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We present a detailed study of the symmetry and structure of the pairing gap in Fe-based superconductors
(FeSCs). We treat FeSCs as quasi-2D, decompose the pairing interaction in the XY plane in s-wave and d-wave
channels into contributions from scattering between different Fermi surfaces, and analyze how each scattering
evolves with doping and input parameters. We verify that each interaction is well approximated by the lowest
angular harmonics. We use this simplification to analyze the interplay between the interaction with and without
spin-fluctuation components, the origin of the attraction in the s± and dx2−y2 channels, the competition between
them, the angular dependence of the s± gaps along the electron Fermi surface, the conditions under which the s±

gap develops nodes, and the origin of superconductivity in heavily electron- or hole-doped systems, when only
Fermi surfaces of one type are present. We also discuss the relation between RPA and RG approaches for FeSCs.
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I. INTRODUCTION

The symmetry and the structure of the superconducting
gap in Fe-based superconductors (FeSCs) and their evolution
and possible change with doping are currently subjects of
intensive debates in the condensed-matter community. The
vast majority of researchers believe that superconductivity in
FeSCs is of electronic origin and results from the screened
Coulomb interaction, enhanced at particular momenta due to
strong magnetic fluctuations1–13 or orbital fluctuations.14–17

For systems with a single Fermi surface sheet, such interaction
cannot lead to a simple s-wave superconductivity, but it can
give rise to a superconductivity with non-s-wave symmetry: p

wave for strong ferromagnetic spin fluctuations and d wave for
strong antiferromagnetic spin fluctuations. In FeSCs, however,
the electronic structure is more complex. The low-energy states
are formed by the hybridization of all five Fe-d orbitals which
in the band basis not only gives rise to multiple sheets of the
Fermi surface (FS) [weakly doped FeSCs contain two electron
FSs and either two or three hole FSs], but also leads to a
complex mixing of contributions from intra- and interorbital
terms in the interactions between low-energy fermions. In
this situation, in addition to the potentially non-s-wave
superconductivity, FeSCs may also develop superconductivity
with an s-wave symmetry of the gap even for the repulsive
electron-electron interaction. For parameters used for orbital
interactions in most studies of FeSCs, the s-wave gap, averaged
over the FSs, changes sign between different FS sheets (it is
commonly called the s± gap), and the superconducting state
competes with the spin-density-wave (SDW) state. But for
other parameters, a conventional superconducting state, with
a sign-preserving s++ gap, becomes possible, and such a state
will compete with the charge-density-wave (CDW) state.11

The existing theoretical approaches to pairing in FeSCs
can be broadly divided into two categories. One assumes
that fermions at energies smaller than a fraction of the

bandwidth can be treated as itinerant, with a moderate self-
energy,18 although strong coupling effects, such as interaction-
driven renormalization of the whole bandwidth, have to
be incorporated.19–21 In the itinerant approach, the pairing
is often treated in a BCS-Eliashberg formalism, with the
interaction taken as a combination of direct electron-electron
interaction and effective interaction mediated by collective
bosonic excitations. Another approach assumes that the system
is not far from the Mott regime and that the pairing should be
affected by the tendency toward a Mott insulator.22–24

This work falls into the first category. Already within this
category, there are several, seemingly different approaches to
the pairing: the RPA-type spin-fluctuation approach (RPA-
SF),1–3,5,6,25–28 the functional RG approach (fRG),7–9,29,30 and
the analytic (logarithmic) RG approach based on a “minimal”
model for the pnictides,10–12 in which the interaction in each
pairing channel is restricted to the leading angular harmonics
in each pairing channel [the leading angular harmonics ap-
proximation (LAHA)]. The very positive fact for the itinerant
approach as a whole is that, so far, the results of all these
different approaches agree on the pairing symmetry and the gap
structure in hole-doped and electron-doped FeSCs. Namely,
all three approaches predict that the leading pairing instability
at small to moderate dopings is in the s-wave channel, and
the gap, averaged over the individual FS sheets, changes sign
between hole and electron sheets (an s± gap). The s± gap
generally varies along each of the FSs. If the FeSCs are treated
as 2D systems (i.e., if the variation of the interaction along
kz is neglected), the variation of the gap is stronger on the
electron FSs and can be large enough to create nodes. All
three approaches also predict that the gap with the nodes is
more likely in either undoped or electron-doped FeSCs, while
in hole-doped FeSCs a no-nodal state is more likely.

The RPA and fRG formalisms have been also applied26,30,31

to study superconductivity in recently discovered heavily
electron-doped KFe2Se2, where only electron FSs remain,
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according to recent ARPES studies.32,33 The results of RPA-
SF and fRG approaches for this limiting case are again in
agreement—both predict that the gap should now have dx2−y2

symmetry; i.e., it should change sign between the two electron
FSs. Other approaches, however, found a conventional s-wave
superconductivity in this limit, for one reason34,35 or another.15

A more complex sign-changing s-wave order parameter has
also been suggested.36

The d-wave gap symmetry was also predicted by fRG29 for
heavily hole-doped KFe2As2, where only hole FSs are present.
The RPA-SF analysis for this material27 found attraction of
comparable strength in both s-wave and d-wave channels.

The goal of this paper is to understand in more detail the
evolution of the s± gap with hole and electron doping and the
interplay between the s± and dx2−y2 pairing in FeSCs. The idea
is to “decompose” the full pairing interaction into contributions
from scattering processes between different FSs and check how
each process evolves with doping and input parameters. Such
an analysis has been performed within the RPA-SF formalism
in Ref. 1 but only for an s-wave interaction and only for a fixed
doping and a particular set of input parameters.

In this work, we combine the 5-band RPA-SF and Leading
Angular Harmonic Approximation (LAHA)37 approaches.
Specifically, we take the full set of interactions �i,j (k,k′) from
the 5-band RPA-SF calculation as input (i, j label different
FSs; k and k′ are momenta along these FSs) and show that, for
all cases that we studied, different interactions �i,j (k,k′) are
well approximated by only two angular harmonics in s-wave
and dx2−y2 channels (we choose one of the momenta (k or
k′) such that only these two pairing channels contribute). This
leaves us with a finite number of interaction parameters in
each of the two pairing channels (the number of independent
parameters is 4 or 5, equal to the total number of FSs). We then
solve the pairing problem, obtain the eigenfunctions (which
determine the gap structure) and eigenvalues (which are the di-
mensionless couplings), and analyze how both eigenfunctions
and eigenvalues evolve with the parameters. In this work, we
neglect potential new physics associated with 3D effects and
treat FeSCs as quasi-2D systems, i.e., neglect the kz depen-
dence of the quasiparticle dispersion and of the interactions.

The key goal of our work is to understand whether
superconductivity in FeSCs is governed by a single underlying
pairing mechanism for all hole and electron dopings, despite
that the pairing symmetry and the gap structure may change,
and whether the entire variety of pairing states can be
adequately described within the effective low-energy model
with a small numbers of input parameters.

The specific set of issues that we address are as follows:
(1) What is the origin of the strong angular dependence of

the s± gap along the electron FSs?
The angular dependence of the effective interaction �i,j (k,k′)

due to the change in orbital character of the states on the FS,
the competition of the scattering between hole-electron and
electron-electron sheets and the local Coulomb repulsion are
candidates that can give rise to a strong anisotropy of the gap.

(2) Are the angular dependencies of all interactions relevant
for the gap structure, or can some interactions be safely
approximated as angle independent?

In principle, the angular dependencies of both the electron-
hole and electron-electron interactions can affect the structure

of the s± gap. In the LAHA approach, we can vary the angular
dependence of each interaction by hand and explore how it
affects the gap structure.

(3) Why do the s± solutions obtained within the RPA-SF and
fRG approaches have nodes for systems with two hole and two
electron FSs and no nodes for systems with three hole and two
electron FSs? Is this behavior generic, or just a trend meaning
that in both cases the s± gap is either nodal or non-nodal,
depending on the input parameters?

This issue is difficult to address in both RPA-SF and fRG
approaches as these are numerical methods which require
certain input parameters and exploring parameter space is
computationally expensive. But it can be addressed within
LAHA as one can continuously change any of the input
parameters.

(4) What causes the pairing when only electron FSs are
present?

Possibilities include pairing driven by the angular depen-
dencies of the interactions, s-wave pairing caused by virtual
scattering to gapped hole states—the “incipient” s-wave (s±
gap but without hole FSs), a d-wave pairing (a plus-minus
gap on electron FSs) due to magnetically enhanced repulsive
interaction at momentum transfer (π,π ) between the electron
FSs, or an s-wave pairing if the interaction at (π,π ) is strong
and attractive.

(5) What causes the pairing at large hole doping, when only
hole pockets are present?

It is possible that the scattering between hole FSs with wave
vector (π,π ) favors s± pairing while the alternative is that
Coulomb avoidance within each FS pocket makes nodal d

wave the preferable symmetry.
(6) How is the structure of the pairing interaction affected

when the spin-fluctuation component is added to the direct
fermion-fermion interaction?

Inclusion of the SF contribution can affect the relative
magnitudes of the interactions �ij (k,k′) between different FS
sheets and in principle can change its angular dependence.

This last issue is relevant for understanding the comparison
between RPA-SF and RG approaches, which we pause to
discuss in some detail. These two approaches differ in
the assumption of what are the relevant energy scales for
magnetism and superconductivity. In the RG approach it is
assumed that magnetism and superconductivity are produced
by the same low-energy fermions and have to be treated on
equal footing, starting from a model with only density-density
and exchange interaction between fermions. Then the SF com-
ponent of the interaction develops together with the pairing
vertex (one builds up step-by-step “parquet” renormaliza-
tions simultaneously in the particle-hole and particle-particle
channels).7,11,12 In the RPA-SF approach2,5,6,25 the assumption
is that magnetism is superior to superconductivity and comes
from fermions at energies comparable to the bandwidth, which
are above the upper edge for the RG treatment. If so, the
SF component should be included into the bare interaction,
which does not need to be further renormalized in the particle-
hole channel. In this situation, only renormalizations in the
particle-particle channel (which always come from low-energy
fermions) remain relevant, and the RG treatment becomes
equivalent to the BCS theory. There is no good justification
to select a particular set of diagrams for the renormalization
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of the interaction at high energies, but in many cases the RPA
approximation (which amounts to a summation of ladder series
of vertex renormalization diagrams in the spin channel and
generally accounts for a Stoner-type instability at some Q)
yields quite reasonable effective interactions, particularly near
a magnetic instability.

Which of the two approaches better describes FeSCs is
debatable. The value of the ordered magnetic moment is quite
small, at least in the FeSCs, and magnetic excitations measured
by neutron scattering die off at energies of 100–150 meV.
This behavior is consistent with the idea that magnetism
comes from relatively low-energy fermions. The one-loop
parquet RG equations for the coupled flow of the vertices are
rigorously justified only when the fermionic dispersion can be
approximated by a k2 dependence. This also does not extend
too far in energy; i.e., the upper limit for the RG approach is
also only a fraction of the bandwidth.

