over the cross section of the thin defect rods.

We start with the position of the defect rods shown
in Fig. 1(a) which have strong coupling with the output
waveguides 2 and 3, and negligibly weak coupling with the
input waveguides 1. The Maxwell equations for the TM mode
in the PhC have the following form:{

∇2 + ω2

c2
[ε(r) + δε(r)]

}
E(r) = 0, ε(r + R) = ε(r),

(1)

where R = a(jex + mey) runs over cells of a square lattice
of rods. ex,ey are the unit vectors of the square lattice. The
dielectric constant is considered to be ε(r) = ε0 inside the
rods and unit outside. Two terms contribute into the second
expression δε(r). The first one is due to removing straight rows
of dielectric rods to form the T-shaped waveguide. Two defect
rods made from a Kerr media give the second contribution in
the form (n0 + n2I )2 − ε0 provided that the radius r belongs
to the defect rods. By an expansion of electromagnetic field
over maximally localized photonic Wannier functions21,22 the
effective model on a squared lattice can be formulated. Taking
the solution as incident wave injected into the input waveguide
1, reflected and transmitted far from the scattering region the
solution inside the scattering region can be written in the
Lippman-Schwinger equation form:23

(ω − Heff)|�S〉 = EinV̂ |inc〉. (2)

Here Heff is the effective non-Hermitian Hamiltonian which
is the result of the Feshbach procedure of the projection of
the total hHermitian Hamiltonian onto a subspace of discrete
eigenstates of the closed scattering region.24–29 |�S〉 is the
scattering wave function inside the scattering region, |inc〉
is the wave function that describes the incident wave with
the electric field amplitude Ein, and V̂ is the coupling matrix
of the PhC waveguide with the scattering region. Details of
derivation of this equation are given in Ref. 23. Equation (2)
is similar to CMT equations,30–34 however, in the case of
real PhC the scattering state |�S〉 includes around a hundred
cells inside the scattering region just as shown in Fig. 1.
This is the only way if we need to find the scattering wave
function.

The case of the T-shaped structure shown in Figs. 1(a)
and 1(b) has an analogy with the Fabry-Pérot interferometer
(FPI) comprising two off-channel nonlinear cavities. As was
shown in Ref. 19 there are a series of the bound states
in continuum (BSC) which are standing waves between the
off-channel cavities. It was shown that the BSC exists for any
distance between the off-channel defect rods because of their
nonlinearity.19 Similar BSC solutions are expected to exist
in the present case of the T-shaped waveguide coupled with
two off-channel cavities shown in Fig. 1(a). However, these
solutions are to be standing waves with nodes at the point
of connection of all waveguides. Therefore in the present
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FIG. 2. (Color online) (Color online) The solution of Maxwell
equations for the case shown in Fig. 1(a) which demonstrates the
antisymmetric FPI BSC (antisymmetric standing wave between
nonlinear off-channel defects marked by stars) with frequency
ωca/2πc = 0.3402. Only that part of the PhC is shown where the
scattering wave function �S is given in the Lippmann-Schwinger
Eq. (2).

case the BSCs are the antisymmetric states only. Figure 2
shows one of these antisymmetric standing waves in the
T-shaped waveguide with two nonlinear defect rods with
the eigenfrequency ωca/2πc = 0.3402 which satisfies the
condition 3k(ωc)a = π .

For the linear case, the BSC has zero coupling with
the symmetric EM wave which inputs in the waveguide 1.
Therefore the general solution of the Lippmann-Schwinger
Eq. (2) is the linear superposition of the transport solution given
by the right term in the equation and the BSC with the arbitrary
superposition coefficient.23,35 For the nonlinear cavities there is
no principle of the linear superposition. Nonlinearity gives rise
to an important effect of the excitation of BSC by transmitted
wave (i.e., an interaction between the antisymmetric BSC
and the symmetric transmitted wave). As a result the total
solution lacks the mirror symmetry of the PhC structure shown
in Fig. 1(a). That is one of the scenarios of the symmetry
breaking. Note that Maes et al.11 have already reported the
symmetry breaking in the FPI. In order for the FPI with two
off-channel nonlinear cavities to have the mirror symmetry,
equal input power must be applied to both sides of the FPI.11 In
our case of the T-shaped waveguide this symmetry is achieved
by application of the input power via the additional waveguide
positioned at the center of the FPI.