But are these two approaches fundamentally different? To
compare them, we remind the reader that in the RG treatment,
the flow of magnetic and superconducting vertices remain
coupled only down to energies of order EF . At energies
E < EF , each vertex flows independently, and the flow of the
pairing vertex (�sc) becomes the same as in the BCS theory
(d�sc/d log E = �2

sc. From this perspective, the real result of
RG as far as pairing is concerned is the renormalization of
the pairing interaction from its bare value to the renormalized
one at EF . [This is indeed only true if the RG flow does
not reach a fixed point down to EF , but this is likely to
be the case for FeSCs simply because Tc and TN are both
small compared to EF ∼ 0.1 eV.] It is quite likely (although
not guaranteed) that the angle-independent components of the
renormalized interactions can be reproduced by choosing some
other input parameters in the orbital basis; i.e., the effect of
the RG flow could be absorbed into the modification of the bare
theory. The same is true for the RPA-SF approach—the angle-
independent components of the new SF interactions likely
can be reproduced the renormalization of input parameters,
although the needed values of U,V,J,J ′ may seem quite
exotic.

The situation is a bit more tricky for the angle dependent
components of the interactions. The RG with coupled magnetic
and superconducting vertices can be rigorously justified at
weak coupling only if angular dependence of the vertices are
(i) weak and (ii) are preserved under RG. This is how the
analytic RG flow has been obtained.12 fRG does include some
variation of the angle dependence of interactions, but this goes
beyond justifiable logarithmic accuracy. Given that fRG and
analytic RG yield virtually identical results, it seems as if the
only effect of RG renormalizations down to EF is the rescaling
of the overall magnitudes of the interactions. If the effect of
adding the SF component to the interaction in the RPA-SF
approach also predominantly gives rise to rescaling of the
magnitudes of the interactions, then the two approaches are
not fundamentally different.

This does not imply that the RPA-SF and RG approaches
are equivalent. Rather, the implication is that the outcome of
applying each of the two formalisms is the new “bare” theory
with new input parameters. These new parameters do differ
somewhat between RPA-SF and RG, but the difference should
not matter much if the pairing symmetry and the gap structure

are quite robust with respect to parameter variations. This is
another issue that one can straightforwardly verify using the
LAHA formalism which allows one to continuously change
the parameters.

This paper is organized as follows. In Sec. II we briefly
discuss the RPA-SF and LAHA formalisms and outline the
computational procedure. In Sec. III we discuss how the gap
symmetry and structure are affected by the SF component of
the interaction. In Sec. IV we show the results for weakly
electron-doped and hole-doped FeSCs, and in Sec. V we
discuss strongly electron- and hole-doped FeSCs, which
contain only electron or hole pockets, respectively. We present
our conclusions in Sec. VI. A short summary of this work is
presented in Ref. 37.

II. THE RPA-SF AND LAHA FORMALISMS AND THE
COMPUTATIONAL PROCEDURE

We first briefly describe the RPA-SF and LAHA approaches
and then outline the computational procedure.

A. RPA-SF formalism

The approach and its application to FeSCs have been
discussed in detail in several recent publications,2,5,6 so we
will be brief. The point of departure for RPA-SF is a 5-orbital
model with intraorbital and interorbital hopping integrals
and density-density (Hubbard) and exchange intraorbital and
interorbital interactions given by

Hint = U
∑
f,s

nf,s↑nf,s↓ +
∑

f,s,t �=s

(
V

2
nf snf t − J

2
�Sf s · �Sf t

)

+ J ′

2

∑
f,s,t �=s

∑
σ

c
†
f sσ c

†
f sσ̄ cf tσ̄ cf tσ , (1)

where cf sσ is the annihilation operator for electron on
lattice site f with orbital index s and spin σ , nf s =
nf,s↑ + nf,s↓, nf sσ = c

†
f sσ cf sσ is the density operator, �Sf s =

(1/2)c†f sα �σαβcf sβ is the spin operator, and σ̄ = −σ . We have
designated different symbols for the intraorbital Coulomb
interaction U , interorbital Coulomb interaction V , interorbital
exchange J , and “pair hopping” term J ′ for generality, but
note that if they are generated from a single spin-rotational-
invariant two-body term they are related by J ′ = J/2 and
V = U − 5J/4. The model parameters for hopping integrals
(36 total) are obtained from the fit to density functional theory
(DFT) band structure,38 see Ref. 2 for detailed description of
the model parameters.

The SF component of the interaction is now obtained by
summing up second- and higher-order ladder diagrams in
matrix orbital formalism. The total interaction (the sum of the
direct, first-order term and SF contribution) is then converted
from orbital to band basis by dressing it by matrix elements
associated with the hybridization of five Fe orbitals. The end
result of this procedure for the purposes of the analysis of
superconductivity is the effective BCS-type Hamiltonian in
the band description

H =
∑
i,k

εi(k)c†ikcik +
∑

i,j,k,k′
�ij (k,k′)c†ikc

†
i−kcjk′cj−k′ . (2)
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The quadratic term describes low-energy excitations near hole
and electron FSs, labeled by i and j , and the interaction term
describes the scattering of a pair (k↑ , − k ↓) on the FS i to a
pair (−k′ ↑ ,k′ ↓) on the FS j . The effective singlet interaction
�ij (k,k′) is then given by

�ij (k,k′)

=
∑

s,t,p,q

Re
[
at∗

νi
(−k)as∗

νi
(k)�stpq(k,k′,0)ap

νj
(k′)aq

νj
(−k′)

]
,

(3)

with

�
pq
st (k,k′,ω) = [

1
2Us + 1

2Uc + 3
2UsχRPA

1 (k − k′,ω)Us

− 1
2UcχRPA

0 (k − k′,ω)Uc
]tq

ps . (4)

Here the χRPA
1 and χRPA

0 describe the spin fluctuation contribu-
tion and orbital (charge) fluctuation contribution, respectively,
a

p
νj

is the matrix element connecting orbital p with the band
νj on FS j , and the matrices Uc and Us contain interaction
parameters from Eq. (1) as described in Ref. 2. We will call
an approximation to the total interaction which includes only
the two first-order terms in Eq. (4) as “constant or non-spin-
fluctuation” (NSF), while the total interaction includes the
third and fourth spin-fluctuation terms (SF) as well. In principle
this interaction includes also charge (orbital) fluctuations via
Uc, but as these are negligible for realistic parameters, we use
the simpler “spin fluctuation” designation.

Throughout this paper, we consider the pairing in the
unfolded Brillouin zone, leaving aside the issue of possible
changes of the gap due to folding. These are particularly
important in the case of the 122 systems with I4/mmm

symmetry.14,36 In the unfolded zone, the 2D electronic
structure of weakly and moderately electron-doped FeSCs
consists of two near-circular FSs centered at � point (k = 0)
and two elliptical electron FSs centered at X and Y points,
k = (0,π ) and k = (π,0), respectively. For hole-doped and
some undoped FeSCs, there exists also another, third, hole FS
located at M point k = (π,π ). In the folded zone, all three hole
FSs are centered at (0,0), and the two electron FSs move to
(π,π ) and are hybridized through the coupling via a pnictogen.

The interaction �ij (k,k′) contains all pairing components
for tetragonal (D4h) lattice symmetry: A1g (s wave), B1g

(dx2−y2 ), B2g (dxy), and A2g (g wave). The s-wave gap
�s(kx,ky) is symmetric under kx → ±kx,ky , the dx2−y2 gap
�dx2−y2 (kx,ky) changes sign under kx → ky , and so on. We
focus here on s- and dx2−y2 -wave symmetries.

With these considerations in mind, the BCS gap equation
then becomes the eigenvalue problem:

∑
j

∮
Cj

dk′
‖

2π

1

2πvF (k′
F )

�ij (kF ,k′
F )�α,j (k′

F )L

= −λα�α,i(kF ), (5)

where α is either s or dx2−y2 and L ∼ ln (EF /Tc). For a circular
FS, Eq. (5) is simplified to

∑
j

∫ 2π

0

dψ ′

2π
NF,j�ij (ψ,ψ ′)�α,j (ψ ′)L = −λα�α,i(ψ), (6)

where NF,j = mj/2π is the density of states at the FS j , and
ψ and ψ ′ are the angles along the FSs i and j , respectively.

Equations (5) and (6) are integral equations which in general
can be solved only numerically. Taking M points on each FS,
one obtains M eigenfunctions and M different λ’s in each of
the two pairing channels. For s wave, some of eigenfunctions
correspond to an s++ gap, while others correspond to an s±
gap. The eigenfunction corresponding to the largest positive
λα describes the pairing state immediately below Tc.

B. LAHA formalism

The generic idea of LAHA approximation is to model
�ij (k,k′) by a rather simple function of the two momenta, such
that the gap equation can be solved and analyzed analytically.
In cuprates, numerous groups approximated the dx2−y2 gap
by the first harmonic cos kx − cos ky (cos 2φ for a circular
FS) and neglected higher harmonics such as cos 6φ, cos 10φ,
etc. The smallness of cos(4n + 2)φ terms with n � 1 does
not follow from any underlying principle, but numerically the
cos 2φ approximation works rather well, at least at and above
optimal doping.

Such an approximation should generally work even better
for FeSCs because all FSs are small and even electron ones
are almost circular. By analogy with the cuprates, one may
try to approximate s-wave eigenfunction by a constant along
each FS, and approximate dx2−y2 gaps by cos 2φ. There is
a caveat, however—such approximation is only valid for the
gaps along hole FSs which are centered at the points along
kx = ±ky [i.e., at k = (0,0) and (±π, ± π )]. Electron FSs are
centered at X and Y points, which by itself are not kx → ±ky

symmetric. As a result, some of the s-wave gap functions, such
as cos kx + cos ky , behave as ± cos 2θ , where θ is the angle
along an electron FS, while some of the d-wave gap functions
such as cos kx − cos ky are approximated by constants on the
two electron FSs. In the latter case, the only “memory” about
the d-wave is that the sign of a constant changes between the
two electron FSs.

The implication of this result is that, within LAHA, angle-
independent and cos 2θ terms must appear together in both
s-wave and d-wave components of the interactions, and with
comparable magnitudes. A simple analysis then shows that the
form of the interaction depends on whether it involves hole or
electron FSs. For the interaction between fermions on a hole
FS, in LAHA,

�hh(φ,φ′) = Ahh + Ãhh cos 2φ cos 2φ′, (7)

where φ and φ′ are the angles along a hole FS (measured
relative to the kx axis), and the A and Ã terms are s-wave and
d-wave components, respectively. For the interaction between
fermions from a hole and an electron FS,

�eh(φ,θ ) = Aeh (1+2α cos 2θ ) +Ãeh cos 2φ (1+2α̃ cos 2θ ) ,

(8)

where θ is the angle along an electron FS (again, mea-
sured relative to the kx axis). Finally, for the interac-
tion between fermions from an electron FS, we have in

224505-4



EVOLUTION OF SYMMETRY AND STRUCTURE OF THE . . . PHYSICAL REVIEW B 84, 224505 (2011)

LAHA

�ee(θ,θ ′)
= Aee[1 + 2α(cos 2θ + cos 2θ ′) + 4β cos 2θ cos 2θ ′]

+ Ãee[1 + 2α̃(cos 2θ+ cos 2θ ′)+4β̃ cos 2θ cos 2θ ′].
(9)

The s-wave and d-wave components look identical, but
they transform differently between intra- and interpocket
interactions involving the electron FSs.

Below we present the full LAHA result for �ij (kF ,k′
F )

for the case when the FS consists of two hole and two
electron pockets. The extension to the case of three hole FSs
is straightforward. We have

�hihj
(φ,φ′) = Uhihj

+ Ũhihj
cos 2φ cos 2φ′,

�hiej
(φ,θ ) = Uhie

(
1 ± 2αhie cos 2θ

) + Ũhie

( ± 1

+ 2α̃h1e cos 2θ
)

cos 2φ,

�eiei
(θ,θ ′) = Uee[1 ± 2αee(cos 2θ + cos 2θ ′)

+ 4βee cos 2θ cos 2θ ′] + Ũee[1 ± 2α̃ee

× (cos 2θ + cos 2θ ′) + 4β̃ee cos 2θ cos 2θ ′],
�e1e2 (θ,θ ′) = Uee[1 + 2αee(cos 2θ − cos 2θ ′)

− 4βee cos 2θ cos 2θ ′] + Ũee[−1 − 2α̃ee

× (cos 2θ − cos 2θ ′) + 4β̃ee cos 2θ cos 2θ ′],
(10)

where the upper sign is for the electron pocket e1 and the lower
sign is for e2; i,j ∈ 1,2. Intrapocket s-wave components Uhihi

and Uee represent the total strength of intra- and interorbital
Coulomb (Hubbard) interaction and are positive (repulsive).
The signs of Uhie are determined by the relative magnitudes
of intraorbital U and interorbital V terms. For a toy model of
two orbitals which hybridize to give one hole and one electron
band, Uhe > 0 if intraorbital Hubbard repulsion U exceeds
interorbital V , and Uhe < 0 for V > U .11 It is generally
expected that the intraorbital interaction is the largest, and
below we assume that Uhe is positive. If, however, V > U , the
interaction between electrons and holes is attractive in which
case it favors a conventional s-wave superconductivity.14 The
signs of d-wave components of the interactions are determined
by a more subtle balance between different U ’s and J ’s.

Later in the text we will use instead of Uij dimensionless
interactions:

uij = Uij (NF,iNF,j )1/2. (11)

The equation for �αi
and λα is the same as Eq. (6). However,

now we do not have to solve the integral equation on the gap
because for �ij given by Eq. (10), s-wave and d-wave gaps
have only four components each. For the case of two hole
pockets the s-wave gap is of the form

�h1 (φ) = �h1 ,�e1 (θ ) = �e + �̄e cos 2θ,
(12)

�h2 (φ) = �h2 ,�e2 (θ ) = �e − �̄e cos 2θ,

and the d-wave gap is of the form

�h1 (φ) = �h1 cos 2φ,�e1 (θ ) = �e + �̄e cos 2θ,
(13)

�h2 (φ) = �h2 cos 2φ,�e2 (θ ) = −�e + �̄e cos 2θ.

To obtain λα and eigenfunctions we need to write down
and diagonalize 4 × 4 matrix gap equations.39 The equations
on λs and λd are fourth-order algebraic equations; hence
there are effectively only four parameters which determine
the couplings and the gap structure in each channel. This is the
same number as the minimal number of interaction parameters
in the original orbital model.

The situation becomes even more simple if the two hole FSs
can be treated as equal (i.e., uhihj

= uhh, uh1e = uh2e = uhe,
and αh1e = αh2e = α, which actually is quite consistent with
the fits to RPA-SF; see below). Then �h1 = �h2 = �h and the
gap equation reduces to a 3 × 3 set which can be very easily
analyzed analytically. For the s-wave gap, the 3 × 3 matrix is⎛

⎝1 + 2uhhL 2uheL 2αheuheL

2uheL 1 + 2ueeL 2αeeueeL

4αheuheL 4αeeueeL 1 + 4βeeueeL

⎞
⎠ , (14)

and for the d-wave gap it is⎛
⎝1 + ũhhL 2ũheL 2α̃heũheL

ũheL 1 + 2ueeL 2α̃eeũeeL

2α̃heũheL 4α̃eeũeeL 1 + 4β̃eeũeeL

⎞
⎠ . (15)

The eigenvalues λs and λd (three of each) and the correspond-
ing eigenfunctions are obtained by diagonalizing this matrix
equation and casting the result as diag(1 − λαL).

For the case of three hole FSs, we have to introduce three
different �hi

. The gap equations in the s-wave and d-wave
channels become 5 × 5 sets. Still, they can be very easily
analyzed.

C. General considerations

Before we proceed further, it is instructive to take a
more careful look at the 3 × 3 sets Eqs. (14) and (15)
to illustrate issues which we outlined in the introduction.
Consider first the s-wave gap equation. Suppose momentarily
that all interactions are angle independent; i.e., αhe, αee, and
βee = 0. Then we have three solutions:

λs =

⎧⎪⎪⎨
⎪⎪⎩

0,

− uhh+uee

2 −
√(

uhh−uee

2

)2 + u2
he,

− uhh+uee

2 +
√(

uhh−uee

2

)2 + u2
he.

(16)

A positive (attractive) λs emerges only when u2
eh > ueeuhh, i.e.,

when the interpocket pair hopping interaction term exceeds
intrapocket repulsion. The eigenfunction corresponding to the
positive λs is a sign-changing s± gap: �e = −�h. The one
corresponding to the negative λs is a conventional s++ gap:
�e = �h.

Suppose next that the angular dependence of the interaction
is present. Then ± cos 2θ components of the gaps along
electron FSs become nonzero. Solving the cubic equation for
λs , we now find three nonzero solutions. When u2

eh > ueeuhh,
the solution with the largest λs gradually evolves from the one
which already existed for constant interactions. When αhe, αee,
and βee increase, the cos 2θ component of �̄e grows, and at
some point becomes larger than �e, and the gap develops
nodes. This is one scenario. Another one comes from the
analysis of the region u2

eh < ueeuhh, where no s± solution was
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possible without angular dependence of the interactions. In
that case, one of λs was zero. When the angular dependence is
included, this λs becomes nonzero, and its sign is determined
by the sign of

S = ueeuhh

(
α2

ee − βee

) + u2
eh

(
α2

eh + βee − 2αeeαeh

)
. (17)

When S > 0, λs > 0; i.e., the system develops an attraction in
the s-wave channel exclusively because of the angular depen-
dence of the interactions. The eigenfunction corresponding
to such λs has nodes even when the angular dependence
of the interactions is weak. The physics picture is that the
system finds a way to minimize the effect of strong intrapocket
repulsion uee by inflating cos 2θ components of the gaps along
the electron FSs, because these components do not couple to
the angle-independent component of the interaction.

Note that the sign of S is predominantly determined by
the interplay between the angular dependence of electron-hole
and electron-electron interactions. When αeh � αee, or when
α2

ee > βee, S > 0 even when ueeuhh � u2
eh; i.e., s± supercon-

ductivity with nodes develops despite the fact that intrapocket
repulsion is the strongest. In particular, S is definitely positive
if only electron-hole interaction has momentum dependence,
i.e., if αee = βee = 0. In this situation, S = u2

ehα
2
eh > 0.

Consider next the limit when hole FSs are absent and only
electron ones are present. At first thought, s-wave pairing is
impossible. On a more careful look, however, we find from
Eq. (14) that, even if we set ueh = 0, one of λs for s-wave
pairing is still positive if βee < α2

ee, no matter how small
angular dependence of electron-electron interaction is. The
eigenfunction for this solution again has nodes. The physics
reasoning is the same as in the case we just considered: The
angle-independent part of the interaction is repulsive, but the
system finds a way to overcome this strong repulsion by
inflating cos 2θ components of the gaps along the electron FSs.

We next turn to the d-wave gap equation Eq. (15). The
generic reasoning parallels the one for the s-wave case.
Namely, for interactions independent of cos 2θ , the attractive
d-wave solution exists when ũ2

eh > ũeeũhh, and for angle-
dependent interaction one of λd is positive (attractive) even if
this condition is not satisfied, but S̃, which is a d-wave analog
of S from Eq. (17), is positive. There is, however, one crucial
distinction with the s-wave case: The d-wave interactions ũhh

and ũee are not necessary positive. In particular, ũee is the dif-
ference between angle-independent components of intrapocket
and interpocket interactions between electron pockets. Once
the interpocket interaction is larger [e.g., when magnetic
fluctuations are peaked at (π,π )], ũee < 0, and the system de-
velops an attraction in the d-wave channel, even when d-wave
electron-hole interaction is weak. This is particularly relevant
for the case when only electron FSs are present; i.e., within
the BCS approximation ũeh can be set to zero. If ũee < 0 in
this case, the d-wave solution emerges, with the sign-changing
gap on the two electron FSs. An alternative possibility is that
ũee > 0 but α̃2

ee > β̃ee, and the d-wave attraction is produced
by the angle-dependent part of the d-wave interaction. In this
situation, the cos 2θ component of the d-wave gap is large,
and the gap has nodes on the two electron FSs.

TABLE I. Six sets of parameters used in comparison of RPA-SF
and LAHA. We used different values of the chemical potential μ

for each set (μ = −0.20 to +0.30); the range covers hole doping
(negative) to electron doping (positive). All parameters in this text
are in eV.

Set U J V

1 1.67 0.21 1.46
2 1.0 0.25 0.69
3 1.2 0.0 1.2
4 1.0 0.9 −1.25
5 1.0 4.0 −4.0
6 1.0 0.9 −0.7

D. Computational procedure

We use �ij (kF ,k′
F ) obtained in the RPA-SF approach as

inputs and fit their functional forms by Eq. (10). This gives us
Uij , αij , and βij . We assume for simplicity that NF,j are the
same for all FSs, convert Uij into uij = NF Uij , and analyze
4 × 4 and 5 × 5 gap equations. We then vary parameters
and check how robust the solutions are. The approach can
be extended to the case when NF,j depends on j , but this
dependence very likely does not change the physics.

We analyzed six different sets of parameters and several
different doping levels which correspond to either electron
doping or hole doping. The parameters are presented in Table I.
The results for all sets of parameters are quite similar, and
below we show the results only for representative cases. We
also analyze the case of large electron doping, when there are
no hole FSs.

The use of LAHA is meaningful only if the fit of the actual
�ij (kF ,k′

F ) by Eq. (10) is accurate enough. In Figs. 1 and 2
we show fits for the representative case of μ = 0.08 (electron
doping with ne = 6.12, while the undoped case is ne = 6) and
interactions from set 1 (U = 1.67, J = J ′ = 0.21, V = 1.41)
considered in Ref. 1. ne is the number of electrons per Fe
atom. It is equal to 6 for the undoped case and >6 (<6) for
the electron (hole) doping. We set one of momenta to be either
along the x or along the y axis on one of the four FSs and vary
the other momentum along all four FSs. The parameters for
the s-wave and d-wave interactions extracted from the fit are
presented in Table II.