Figure 3(a) demonstrates the solution for the light intensi-
ties of the cavities Ij = c|Ej |2/8π,j = 1,2 with broken mirror
symmetry where Ej are the amplitudes of the electric field in
thin defect rods for two values of input power. The solution
converges to the BSC point marked by the star if the input
power limits to zero. At this point the symmetry is restored.
As a result for the input power P �= 0 the light transmission
from the input waveguide 1 to the left waveguide 2 differs
from the transmission and to the right waveguide 3 as seen
from Fig. 3(b). Moreover, the difference TL − TR crucially
depends on the frequency in the vicinity of the BSC point.
Figure 4 demonstrates the solution of the Maxwell equations
for the z component of electric field (scattering wave function)
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FIG. 3. (Color online) (a) The frequency behavior of light
intensities at the defect rods given in terms of W/a2. Dotted blue
and dash-dotted red lines correspond to the input power equal to
0.48W/a; solid blue and dashed red lines correspond to 1.92W/a.
Only that solution for intensities is shown which breaks the symmetry.
(b) The frequency dependence of the transmissions to the left TL (blue
solid lines) and to the right TR (red dashed lines) for the PhC T-shaped
waveguide shown in Fig. 1(a). The BSC point is shown by the
blue star.

breaks the mirror symmetry because of mixing the symmetric
input wave with the antisymmetric BSC shown in Fig. 2. The
intensity of the defect’s modes is centered around the BSC
intensity which is rather large as shown in Fig. 3(a) while
the incident light intensity P ∼ 1 · W/a. Thereby we have
chosen exponential scaling for the solution of the Maxwell
equations presented in Fig. 4 in order to distinguish waves in
waveguides.

As was shown in the framework of the CMT there might
appear an additional branch of a loop shape for the symmetry-
breaking solution with growth of the input power.20 The
numerical results for a solution of the Maxwell equations
completely agree with these model results as seen from
Fig. 5(a) by dotted brown and green lines. The loops shown by
dotted lines in Fig. 5 are the result of individual instability that
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FIG. 4. (Color online) The symmetry-breaking EM field solution
in a scale real(Ez) exp(−|Ez|) for P = 1.94W/a and ωa/2πc =
0.3402 (the BSC frequency). Light is incident into the 1 waveguide
and scatters to the left and right waveguides 2 and 3 with TL =
0.8236,TR = 0.0560.

arises for transmission in the left or right waveguide coupled
with the left or right nonlinear off-channelcavity.20 Loops in
the intensities are reflected in the loops in the transmission
for the transmission to the left and for the transmission to
the right as shown in Fig. 5(b) by dotted brown and green
lines, respectively. With further growth of the input power
the domain of existence of this symmetry-breaking branch is
increased providing almost complete blocking of the output
into the right waveguide as shown in Fig. 6.

Bistability of the light transmission in the PhC waveguide
coupled with the nonlinear optical cavity crucially depends on
the coupling: the smaller a coupling the less input power is
needed for bistability.36 For case (a) in Fig. 1 the coupling is
rather large to observe bistability in the transmission. However,
case (b) has the sufficiently smaller coupling as one can see
from Table I. As a result the case in Fig. 1(b) gives rise to
additional loops as shown in Fig. 5 for larger input power
5.57W/a. Figure 7 shows the wave function for the symmetry-
preserving solution (a) and the symmetry-breaking solution
(b) and (c). The cases (b) and (c) differ by the frequency.
One can see from Figs. 7(a) and 7(b) that for the symmetric
solution the transmission excites the cavities weakly, while
for the symmetry-breaking solution the cavities are strongly
excited because of mixing with the antisymmetric FPI BSC.
Figure 7(c) shows that for the frequency in the loop domain
ωa/2πc = 0.3442 the first nonlinear cavity is excited much
more than the second one that is correlated with the outputs.