The original �ij (kF ,k′
F ) are in the units of eV. Within our

approximation of an equal NF,j on all FSs, the dimensionless
uij are �ij (kF ,k′

F ) times the rescaling factor. This factor affects
the overall scale of the eigenvalues λ but does not affect the
sign and relative magnitudes of λs and λd , which we need. For
simplicity, we then set this rescaling factor to be equal to 1.

We see that the fits are reasonably good. For the case of
no SF term (NSF), all �ij (kF ,k′

F ) are fitted well by Eq. (10).
For the full interaction (i.e., SF included), all �ij (kF ,k′

F ) are
fitted well, and the discrepancies can be cured by including
subleading cos 4θ terms into the interactions.

The fits for other parameters are quite similar. For example
in Figs. 7–9 below we show the best and the worst fits of
interactions for set 2 for three different values of μ. For positive
μ, there are four FSs, and for negative μ, there is an additional,
fifth hole FS. The fits are not perfect, but are quite good for all
practical purposes.
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FIG. 1. (Color online) Fits of the actual interactions �ij (kF ,k′
F ) by LAHA. Symbols represent interactions computed numerically for the

5-orbital model using LDA band structure; solid lines are fits using Eq. (10). The fit is for set 1 for bare interactions (no SF component). The
chemical potential is μ = 0.08 which corresponds to electron doping. We set kF in �ij (kF ,k′

F ) to be either along the x or along the y direction
on a given FS (its location is specified in the title on top of each figure) and varied k′

F along each of the FSs. The angle θ ′ is measured relative
to kx . The fit is reasonably good.

One can quantify the accuracy of LAHA by looking at
the contributions from the higher harmonics. We compare the
strength of leading and subleading angular harmonics in the s

and d channels in Table III. We clearly see that the subleading
harmonics are smaller than the leading terms, which, we
remind the reader, are constant or cos 2φ terms for hole-hole
interactions in the s- and d-wave channels, respectively, and
constant and cos 2θ terms for hole-electron interaction, when
we vary the angle along the electron FS.

We continue below with set 1 for the discussion on how
the SF contribution affects the pairing symmetry and the gap
structure. The trend is the same for all other sets. And just for
a change we will look at set 2 for the discussion of how gap
symmetry and structure change with doping. We do so to limit
the number of figures and not overwhelm the reader. We will
point out in the text if differences arise.

III. SENSITIVITY OF THE GAP STRUCTURE
TO THE FORM OF �i j (kF,k′

F)

We first use the parameters extracted from the fit for set 1
and solve the 4 × 4 gap equation within LAHA. The results
for the case of no SF component are shown in Fig. 3. For
comparison, the gaps obtained by the full numerical solution
within RPA are also presented. The LAHA and RPA solutions
are almost equivalent, which is another indication that the
LAHA fit works quite well. The results for the full interaction,
with the SF component, are also presented in Fig. 3 along
with the numerical solution for s-wave gap within RPA-SF.
The LAHA and RPA solutions again agree very well. The

only real difference between RPA-SF and LAHA is that the
value of the gap along the outer hole FS is somewhat larger in
RPA-SF. As we said, this is a consequence of the fact that to
fit �h2,e(φ,θ ) in LAHA one needs to add cos 4θ components.
Once we include these components, the gap along the outer
hole FS goes up, bringing the LAHA result even closer to
RPA-SF.

We see therefore that the LAHA approximation works quite
well both for the bare interaction and the full interaction with
the SF contribution. We verified that the near equivalence
between gaps obtained within RPA-SF and LAHA holds for
all other sets of parameters from Table I. This gives confidence
that the physics can be understood by analyzing 4 × 4 s-wave
and d-wave gap equations within LAHA. We begin with the
s-wave case.

A. s-wave case

1. Modification of �i j (kF,k′
F) by spin fluctuations

We first take a closer look at Table II. Comparing the
values of uh1h1 ,uh2h2 ,uh1h2 ,uh1e,uh2e, and uee we see two
trends. First, once the SF contribution is added, there is overall
enhancement, roughly by a factor of three, for all interactions,
including interactions within hole pockets. On top of this
overall enhancement, there is another effect—electron-hole
interactions uhe further increase compared to uhh and uee.
This additional increase is by a factor of 3–4, such that the
total increase of uh1e is by a factor of 10 (the increase of uh2e

is a bit smaller).
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FIG. 2. (Color online) The same as in Fig. 1 but for the full interaction, with SF component. The fit is again reasonably good. We verified
that the slight discrepancies are removed if in LAHA we add a 4θ harmonics to the interaction.
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TABLE II. s- and d-wave parameters for set 1 with μ = 0.08. Here and henceforth NSF and SF mean the bare interaction without SF
component and the full interaction with SF component, respectively.

s wave uh1h1 uh2h2 uh1h2 uh1e αh1e uh2e αh2e uee αee βee

NSF 0.8 0.76 0.78 0.46 −0.24 0.4 −0.30 0.77 0.14 0.09
SF 2.27 2.13 2.22 4.65 −0.34 2.29 −0.22 3.67 0.15 0.04

d wave ũh1h1 ũh2h2 ũh1h2 ũh1e α̃h1e ũh2e α̃h2e ũee α̃ee β̃ee

NSF 0.7 0.66 −0.68 −0.25 −0.58 0.24 −0.42 0.11 −0.5 0.25
SF 1.50 1.40 −1.50 −3.73 −0.44 1.44 −0.32 1.03 −0.49 −0.02

We attribute the overall increase to the “bare” SF interaction
term u2χ0(q) and the additional increase to the relative
enhancement of the RPA susceptibility χ (Q)/χ0(Q) near the
momentum transfer Q = (π,0) or (0,π ). The reasoning is
based on the comparison with the results of Ref. 2 for the bare
and RPA-renormalized spin susceptibility. First, the product
uijχ0(ki − kj ) remains roughly constant in k space if we use
uij from Table II. Second, the RPA-renormalized χ (Q) is 3–
4 times larger than χ0(Q), while χ (0) ≈ χ0(0) (Ref. 2). This
logic also applies to the interaction between electron pockets,
for which uee is the average between intrapocket interaction,
for which χ = χ (0) ≈ χ0(0), and interpocket interaction, for
which χ = χ (π,π ) ≈ 2.4χ0(π,π ). The total increase of uee

is then expected to be 1 + 2[(1 + 2.4)/2] = 4.4, and we see
from Table II that uee increases by a quite similar factor of 4.

Compare next the angular parts αhe, αee, and βee. We see
from Table II that αhe and αee do not change much. The term βee

does change and becomes 2.5 times smaller in the presence of
the SF component. However, we will show in the next section
that the gap structure is insensitive to the change of βee and
does not change much even if we set βee = 0 (see Fig. 5).

Neglecting the change of βee, we conclude that the SF
contribution to the pairing interaction increases the overall
magnitude of �ij and additionally increases the magnitudes
of electron-hole interactions (uh1e and uh2e terms) and, to
lesser extent, of electron-electron interaction (the uee term), but
does not substantially modify the relevant angular dependence
of the electron-hole interaction. The overall increase of the
pairing interaction does not affect the gap structure; hence the
only true effect of the SF term is the increase of electron-
hole interactions compared to hole-hole and electron-electron
interactions.

As we said, controlled RG flow of the couplings gives rise
to exactly the same effect—angular dependence is preserved
during the flow, but the relative magnitude of electron-hole
interaction increases. From this perspective, RG and SF

approaches, although formally different, describe very similar
physics.

2. Effect of the angular dependencies of electron-hole
and electron-electron interactions

We now analyze explicitly how sensitive the gap structure
is to various angular-dependent components of �ij . Within
LAHA, we can easily change the angular dependence of the
interactions and check the consequences. First, we verify how
sensitive the solution for the gap is to the change of the angular
component of electron-hole interaction.

In Figs. 4 and 5 we show the results for the s± gap for
different values of αhie. Comparing these figures with Fig. 3,
we see that the effect of αhie on the gap is different for bare
and full interaction. For the bare interaction, originally there
is no s-wave solution with positive λs , but it appears once
we increase αhie above a certain threshold. This can be easily
understood by analyzing the 4 × 4 gap equation: For bare
interaction intrapocket repulsions uhihj

and uee are stronger
than interpocket uhie; hence the pairing can only be induced
by angle-dependent components of the interaction, when the
factor S, given by Eq. (17), becomes positive. For original
parameters S < 0, but once we increase αhie, S eventually
changes sign and the solution with λs > 0 appears. The gap
function for this induced solution has strong oscillations along
electron FSs and has accidental nodes.

Consider next the full interaction with the SF component.
uhie are now enhanced, and the solution with λs > 0 exists even
if we set αhie = 0 (see Fig. 5). The only difference between the
solutions with small and larger αhie is that in the first case the
s± gap has no nodes on the two electron FSs. We see therefore
that for full interaction the role of αhie is merely to modify the
already existing s± solution and add angular variation to the
gap along the two electron FSs.

TABLE III. Strengths of various harmonics of the interactions �i,j in the s and d channels. We fixed the position on one FS (labeled first)
and varied the angle along the other FS. The angle ψ = θ if on electron FS and φ if on hole FS. We used parameter set 2 and μ = −0.05.

s wave (h2 − h1) d wave (h2 − h1) s wave (h2 − e1) d wave (h2 − e1)

const. 0.88 0 0.95 0.56
2ψ 0 0.51 0.26 0.26
4ψ 0.01 0 0.13 0.14
6ψ 0 0.05 0.06 0.06
8ψ 0.00 0 0.03 0.03
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FIG. 3. (Color online) Top: s-wave solutions (left pair) and d-wave solutions (right pair) obtained by applying LAHA for the gap structure
for set 1 (NSF) with μ = 0.08 and the ones obtained numerically from the 5-orbital model based on the LDA band structure, respectively. There
are no solutions with positive λ, so we show the solutions with the smallest negative λ in both channels. The agreement of the gap structure
with LAHA results is quite good. For LAHA, the s-wave solution has λs = −1.02 and the d-wave solution has λd = −0.99 (λs/λd ≈ 1.0). λs

and λd obtained from the numerical approach are negative, and their ratio is λs/λd = 0.6. Bottom: The same, but now with the SF component
of interaction included. The couplings are now positive: λs = 4.6 and λd = 4.8 (λs/λd ≈ 0.96) for LAHA and ≈1.1 for RPA-SF calculations
for the 5-orbital model (Ref. 1).

We next analyze how sensitive the solution for the gap is
to the change of the angular component of electron-electron
interaction (αee and βee terms). In Fig. 5, bottom panel, we
show the results for the gaps obtained with αee and βee

increased by 2, reduced by 2, and set to zero. Comparing
this figure with Fig. 3 (bottom panel) we see that the changes
in αee and βee lead to very few changes in the gap structure
(and the λ’s). The gap remains very much the same as in
Fig. 3, even if we set αee and βee to zero. The implication
is that, for full interaction, the gap structure is determined
by the angular dependence of electron-hole interaction, while

electron-electron interactions can be we approximated by the
angle-independent uee term.

3. Nodal vs non-nodal s-wave gap for four FSs

Previous studies of the gap structure for four FSs within
RPA-SF formalism yielded the gap with accidental nodes
along the electron FS.1,2 The s± solution without nodes
only appears for an electronic structure which contains an
additional, fifth hole FS centered at (π,π ). The results of
the previous subsection imply that this result is the likely
outcome but is nonuniversal: For the full interaction the
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FIG. 4. (Color online) Effect of electron-hole interactions: s-wave solutions for set 1 (NSF) for μ = 0.08 with the angular parts of
electron-hole interactions (αhie) set to zero and increased by a factor of 2, respectively (left and center). The values of λs are −0.16 and 0.226;
positive λs is for enhanced αhie. In the right figure, we introduce additional enhancement of the overall factors of the electron-hole interactions
by ∼4 and this causes nodes in the gap to disappear.
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FIG. 5. (Color online) The dependence of the gap structure for s-wave solution on the strength of angle-dependent parts of the interactions.
We used set 1 (SF) for μ = 0.08. The solution for the original αhie is shown in Fig. 3. Top panel: The gap structure for the cases when the
angular parts of the electron-hole interaction (αhie) are increased by factor of 2, reduced by factor of 2, and set to zero, while the angular parts
of the electron-electron interaction (αee and βee) are kept at the original values. The values of λs are 7.3, 3.4, and 2.5, respectively. The angular
dependence does change, and, in particular, the nodes along the hole FS disappear when we set αhie = 0. Bottom panel: The same but now we
keep αhie at the original value and change the angular parts of the electron-electron interactions (αee and βee terms): increase them by 2, reduce
by 2, and set to zero. The λ’s are 4.5, 4.7, and 4.0, respectively. We see that this has very little effect on the structure of the gap.

gap can be either nodeless or with nodes depending on the
magnitude of αhe and on the interplay between u2

he and
ueeuhh (for simplicity, we set two hole FSs to be equal).
When u2

he < (ueeuhh), the only possibility is s± pairing with
nodes along electron FSs; in the opposite case the solution
can be either nodal or nodeless depending on αhe. The
larger u2

he/(ueeuhh) is, the larger αhe one needs to make the
SC nodal.

To further illustrate this, in Fig. 4 (right) we show the
solution of the 4 × 4 set for the gap for the case when we
increase uh1e and uh2e keeping all other parameters, including
αhie, fixed. We see that the nodes on electron FSs disappear
for substantially large uh1e and uh2e.

In RPA-SF analysis, a way to further increase uh1e compared
to other parameters is to bring the system even closer to AFM
instability. For the parameter set we are dealing with, one
needs to increase uhie by quite substantial amount, so a fine
tuning to AFM instability is required to eliminate the nodes.
But still, the no-nodal solution definitely exists in some range
of parameters.

B. d-wave case

The consideration for the d-wave case proceeds similarly
to the s-wave case. The d-wave pairing again can be due
to attraction coming from angle-independent parts of the
interaction, or it can be induced by angle-dependent parts

of the interactions, even when λd < 0 in the absence of
angle-dependent terms. We refrain from discussing all cases
as in many respects the analysis for d-wave pairing parallels
the one for the s-wave case. We point out, however, that
the negative λd for the case of bare interaction (NSF) is
much smaller in magnitude than the coupling in the s-wave
channel; i.e., there is “less repulsion” in the d-wave channel.
As a result, it takes less to convert the d-wave repulsion into
attraction. This can be achieved by shifting the values α̃hie,
α̃re, and β̃ee. Once the SF piece is added to the interaction
all d-wave components increase, but, just as for the s-wave
case, the largest increase is for electron-hole interaction. This
increase is large enough such that the gap equation develops
a solution with λd > 0 even if we set angular components of
electron-hole and electron-electron interactions to zero. In the
latter case, the gaps along the two electron FSs are ±�e. When
we do not set angle-dependent components to zero, electron
gaps acquire cos 2θ components, but, as we see in Fig. 3, this
component is quite small.

We also note that the values of λs and λd for the full
interaction are quite close. For set 1 which we are discussing
in this section, we found that, within LAHA, λd is actually a
bit larger than λs , for the parameters extracted from the fit, but
λd and λs are very close and λs becomes larger already after
a small change of parameters. The solution for the gap within
RPA also shows that, for this set, λs and λd are very close,
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FIG. 6. (Color online) Top, left to right: FSs for increasing electron doping with μ = 0.05,0.18,0.30, respectively. μ = 0.18 represents the
electron doping at which the hole FS almost disappears, while μ = 0.30 represents extreme electron doping where the hole FS completely
disappears. Bottom, left to right: FSs for increasing hole doping with μ = −0.05, − 0.18, − 0.20, respectively. Here electron FSs almost
disappear at μ = −0.18 and completely disappear at μ = −0.20.

but it yields λs � λd . In any event, however, s-wave coupling
λs definitely becomes stronger than λd once the system comes
close enough to an antiferromagnetic instability.

IV. DOPING EVOLUTION OF s-WAVE AND d-WAVE
GAP FUNCTIONS

To understand the evolution with doping, we choose set 2
for definiteness and consider the gap structure for positive
and negative values of the chemical potential. Positive μ

corresponds to electron doping and negative μ corresponds
to hole doping. For positive μ, the electronic structure consists
of two hole and two electron pockets, and the size of the hole
pockets becomes smaller as μ increases. For negative μ, the
electronic structure contains an additional, fifth hole pocket,
centered at (π,π ). As before we shall denote the electron
pocket at (π,0) as e1, the electron pocket at (0,π ) as e2, the
inner hole pocket at (0,0) as h1, the outer hole pocket at (0,0)
as h2, and the hole pocket at (π,π ) when present as h3. In this
section we only consider moderate doping, when both hole
and electron FSs are present. We consider the limiting case
of large electron and hole dopings in the next section. For
simplicity, we only present results for full interaction with the
SF component.

A. Electron doping

We considered several values of electron doping (positive
μ). Below we present the results for the representative case
of μ = 0.05 (ne = 6.09). The FS is presented in Fig. 6. In

Table IV we present LAHA s-wave and d-wave interaction
components from Eq. (10), obtained by fitting RPA-SF results.
The actual fits are presented in Fig. 7, where we present the
best and the worst fits. We see that even the worst fits are
actually quite reasonable. In the same figure we show s-wave
and d-wave gaps corresponding to the largest λs and λd .

The tables show the same trends that we discussed in the
previous section; the most relevant one is the overall increase
of all interactions when the SF component is added, and
further increase of electron-hole interaction in both s-wave
and d-wave channels. In this section we focus on the features
associated with the dependence on doping. For briefness, we
show only the case of full interaction with the SF component.

First, we see from Fig. 7 that for positive μ (when the elec-
tronic structure consists of four FSs), the s-wave solution with
λs > 0 has nodes on the electron FSs. The d-wave solution
with λd > 0 has symmetry-related nodes on the hole FSs, but
no nodes on electron FSs. That λd > 0 is the combination of
the two effects: (i) The d-wave component of the interaction
between electron pockets is negative (ũee < 0); i.e., there is
a direct d-wave attraction between electron pockets. (ii) The
d-wave components of electron-hole interaction ũh1e and ũh2e

are quite large. Both effects give rise to λd > 0 even if we set all
cos 2θ components of the interactions to zero. Within LAHA,
we can check the relative importance of the two effects by
artificially setting one of them to zero. We see from Tables IV
and V that ũee is attractive, but very weak. The primary reason
for λd > 0 are large values of electron-hole interaction ũh1e
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TABLE IV. s- and d-wave parameters for set 2 with μ = 0.05.

s wave uh1h1 uh2h2 uh1h2 uh1e αh1e uh2e αh2e uee αee βee

NSF 0.51 0.50 0.50 0.32 −0.19 0.28 −0.24 0.50 0.11 0.08
SF 0.80 0.79 0.79 0.79 −0.19 0.67 −0.19 0.91 0.05 0.05
d wave ũh1h1 ũh2h2 ũh1h2 ũh1e α̃h1e ũh2e α̃h2e ũee α̃ee β̃ee

NSF 0.38 0.36 −0.37 −0.14 −0.60 0.14 −0.60 0.05 −0.6 0.35
SF 0.50 0.49 −0.50 −0.39 −0.46 0.30 −0.47 −0.04 1.5 −0.69

and ũh2e. Accordingly, the driving force for d-wave attraction
is the strong d-wave component of the pair-hopping between
electron and hole pockets. In this respect, the mechanism is
quite similar to that for the sign-changing s-wave gap.

How far in electron doping does this mechanism remain
the leading one? To analyze this, we also considered the
case of a larger μ = 0.18 (ne = 6.23), when hole pockets
almost disappear. The FS for this case is shown in Fig. 6,
the parameters extracted from the fit are shown in Table V,
and the fits and the gaps are presented in Fig. 8. A somewhat
surprising result is that there is very little change compared
to the case of smaller μ = 0.05, when hole pockets are much
larger. Still, the dominant interaction in the d-wave channel is
the pair hopping between hole and electron FSs. The d-wave
component of electron-electron interaction is negative (i.e.,
attractive), but it remains very small.

Note also that for both μ’s λd > λs , and the difference
increases as electron doping increases. This does not neces-
sarily mean that the d-wave is the leading instability because
Tc for s-wave and d-wave superconducting instabilities have
different prefactors. Still, a larger value of λd implies that
d-wave superconductivity is certainly a possibility in electron-
doped pnictides. A more exotic mixed s + id state is also
quite possible,40 but to study it one obviously needs to solve a
nonlinear gap equation, which is beyond the scope of this work.

B. Hole doping

We next consider representative cases of hole doping by
setting μ to negative values, μ = −0.05 (ne = 5.95) and
μ = −0.18 (ne = 5.53). In Fig. 6 we show the FS for these
two μ’s. The FS now has an additional hole pocket centered
at (π,π ). For μ = −0.05 hole and electron pockets are of
comparable size; for μ = −0.18, the electron pockets almost
disappear. The fits to LAHA for μ = −0.05 are presented
in Fig. 9 and the parameters extracted from the fits are
summarized in Table VI. We see from Fig. 9 that for hole
doping the situation is different in two aspects. First, the
s-wave gap has no nodes; second, λs is substantially larger

than λd ; i.e., s-wave superconductivity is the most likely
scenario. To understand these differences, compare Table IV
with Table VI. We see that the interactions between two
hole FSs at (0,0) and two electron FSs do not change
substantially between electron-doped and hole-doped cases,
but for the hole-doped case there appear additional hole-hole
and hole-electron interactions associated with the fifth hole
pocket. These additional interactions are weak and irrelevant
for the d-wave component of �ij (kF ,k′

F ), but are quite
strong for the s-wave component. We analyzed the 5 × 5 gap
equation for the s-wave gap, and found that these additional
interactions effectively increase the angle-independent compo-
nent of the electron-hole interaction, which favors the no-nodal
s± gap. As a consequence, the system develops an s± solution
with relatively large λs > 0, even if all interactions are set to
be angle independent. When we include the angle-dependent
components, the gap acquires some momentum dependence
along electron FSs, but for given parameters this dependence
is weak and the gap remains nodeless. There is no “theorem,”
however, that the s± solution is always nodeless for five FS
pockets. In Fig. 11 we show the gap for the full interaction for
the set 3. We see that the gap does in fact have nodes on the
electron FSs.