The T-shaped waveguide coupled with two nonlinear
cavities shown in Fig. 1 is remarkable in that it allows the
limit to the FPI [ cases (a) and (b)] with the FPI BSC in the
form of standing waves between two off-channel defects19 as
well as the limit to case (c) in Fig. 1 with the BSC in the form
of the antibonding defect’s state. Patterns of such antibonding
BSC in PhC straight waveguide coupled with two cavities
positioned perpendicular to the waveguide is shown in Fig. 8.
Patterns of that BSC also are shown in Refs. 15 and 23. The
nonlinearity gives rise to mixing the antibonding BSC with
the wave transmitted over waveguide 1. For the linear defect
rods this state would be the perfect BSC. For the nonlinear
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FIG. 5. (Color online) The frequency behavior of (a) the
light intensities at the defect rods (in terms of I0 = W/a2) and
(b) transmissions TL and TR for the PhC T-shaped waveguide shown in
Fig. 1(b). The input power equals 5.57W/a. The symmetric solution
is shown by the solid gray line which inherits the linear case. The
symmetry-breaking solution because of the mixing of the symmetric
transport solution with the antisymmetric BSC is shown by solid blue
and red lines. The next symmetry-breaking solution because of a
bistability of the transmission in each output waveguide is shown by
dotted brown and green lines.

cavities mixing this antibonding BSC with symmetric input
light leads to the breaking of the mirror symmetry to give
rise to the breaking of symmetry in the input waveguide.
Then for the evolution of this structure to the T-shaped case,
one can expect different outputs to the right and to the left.
Indeed, in spite of the small difference of the defect intensities
presented in Fig. 9(a) the transmissions TL and TR demonstrate
a vast difference including the case of almost perfect blocking
of the transmission to the left as shown in Fig. 9(b) for
ωa/2πc = 0.3505. Figure 10 shows the antibonding BSC is
mixed to the transport over the input waveguide to give rise to
the symmetry-breaking solution.
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FIG. 6. (Color online) Output intensities to the left and right
waveguides as dependent on the input power for the case Fig. 1(b)
and ωa/2πc = 0.344. The gray line shows the symmetry-breaking
solution, solid and dashed lines show the symmetry-breaking
solution.

III. COUPLED MODE EQUATIONS

As was said above the Maxwell theory of the light
propagation in the PhC waveguide coupled with two defect
rods includes more than a hundred sites shown by open circles
in Figs. 2, 4, and 7. Even for a stationary process of the light
transmission the self-consistent solution of a hundred algebraic
nonlinear equations for the case of two nonlinear defect rods
is a rather time-consuming task. Moreover the nonstationary
transmission as well as the problem of establishment of stable
solutions become a formidable problem. Therefore in this
section we explore the CMT equations which include only
the degrees of freedom of two nonlinear defect modes. To the
best our knowledge the first formulation of the CMT was done
by Snyder37,38 for consideration of the EM wave propagation
in nonuniform media and in optical fibers by separation of the
total system onto the modes associated with both the discrete
and continuous eigenvalue spectrum with further expulsion of
continuous modes. We note that the idea was first formulated
and realized by Livsic24 and independently by Feshbach25 by
use of the projection operator technique to formulate the idea
of the non-Hermitian effective Hamiltonian. For the present
system we use the CMT formulated in Refs. 33 and 34.
Thus, following Ref. 34 we consider a light given by the
amplitude S1+ is incident into waveguide 1 and outputs into
all three terminals as shown schematically in Fig. 11. The
outgoing amplitudes are labeled as S1−,S2−, and S3−. Each
nonlinear optical cavity is assumed to be given by single-mode

TABLE I. Parameter sets of the CMT for PhC T-shaped wave-
guide shown in Fig. 1.

Type of structure in Fig. 1 (a) (b) (c)

� (in terms of a/2πc) 0.0002 0.0002 0.00189
γ (in terms of a/2πc) 0.03093 0.00189 0.00002
ω0 (in terms of a/2πc) 0.3609 0.365 0.3596

FIG. 7. (Color online) The EM field solution in a scale
real(Ez) exp(−|Ez|) for (a) the symmetry-preserving solution for
ωa/2πc = 0.3442, (b) the symmetry-breaking solution caused by
the BSC for ωa/2πc = 0.3388, and (c) for ωa/2πc = 0.3442.

amplitudes Aj ,j = 1,2 and coupled with guides 2 and 3 via
the coupling constant γ shown in Fig. 11 by dotted lines and
with guide 1 via the coupling constant �.