We also note that, for the d-wave case, the electron-electron
interaction ũee is repulsive, and the d-wave solution with
λd > 0 is again the result of relatively strong d-wave electron-
hole interactions ũh1e and ũh2e involving the two hole pockets
centered at (0,0).

The outcome of the study so far is quite simple: The
no-nodal s± solution is the leading instability if the angle-
independent part of the electron-hole interaction uhe (either the
direct one or the effective one, in case of five FSs) is sufficiently
large compared to (uhhuee)1/2. In the opposite case, the s-wave
solution has nodes on electron FSs, and dx2−y2 pairing is a
strong competitor.

Consider next how far in doping the nodeless s± gap
remains the leading instability. To analyze this, we turn to
the case of μ = −0.18, when the electron pockets almost
disappear. The FS for this case is shown in Fig. 6, the

TABLE V. s- and d-wave parameters for set 2 with μ = 0.18.

s wave uh1h1 uh2h2 uh1h2 uh1e αh1e uh2e αh2e uee αee βee

NSF 0.56 0.55 0.56 0.30 −.23 0.29 −0.23 0.52 0.12 0.06
SF 0.75 0.75 0.74 0.67 −0.19 0.67 −0.20 0.88 0.10 0.05

d wave ũh1h1 ũh2h2 ũh1h2 ũh1e α̃h1e ũh2e α̃h2e ũee α̃ee β̃ee

NSF 0.43 0.43 −0.43 −0.14 −0.62 0.14 −0.62 0.04 −0.625 0.44
SF 0.51 0.51 −0.51 −0.32 −0.50 0.32 −0.50 −0.05 0.9 −0.6
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FIG. 7. (Color online) Top panel: The best and worst LAHA fits of the interactions �(kF ,k′
F ) obtained from RPA-SF calculations for

parameter set 2 (SF) for μ = 0.05. Bottom panel: Gap functions in s and d channels obtained in the LAHA. λs = 0.25, λd = 0.37. Note that
λd is somewhat larger.

parameters extracted from the fit are shown in Table VII, and
the fits and the gaps are presented in Fig. 10.

On analyzing the structure of the interactions and the gaps
and comparing them to the case of μ = −0.05 we see that
the key features survive despite the small size of the electron
pockets. Namely, the leading instability remains s±, the gap
has no nodes, and the driving force for the pairing is the
interaction between hole and (still existing) electron pockets.
The d-wave channel is a competitor (λd > 0), but still, s± state
has larger λ.

The conclusion of this subsection is that, as long as both
hole and electron pockets are present, the pairing instability

is essentially driven by electron-hole interaction. This should
obviously change at even larger hole or electron dopings, when
only one type of pocket remains and the pairing (if it exists)
should come from the interaction either between hole pockets
or between electron pockets.

V. OVERDOPING

Finally, we consider the case of strong electron or hole
doping, when hole FSs disappear and only electron ones at
(0,π ) and (π,0) remain, and the case of strong hole doping,

TABLE VI. s- and d-wave parameters for set 2 with μ = −0.05.

s wave uh1h1 uh2h2 uh3h3 uh1h2 uh1h3 uh2h3 uh1e αh1e uh2e αh2e uh3e αh3e uee αee βee

NSF 0.50 0.49 1.00 0.49 0.20 0.13 0.34 −0.18 0.30 −0.25 0.61 0.26 0.49 0.11 0.10
SF 0.86 0.96 1.83 0.89 0.45 0.32 0.92 −0.18 0.79 −0.21 1.5 0.21 1.00 0.11 0.08

d wave ũh1h1 ũh2h2 ũh3h3 ũh1h2 ũh1h3 ũh2h3 ũh1e α̃h1e ũh2e α̃h2e ũh3e α̃h3e ũee α̃ee β̃ee

NSF 0.36 0.36 0 −0.36 0 −0 −0.15 −0.58 0.15 −0.58 −0 −0.58 0.06 −0.58 0.33
SF 0.51 0.61 0.01 −0.56 0.00 −0.01 −0.45 −0.48 0.39 −0.43 0.02 0.90 0.07 −1.00 0.46
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FIG. 8. (Color online) The same as in Fig. 7, but for different μ = 0.18. λs = 0.21, λd = 0.35. Again, λd is larger, and the difference
between λd and λs is larger than for μ = 0.05.

when electron FSs disappear and only hole FSs at (0,0) and
(π,π ) remain. We consider the two limits separately.

A. Strong electron doping

Strongly electron-doped FeSCs include recently discovered
FeSe superconductors AFe2Se2 (A = K, Rb, Cs).32 Tc in these
materials is quite high and reaches almost 40 K. The electronic
structure of these materials in the folded Brillouin zone is
a bit more involved because (i) AFe2Se2 has body-centered
tetragonal structure that makes the folding of the electron
FSs a more complex procedure than just the mixing of the
two ellipses which would be the case for a simple tetragonal
structure,14,36 and (ii) there is apparently a small electron
pocket at (0,0).33 Because our main intention is to understand
what causes the pairing in the absence of hole pockets, we
follow Ref. 26 and neglect the peculiarities of the folding
procedure and potential electron pocket at (0,0). Corrections
to this approach have been discussed in Refs. 36 and 14.

RPA-SF and fRG studies26,30,31 applied to AFe2Se2 showed
that the dominant instability is in the d-wave channel. The issue
we want to address is whether the interaction between the
two electron pockets alone is capable of giving rise to sizable
d-wave attraction for large positive μ. We recall in this regard

that for the two cases of electron doping that we considered
before (μ = 0.05 and μ = 0.18), the direct electron-electron
interaction was attractive but very small, and the attraction
in the d-wave channel was primarily the result of the strong
d-wave component of electron-hole interaction. Recall that at
μ = 0.18 the hole FSs are already very small. Hole excitations
are visible in ARPES in AFe2Se2 above the gap of 60–100 meV
(Refs. 33), and it is certainly a possibility that the dominant
mechanism of d-wave attraction between fermions on electron
FSs in AFe2Se2 is virtual pair hopping to gapped hole states.

Let us elaborate on this point. When hole FSs are present,
this pair hopping give rise to an effective attractive d-
wave interaction between electron pockets with magnitude
ũ2

heL, where L = log EF /Tc comes from integration over
low-energy hole states. This interaction can well exceed
a direct ũee because for relevant values of the logarithm
ũheL = O(1). (A way to see this is to express �h via �e

in the matrix gap equation and rewrite it solely as an equation
for �e.) When hole excitations are gapped, the logarithm is
cut and scales as L = log[EF /(T 2

c + E2
0)], where E0 is the

gap for hole states. Because in AFe2Se2E0 � EF (Ref. 33)
it is not a priori guaranteed that ũehL is now small and
can be neglected. The fRG study of superconductivity in
AFe2Se2 (Ref. 30) does include this contribution because

224505-14



EVOLUTION OF SYMMETRY AND STRUCTURE OF THE . . . PHYSICAL REVIEW B 84, 224505 (2011)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Angle/(2π)

In
te

ra
ct

io
ns

Outer Hole − y

inner
outer
(π,0)
(0,π)
(π,π)

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Angle/(2π)

In
te

ra
ct

io
ns

(π,0) electron − x

inner
outer
(π,0)
(0,π)
(π,π)

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Angle/(2π)

G
ap

 fu
nc

tio
ns

s−wave solution

inner
outer
(π,π)
(π,0)
(0,π)

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Angle/(2π)

G
ap

 fu
nc

tio
ns

d−wave solution

inner
outer
(π,π)
(π,0)
(0,π)

FIG. 9. (Color online) The same as in Fig. 7, but for negative μ = −0.05, when extra hole FS appears. λs = 0.58, λd = 0.31. Observe that
now λs > λd and the s± gap has no nodes.

the RG procedure incorporates renormalizations coming from
energies above EF .

A way to verify whether the direct electron-electron
interaction or the pair hopping to gapped hole states is
the dominant mechanism of d-wave attraction in AFe2Se2

is to use the RPA-SF approach which only considers the
interaction between fermions right at the FSs and neglects
pairing interactions via intermediate gapped states, and see
whether λd is large enough (e.g., comparable to λs for hole
doping), and whether the d-wave gap structure is similar to that
obtained in fRG which includes virtual processes via gapped
states. If λd is not small and the gap structure is similar to that in

fRG, electron-hole interaction is likely irrelevant, and d-wave
attraction comes from the direct electron-electron interaction.

In Fig. 12 we show the fit to electron-electron interactions
obtained in RPA-SF formalism to Eq. (10) in which we only
kept electron-electron interactions. The parameters in the s-
wave and d-wave channels extracted from the fit are shown
in Table VIII. We solved 3 × 3 gap equations in s-wave and
d-wave channels with these parameters and show the results
in Fig. 12. We clearly see that d-wave eigenvalue is positive.

For completeness, we also computed the d-wave eigenvalue
for a different band structure, used in Ref. 26, which still has
only electron FSs remaining. The results are shown in Fig. 12

TABLE VII. s- and d-wave parameters for μ = −0.18. For technical reasons we used U = 0.9, J = 0, and V = 0.9.

s wave uh1h1 uh2h2 uh3h3 uh1h2 uh1h3 uh2h3 uh1e αh1e uh2e αh2e uh3e αh3e uee αee βee

NSF 0.37 0.37 0.74 0.36 0.04 0.10 0.40 0.0 0.40 0.0 0.04 0.0 0.44 0.0 0.0
SF 0.75 2.02 17.2 0.98 −0.08 0.41 1.36 0.08 2.86 0.02 0.31 −0.01 1.40 0.01 0.06

d wave ũh1h1 ũh2h2 ũh3h3 ũh1h2 ũh1h3 ũh2h3 ũh1e α̃h1e ũh2e α̃h2e ũh3e α̃h3e ũee α̃ee β̃ee

NSF 0.36 0.36 0 −0.36 −0.04 0.04 −0.40 −0.0 0.40 −0.0 0.04 −0.0 0.44 −0.0 0.0
SF 0.70 1.94 13.6 −0.94 0.04 0.33 −1.32 0.0 2.85 0.02 0.26 0.02 1.45 0.01 0.04
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FIG. 10. (Color online) The same as in Fig. 9, but for μ = −0.18 and U = 0.9,J = 0.0,V = 0.9. We obtain λs = 1.8, λd = 1.2. Observe
that, still, λs > λd and the s± gap has no nodes.

and Table IX. We find that the d-wave eigenvalue is again
positive and the d-wave gap structure is quite similar to that in
Fig. 12. The magnitude of λd , however, depends on the choice
of the band structure.

With the LAHA fit, we are in a position to analyze the
pairing in more detail and check whether the d-wave attraction
comes from angle-independent or angle-dependent parts of the
electron-electron interaction. In the absence of hole FSs, λd is
the solution of the 2 × 2 gap equation and is given by

λd = −ũee

(
2β̃ee + 1 ± [

(2β̃ee − 1)2 + 8α̃2
ee

]1/2)
. (18)

In general, λd > 0 either because ũee < 0, or ũee > 0 but α̃2
ee >

β̃ee. In the first case, the d-wave gap is due to a direct attraction
between fermions from the two electron pockets, much in
analogy with the “hot spot” scenario for the cuprates, and
the gap has only modest variation along the electron FSs and
no nodes. In the second case, the d-wave gap should have
nodes. We see from Tables VIII and IX that ũee < 0; i.e.,
d-wave attraction in AFe2Se2 is primarily due to the existence
of a constant (angle-independent) attractive d-wave interaction
between the two electron pockets.

To understand why ũee < 0 we remind the reader that
ũee is the difference between intrapocket and interpocket

electron-electron interactions ũee = (NF /2)(�e1e1 − �e1e2 )
[see Eq. (10)]. The bare values of �e1e1 and �e1e2 are quite
close. For small electron doping, magnetic fluctuations are
predominantly peaked at (0,π ) and (π,0), and neither of these
two interactions are selected for relative increase. As a result,
the full intrapocket and interpocket electron-electron interac-
tions remain of nearly equal magnitude, and the difference
between the two is small. Once the hole pockets disappear, the
peak in magnetic susceptibility shifts to near (π,π ), according
to RPA.26 In this situation, SF enhances the interpocket �e1e2

compared to the intrapocket �e1e1 , and ũee becomes negative
(attractive).

We also note that the s-wave solution remains attractive
for one choice of the band structure (see Table IX), although

TABLE VIII. s- and d-wave parameters for the case of strong
electron doping, when there are no hole FSs.

s wave uee αee βee λs

0.84 0.09 0.04 −0.12
d wave ũee α̃ee β̃ee λd

−0.04 0.88 −0.75 0.13
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FIG. 11. (Color online) s± gap structure obtained within LAHA
for parameter set 3 (SF) for μ = −0.05. The coupling λs = 0.79.
The gap has nodes on electron FS despite that there is the third Fermi
surface at (π,π ). This nodal solution has a strong d-wave competitor
for which λd = 0.8.

λs < λd . The two solutions for λs are given by

λs = −uee

(
2βee + 1 ± [

(2βee − 1)2 + 8α2
ee

]1/2)
. (19)

The interaction uee is given by uee = (NF /2)(�e1e1 + �e1e2 )
and is positive when both intrapocket �e1e1 and interpocket
�e1e2 are positive, as in Tables IX and VIII. For uee > 0 a
positive λs appears when α2

ee > βee which is satisfied for the
parameters in Table IX. Such a solution is induced by angle-
dependent electron-electron interaction terms, and the s-wave
gap should have nodes on the electron FSs. This is consistent
with Fig. 12.

The structure of both d-wave and s-wave gap functions is
also quite consistent with the solution obtained within fRG.30

The authors of that paper argued that the attraction in the
d-wave channel is due to virtual hopping to gapped hole states,
which is captured in fRG. We, on the contrary, believe that the
good agreement between fRG and the LAHA-RPA approach,

which does not include gapped hole states, indicates that the
primary cause for a d-wave pairing is the direct interaction
between the two electron pockets, present in both approaches.
We have not investigated the influence of gapped hole states
directly, however.

The issue that we do not discuss in this paper is how the
d-wave gap evolves under the transformation into the folded
zone. The folding is a nontrivial procedure for the case of d-
wave pairing because the two electron FSs do hybridize in the
folded zone, and this frustrates the d-wave gap which changes
sign between the two unhybridized FSs. Further complication
is that AFe2As2 has a body-centered tetragonal lattice, and the
two electron FSs which eventually hybridize differ by kz =
π and are rotated by π/2 before hybridization. There is an
argument that in this situation the d-wave gap must have nodes
near kz = π/2 (see Ref. 36). However, the issue of the pairing
in the presence of the hybridization is not settled at the moment
and we will not dwell on it.

Finally, in our discussion we assumed that both intrapocket
interaction �e1e1 and interpocket interaction �e1e2 are positive.
Then uee is definitely positive. Intrapocket interaction is
certainly positive, but the sign of interpocket interaction
depends on the interplay between U,V , J , and J ′ in the
same way as the sign of uhe depends on the interplay between
intraorbital and interorbital interactions. If �e1e2 < 0 the d-
wave ũee = (NF /2)(�e1e1 + |�e1e2 |) becomes positive, while
the s-wave uee = (NF /2)(�e1e1 − |�e1e2 |) becomes negative,
if |�e1e2 | > �e1e1 . In this situation, the system develops an
s-wave pairing with equal sign of the gap on the two hole
pockets. We make a conjecture that �e1e2 is negative if one uses
the orbital J1-J2 model with the interaction between first and
second neighbors in real space (and J2 > J1), instead of the
on-site orbital Hubbard-Hund model. This would explain why
both strong-coupling34,35 and weak-coupling35 studies of the
pairing in the orbital J1-J2 model yielded an s-wave pairing.

B. Strong hole doping

Superconductivity at strong hole doping, when only hole
FSs are present, has been observed in KFe2As2,41,42 which
is at the opposite end from parent BaFe2As2 in the family
of K1−xBaxFe2As2. Tc in this material is rather low, only
3 K, but the interest in KFe2As2 is fueled by the fact that
penetration depth and thermal conductivity measurements
point to nodal behavior, much as in LaFePO. The fRG study
by Thomale et al.29 shows that the leading instability is in
the d-wave channel, consistent with the observation of nodes.
Interestingly, Thomale et al. have found that the d-wave gaps
on the three hole FSs [two centered at (0,0) and one at
(π,π )] are “in phase” with each other, i.e., �i(φ) = �i cos 2φ

(i = 1–3), and all �i are of the same sign. This is not the
d-wave solution with the largest λd at smaller doping, when
both hole and electron pockets are present. In that solution,
there is a π phase shift between the gaps on the two FSs
centered at (0,0) (see Figs. 10 and 9). The solution with “in
phase” d-wave gaps is one of five d-wave solutions in the
LAHA formalism, but with negative λd at small to moderate
hole doping.

Given this discrepancy, it is interesting to analyze strong
hole doping in our approach. For this, we set μ = −0.20
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FIG. 12. (Color online) Top: The fits of the interactions and the structure of s-wave and d-wave gaps in LAHA for the case of heavy
electron doping, when only electron FSs are present. The λ’s are λs = −0.12 and λd = 0.13 (μ = 0.30). Bottom: The same, but for a different
band structure, used in Ref. 26. The couplings are λs = 0.1 and λd = 5.9.

and consider U = 1, J = 0.25, V = 0.6, which is a rescaled
version of the interactions used by Thomale et al. This is done
to avoid a magnetic instability in the RPA-SF analysis. For
the parameters from Ref. 2, we changed ε3z2−r2 from −0.211
to −0.511 to leave only one of two (π,π ) hole pockets, see
Fig. 6.

The results for the fit of the RPA-SF interactions to LAHA
and s-wave and d-wave gap structures are shown in Fig. 13, and
the interaction parameters extracted from the fit are presented
in Table X. We see that the d-wave solution is attractive, while
for the s-wave solution the largest λs is negative. We verified,
however, that it can be also made positive either by a slight
change of uhihj

or by the inclusion of cos 4φ terms, so in
essence s-wave and d-wave λ’s are comparable. What does not
depend on small variation of parameters is that both s-wave
and d-wave solutions are different from the corresponding
solutions at smaller |μ|, when hole and electron FSs were
present. In particular, we see from Fig. 13 that the s-wave
gap now changes sign between the two hole FSs centered at
(0,0), while in the d-wave solution the gaps on these two FSs
are “in phase.” We remind the reader that at smaller |μ| the
s-wave gaps on the two hole FSs are of the same sign, while
the d-wave gaps on these FSs have a phase shift of π (see
Figs. 10 and 9).

TABLE IX. s- and d-wave parameters for the case of strong
electron doping, with band structure from Ref. 26, when there are
no hole FSs.

s-wave uee αee βee λs

3.65 0.20 0.03 0.1
d-wave ũee α̃ee β̃ee λd

−2.57 0.29 −0.0 5.9

Also, for the d-wave case, a straightforward analysis of
the 3 × 3 d-wave gap equation shows that the solution with
λd > 0 exists for two reasons, both specific to the absence of
electron pockets. First, we see from Table X that the d-wave
intrapocket interaction within the (π,π ) pocket, ũh3,h3 , is now
negative (i.e., attractive). Second, intrapocket interaction ũh1,h2

between the two pockets at (0,0) is negative and larger in
magnitude than repulsive ũh1,h1 and ũh2,h2 . In consequence,
if we momentarily decouple the pocket at (π,π ) and the two
pockets at (0,0), we obtain two solutions with positive λd .
One corresponds to a gap only on the (π,π ) pocket, another to
in-phase gaps on the two pockets at (0,0). The third solution
is the one in which there is the π phase shift between the two
gaps at (0,0). This solution has negative λd and is irrelevant.
The residual, much weaker interaction between the pockets at
(0,0) and (π,π ) couples the two solutions with positive λd and
sets the phase shift between the gaps at (π,π ) and (0,0). In
each of these two coupled solutions, there is no phase shift
between the gaps at (0,0), and the gap at (π,π ) is larger than
the gaps at (0,0) simply because ũh3,h3 is attractive while ũh1,h1

and ũh2,h2 are repulsive. These features are not present in the
d-wave solution with the largest λd for smaller |μ|, when both
hole and electron FSs are present. For those cases, ũh3,h3 is
repulsive, and there is a π phase shift between the two gaps
at (0,0) because ũh1,h2 is dominated by the interactions with
electron pockets ũh1e and ũh2e which, by symmetry, are of
different signs. We see therefore that the two d-wave solutions
of the linearized gap equation which give the two largest λd are
not the same as the solution with the largest λd at smaller |μ|.

The larger value of �h3 compared to �h1 and �h2 and the
in-phase structure of the gaps at (0,0) are consistent with the
fRG d-wave solution by Thomale et al.29 There is only one
relatively minor disagreement: For our parameters the solution
with the largest λd is the one for which the (π,π ) gap and (0,0)
gaps have relative phase shift π , i.e., are “of opposite sign”
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FIG. 13. (Color online) The fits of the inter-
actions by LAHA and the structure of s-wave and
d-wave gaps for the case of heavy hole doping,
μ = −0.20, when only hole FSs are present.
The parameters are U = 1,J = 0.25,V = 0.69
(see text). The eigenvalues are λs = −.05 and
λd = 0.05.

(see Table XI). Thomale et al. found the solution with the
“equal sign” of all three d-wave gaps. We verified, however,
that the selection of the phase between (π,π ) and (0,0) gaps
is sensitive to the interplay between ũh1,h3 and ũh2,h3 , which
are small in magnitude and have different signs (see Table X).
Already a small modification of these parameters makes λd

larger for the solution with the same phase for the gaps on all
three FSs, the same as in the fRG solution.