(ω − ω1 + iγ + i�)A1 + i�A2

= i
√

�(S1+ + σ1−eiθ ) + i
√

γ σ2−eiφ,

(ω − ω2 + iγ + i�)A2 + i�A1 (3)

= i
√

�(S1+ + iσ1−eiθ ) + i
√

γ σ3−eiφ,
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FIG. 8. (Color online) The solution of Maxwell equations for
the case shown in Fig. 1(c) which demonstrates the antibonding BSC
(antisymmetric mode) localized mostly at the defects marked by stars
with frequency ωca/2πc = 0.3478,n0 = 1.94.

where the eigenfrequencies of the nonlinear optical cavities
(defects) are shifted because of the Kerr effect.

ωj = ω0 + λ|Aj |2, j = 1,2. (4)

Here phases θ and φ as shown in Fig. 11 are the optical lengths
through which light goes between the connections.

These CMT equations are to be complemented by the
equations for light amplitudes at each connection A, B, and D,

σ1+e−iθ = S1+ −
√

�(A1 + A2),

S1− = σ1−eiθ −
√

�(A1 + A2),

S2− = σ2−eiφ − √
γA1,

S3− = σ3−eiφ − √
γA2, (5)

σ2+e−iφ = −√
γA1,

σ3+e−iφ = −√
γA2.

The T connection at the C point connects ingoing and outgoing
amplitudes by the S matrix as follows:⎛

⎝σ1−
σ2−
σ3−

⎞
⎠ =

⎛
⎝a b b

b c d

b d c

⎞
⎠

⎛
⎝σ1+

σ2+
σ3+

⎞
⎠ . (6)

In particular, the solution of the Maxwell equations for
the T-shaped waveguide without defects gives the matrix
elements of the S matrix (6) a = −0.3547 + 0.308i,b = 0.6 +
0.173i,c = −0.4319 + 0.2271i,d = −0.568 + 0.2225i at
ωa/2πc = 0.35. Equations (3), (5), and (6) form
a full system of equations for 11 amplitudes
A1,A2,σ1+,σ1−,σ2+,σ2−,σ3+,σ3−,S1−,S2−,S3−. Substituting
S1+ = Eine

iωt ,A1,2 = A1,2e
−iωt we obtain after some algebra

the following stationary CMT equations:

(ω − Heff)

(
A1

A2

)
= iEinF

(
1
1

)
, (7)

where

Heff =
(

ω1 − iG −iH

−iH ω2 − iG

)
, (8)
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FIG. 9. (Color online) The frequency behavior of (a) the light
intensities at the defect rods and (b) transmissions TL and TR for
the PhC T-shaped waveguide shown in Fig. 1(c). The input power
P = 0.48W/a. Only the solution is shown in (b) which demonstrates
different outputs in the left (red dashed line) and right (blue solid
line) waveguides.

G = γ + �(1 + ae2iθ ) + γ de2iφ +
√

γ�(b + c)eiθ+iφ,

H = � +
√

γ�(b + c)eiθ+iφ + �ae2iθ + γ de2iφ, (9)

F =
√

�(1 + ae2iθ ) + √
γ bei(θ+φ).

FIG. 10. (Color online) The EM field for the symmetry-breaking
solution ωa/2πc = 0.3505. Light is incident into the 1 waveguide
and scatters to the left and right waveguides 2 and 3. P = 0.48W/a.
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FIG. 11. (a) CMT model of the T-shape photonic crystal wave-
guide coupled with two nonlinear optical cavities made from Kerr
media shown by solid bold circles. The last are coupled with input
waveguide 1 via the constant � shown by dashed lines and with
the output waveguides 2,3 via the constant γ shown by the dotted
line. Separately each connection is shown with corresponding light
amplitudes.

One can see that the CMT equations (7) are similar to the
Lippmann-Schwinger equation (2), however, with a significant
difference. For the CMT equations the rank of the matrix Heff

equals the number of nonlinear defects.
We can explicitly calculate all necessary parameters for the

present PhC in order to substitute them into the CMT. By
calculation of the light transmission in the straight waveguide
coupled with the single linear off-channel defect positioned at
different positions we are able to extract the coupling constant
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FIG. 12. (Color online) The frequency behavior of the transmis-
sions TL (blue dashed line) and TR (solid red line) from the input
waveguide 1 into the output ones 2 and 3, respectively. The gray thick
line shows the symmetry-preserving solution. (a) P = 1.92W/a,� =
0.0002,γ = 0.031 that exactly corresponds to the case shown in
Fig. 1(a). (b) P = 5.57W/a,� = 0.0002,γ = 0.00189 that exactly
corresponds to the case shown in Fig. 1(b). New branch in loop
shape is shown by dotted lines, brown for TR and green for TL.
(c) P = 0.48W/a,� = 0.00189,γ = 0.00002 that exactly corre-
sponds to the case shown in Fig. 1(c).