The pairing in heavily hole doped FeSCs was recently
studied within RPA for the five-band orbital model by Suzuki
et al.27 They found that s-wave and d-wave pairing amplitudes
are of about the same strength. This agrees with our analysis.
There is one difference, however: Suzuki et al. argued that the
pairing interaction predominantly comes from the interaction
between hole states and gapped electron states near (0,π ) and
(π,0), while in our case the pairing comes from the interaction
between hole pockets. Suzuki et al. cited recent observations
of incommensurate spin fluctuations in KFe2As2 (Ref. 43) as
evidence for still strong interactions between fermions from
near � and (π,π ) points and from near (0,π ) and (π,0). This
is certainly a possibility, but we point out that the interaction
within the hole pocket centered at (π,π ) also gives rise to
incommensurate spin fluctuations at rather large momenta,
because of a large size of that pocket. We recall that in our
theory, the magnetically enhanced interaction within the (π,π )
hole pocket is the driving force for the d-wave pairing.

TABLE X. s- and d-wave parameters for the case of strong hole
doping (with SF component), when there are no electron FSs.

s wave uh1h1 uh2h2 uh3h3 uh1h2 uh1h3 uh2h3 λs

1.75 2.93 1.97 2.20 0.63 0.60 −0.05
d wave ũh1h1 ũh2h2 ũh3h3 ũh1h2 ũh1h3 ũh2h3 λd

1.34 2.37 −0.09 −1.76 −0.01 0.05 0.05

C. Strong electron vs strong hole doping

We see that in our theory there is an attraction in the
d-wave channel at both strong hole doping and strong electron
doping (at least, for the model and parameters which we
considered). The two limits are, however, quite different from
a physics perspective. For the case of strong electron doping,
the enhancement of the spin susceptibility around (π,π )
unambiguously leads to an attraction in the d-wave channel,
i.e., to λd > 0. For strong hole doping, the susceptibility is
peaked at (0,0), which affects ũh1,h1 , ũh1,h2 , ũh2,h2 , and ũh3,h3 .
The attractive d-wave solution is the result of negative ũh3,h3

and a larger value of ũ2
h1,h3

compared to ũh1,h1 ũh2,h2 . There is
no fundamental reason why it should be so except that for large
noncircular Fermi surfaces in 2D, the particle-hole susceptibil-
ity χ (q) is larger at 2kF than at q = 0 and the appearance of the
solution with a positive λd at strong hole doping is very likely
accidental. In other words, similar materials without electron
pockets could be s-wave or d-wave superconductors.

VI. CONCLUSIONS

In this paper we analyzed the pairing symmetry and
the structure of the gap in FeSCs by approximating the
pairing interaction between low-energy fermions by leading

TABLE XI. The structure of d-wave gaps �hi
(φi) = �hi

cos 2φi

for μ = −0.20 obtained by solving 3 × 3 linearized gap equation (the
gaps are in arbitrary units since only the ratios of the gaps matter).

Solution 1 Solution 2 Solution 3

�h1 0.22 0.77 0.60
�h2 0.15 0.58 −0.80
�h3 −0.96 0.27 0.01
λ 0.05 −0.02 −1.84
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angular harmonics. This allowed us to decompose the pairing
interaction and study separately contributions to pairing from
scattering processes between different FSs and the interplay
between angle-independent and angle-dependent parts of each
interaction. The angular dependence of the interactions is
peculiar to FeSCs because of the multiorbital nature of low-
energy excitations. (The interactions in band representation are
obtained by dressing up interactions in orbital representation
by angle-dependent coherence factors associated with the
hybridization of Fe-d orbitals.) We used the band interaction
obtained within RPA-SF formalism as an input, fitted it within
LAHA, verified that the fit is quite good for all cases that we
studied, and analyzed in detail how the pairing interactions in
s-wave and d-wave channels evolve with the bare interaction
and the one with the extra SF component and between hole
and electron doping. We also analyzed the interplay between
s-wave and d-wave pairing. Using the same procedure, we
also studied the pairing at large electron (hole) doping, when
only electron (hole) FSs are present. Throughout this paper
we treated FeSCs as quasi-2D systems and did not address
potential new physics associated with 3D effects.

The main conclusion of our study is that all pairing
states obtained so far at different dopings in FeSCs can
be understood within the same universal pairing scenario
based on spin-fluctuation exchange. We furthermore found
that all these pairing states appear naturally in the effective
low-energy model with a small number of input parameters.
We conjecture that the approaches based on RPA (both
analytical and functional) and on the itinerant J1-J2 model
reduce to this model at low energies, however with different
input parameters.

We used this effective model to study the doping evolution
of the pairing in hole- and electron-doped FeSCs. We argue
that the pairing mechanisms at small-to-moderate and large
dopings are qualitatively different—when both hole and
electron pockets are present, the pairing is of Kohn-Luttinger
type, driven by the pair hopping of fermions from hole to
electron pockets, while at larger hole or electron doping, the
pairing is due to a direct interaction between only hole or
only electron pockets. For moderate hole dopings the leading
pairing instability is toward an s± state with a nodeless gap.
For moderate electron doping a nodal s± state is the leading
instability, but the d wave is a close competitor. For larger
electron or hole dopings, when only one type of FS is present,
the leading pairing instability is toward a d-wave state, which
in the case of strong electron doping is nodeless, at least in the
2D case.

We summarize below the detailed reasoning behind the
observation stated above by presenting the answers to the
questions we posed in the introduction.

(1) What is the origin of the strong angular dependence of
the s± gap along the electron FSs?

We found that the origin is different for bare and full
interactions. For bare interactions (no SF component), the
combination of intra- and inter-electron-pocket repulsions are
stronger than the electron-hole interaction and the s± attractive
solution for the gap is entirely due to the angle-dependent parts
of the electron-hole (electron-electron for strongly electron-
doped materials) interaction, much as was anticipated in
Refs. 1 and 44. Namely, the system adjusts the magnitude of

the angle-dependent, ± cos 2θ gap component along the two
electron FSs to minimize the effect of the inter-electron-pocket
repulsion.

For the full interaction, the electron-hole interaction is the
strongest, and the attractive s± solution exists even if all
interactions are taken to be angle independent. The angle-
dependent terms modify the s± gap by creating ± cos 2θ

gap components. Whether these components are large enough
to lead to nodes depends on details, but the generic trend
is that when the angle-independent part of the electron-hole
interaction is larger, the gap is less likely to have nodes.

(2) Are the angular dependencies of all interactions rele-
vant for the gap structure, or can some interactions be safely
approximated as angle independent?

We found that the angle-dependent part of the electron-hole
interaction is the relevant one. The angle-dependent parts
of the electron-electron interaction have little effect on the
gap structure, at least for the full interaction with the SF
component.

(3) Why do the s± solutions obtained within the RPA-SF
and fRG approaches have nodes for systems with two hole and
two electron FSs and no nodes for systems with three hole and
two electron FSs?

We found that the angle-independent electron-hole interac-
tion, which favors a no-nodal s± gap, is further increased if
the third hole FS is present. For most of the parameter sets
which we analyzed, the s± gap has nodes in case of electron
doping (four FSs), but the no-nodal solution is stabilized for
hole doping (five FSs). Kuroki et al.3 have pointed out that
this can be traced back to the dxy orbital character of the third
hole pocket which interacts strongly with the dxy states at the
tips of the electron pockets. We found, however, that for some
parameters nodal solutions survive in the presence of the fifth
FS; i.e., the disappearing of the nodes with the appearance
of the fifth FS is not a universal result. That aside, the gap
structure still evolves between nodal and no nodal once we
change the magnitudes of the angle-dependent parts of the
interactions.

(4) What causes the pairing when only electron FSs are
present?

We found that the d-wave pairing is generally attractive and
competes with s± pairing for the electron-doped FeSC. At
small electron doping, the d-wave attraction is almost entirely
due to the d-wave electron-hole interaction, and the direct
d-wave interaction between electron pockets is weak. For
strong electron doping, when only electron FSs are present,
the situation is different. We found an attractive d-wave
interaction between electron pockets. The d-wave pairing is
then quite similar to the one in the magnetic hot-spot pairing
scenario for the cuprates. In both cases, there is a d-wave
attraction between the FS sheets separated by (π,π ).

With regard to the subleading s-wave attraction, in our
case it is due to an angle-dependent s-wave component of
the electron-electron interaction. We did not consider the
interaction via gapped hole states (another potential reason
for the s-wave attraction), but the similarity between our gap
structure and the one obtained in the fRG study,30 which
includes both interactions, indicates that the likely origin
of the s-wave attraction is the angle dependence of the
electron-electron interaction.
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(5) What causes the pairing when only hole FSs are
present?

We found that both d-wave and s-wave superconductivity
is possible. The d-wave channel is favorable in LAHA, but
subleading terms may tilt the balance toward s wave.

The reason for the s-wave instability is a strong repulsive
interpocket (h1-h2) interaction between the two pockets at
(0,0), which exceeds the intrapocket repulsion. This leads to
a sign-changing s-wave gap between the two hole pockets,
in full analogy with the sign-changing solution in a model
with strong interpocket interaction between hole and electron
pockets.

The reason for the competing d-wave instability is twofold.
First, the d-wave component of the intrapocket interaction
within the hole pocket at (π,π ) is negative (i.e., attractive);
second, there is strong attractive d-wave interaction between
the two hole pockets at (0,0). The combination of these
two reasons leads to a dx2−y2 solution with positive λd ,
in which the magnitude of the gap is the largest on the
(π,π ) pocket, and the two gaps at (0,0) have zero phase
shift.

Both s-wave and d-wave solutions are different from the
ones at smaller hole dopings, when hole and electron FSs are
present [e.g., the d-wave solution with the largest λd at smaller
|μ| is the one with the π phase shift between the two gaps at
(0,0)].

(6) How is the structure of the pairing interaction affected
when the spin-fluctuation component is added to the direct
fermion-fermion interaction?

We found that the SF interaction primarily changes the over-
all magnitude of the interaction, while its angular dependence
remains nearly unchanged. All components of the pairing
interaction increase when the SF term is added. On top of this,
there is an additional increase of the hole-electron interpocket
interaction, both in the s-wave and in the d-wave channels. This
additional increase makes both s-wave and d-wave solutions
attractive.

We also found that the competition between s-wave and
d-wave channels exists at all doping levels. The only exception

is the case of small hole doping, when nodeless s-wave
pairing is a clear winner. As either hole or electron doping
increases, the ratio λd/λs increases; i.e., the tendency toward
a d-wave superconductivity gets stronger. For strong hole
doping, d-wave and s-wave couplings are comparable, but
for strong electron doping we find d-wave pairing as a clear
winner.

We note, however, that we have only studied the strictly 2D
case thus far, and neglected aspects of the 3D I4/mmm crystal
symmetry characteristic of 122 materials and the hybridization
of electron pockets in the folded zone. The hybridization
may play a substantial role, particularly for the d-wave state
at strong electron doping. We nevertheless believe that the
general evolution of interactions and gap symmetry discussed
here will be generic to the FeSCs. The approach developed
here can be easily modified to study superconductivity on
hybridized FSs and can also be used to study in great detail
SDW instability in multiorbital systems.45
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