of the cavity with the PhC waveguide � and the eigenfrequency
of monopole mode ω0. The results are collected in Table I.
The limiting case of the T-shaped waveguide with � = 0
is considered in Ref. 20 with results qualitatively close to
those shown in Figs. 3 and 5. Here we find the solutions of
nonlinear CMT equations (7) with the substitution of concrete
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FIG. 13. The frequency behavior of the optical length (phase)
shown by solid line for the straight PhC waveguide which is fabricated
by removing of one row of dielectric rods. The parameters of the PhC
are listed in the caption for Fig. 1. The BSC point is marked by the
star.

parameters listed in Table I and present the output light
transmission to the left and to the right waveguides. We start
with the case shown in Figs. 1(a) and 12(a).

Moreover, we present the real dispersion curve ω(k)
calculated for the straight PhC waveguide and find the optical
length given by phase θ or φ depends on frequency ω. This
curve is shown in Fig. 13 by the solid curve for the parameters
of PhC given in Fig. 1. In the vicinity of the BSC frequency
ωca/2πc = 0.3402 we approximate the dispersion curve as
linear to obtain

phase

π
= 1 + 17.68(ω − ωc)a

2πc
, (10)

parameters for the phases.

IV. SUMMARY AND CONCLUSIONS

By direct solution of the Maxwell equation (2) we consid-
ered electromagnetic transmission in the T-shaped photonic
crystal waveguide for three different symmetric positions
of two identical off-channel nonlinear cavities as shown in
Fig. 1. For the case of cavities weakly coupled with the input
waveguide [Figs. 1(a) and 1(b)] we demonstrate the solution
in the form of a standing wave trapped between the cavities
which is the FPI BSC with a fixed value of intensity and
frequency of oscillations for the limit of small input power.

This BSC differs from the BSC in the FPI only in that it is to
be the antisymmetric one relative to the mirror symmetry of
the T-shaped waveguide as shown in Fig. 2 in order to exclude
leakage into the input waveguide 1. However as soon as the
input power is not equal to zero the antisymmetric BSC couples
with the symmetric transport solution because of a lack of
the superposition principle in the nonlinear quantum system.
That process of the symmetry breaking is demonstrated in
Fig. 7(b). Thus, the antisymmetric BSC ceased to be in hidden
mode allowing for the symmetric input wave to give rise
to the resonance of a rather unusual butterfly shape as was
shown in Fig. 3(b) with strong asymmetry of outputs to the
left and to the right. This consideration was complimented
by the CMT equations with parameters found directly for the
two-dimensional PhC structure and collected in Table I. The
CMT solution shown in Fig. 12(a) agrees with the numerical
solution of the Maxwell equations presented in Fig. 3(b).

For strong asymmetry of outputs we found that the
symmetry-breaking solution is developed in the form of
separated loops as shown in Fig. 5(a) by dotted lines if the input
power exceeds the threshold. It results in additional loops in the
transmission onto right and left output waveguides as shown in
Fig. 5(b). Correspondingly, the strong asymmetry is seen in the
EM field solution shown in Fig. 7(c). As shown in Fig. 9 the left
or right light output might be almost completely blocked with
variation of the input power. That result is the most important
for all-optical switching of outputs in the T-shape waveguide.20

If the couplings of the nonlinear off-channel cavities with
the input waveguide (denoted by � in Fig. 11) exceed the
couplings of the cavities with the output waveguides (denoted
by γ in Fig. 11) the antibonding BSC might appear as
shown in Fig. 8. Once more, as soon as the input power is
applied through guide 1 this BSC mixes with the symmetric
input wave to destroy the BSC because of nonlinearity.15,16

That phenomenon defines the second mechanism of the
symmetry breaking as demonstrated in Figs. 9 and 10. The
CMT consideration shown in Fig. 12(c) also confirms this
mechanism of the symmetry breaking, however, one can
notice that the agreement is only qualitative. We consider
that disagreement is related in that the nonlinear off-channel
cavities in Fig. 1(c) have direct coupling between each other.
As shown in Ref. 15 that gives rise to significant different
results compared to the case without coupling of the cavities.
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