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1. The research of cuprate superconductors have
demonstrated a dominant role of strong electron cor�
relations determining the physical characteristics of
these materials. In the theoretical analysis of systems
with strong electron correlations, the Hubbard model
is commonly taken as the basic model [1]. In the limit
of infinitely strong on�site Coulomb repulsion, the
relation between the electron and spin degrees of free�
dom manifests via the kinematic interaction [2] and
underlies the spin�fluctuation processes [3]. Later, it
was found that scattering by spin fluctuations is impor�
tant for the correct description of the pseudogap state
in the normal phase [4]. In this situation, the interac�
tion of electrons with a spin density wave was often
considered to be a specific mechanism of spin–elec�
tron coupling.

In these studies, the existence of the spin density
wave was assumed to be a postulated property and the
cause of its formation was not discussed. Therefore, it
is topical to analyze the mechanism underlying the
formation of the pseudogap state in a spatially uniform
system. In this work, the formulated problem is solved
using the diagram technique for the Hubbard opera�
tors [2, 8], which makes it possible to adequately
describe the main features of an ensemble of Hubbard
fermions. This approach significantly involves the
exact representation of the Matsubara Green’s func�
tion in terms of the mass and force operators. This rep�
resentation makes it possible to find the picture of
fluctuating spectral intensity that agrees well with the
angle�resolved photoemission spectroscopy (ARPES)
data.

2. In the strong correlation regime (U � t), it is well
known that the processes involving throwing electrons

to the upper Hubbard subband give rise to an exchange
coupling between electrons. As a result, the Hamilto�
nian of the system at the subspace without the states
with two electrons at one site and taking into account
this exchange coupling can be expressed in the form
(t–J model) [9]

(1)

where  =  are the Hubbard operators [1]
that describe the transition of an ion from the single�
site state  to the  state, ε is the energy of the one�
electron single�ion states, μ is the chemical potential
of the system, σ = ±1/2 (  = –σ) is the spin projec�
tion, tfm is the hopping integral for the electron transfer

between sites m and f, Jfm = 2 /U is the exchange
integral, and U is the Hubbard parameter of the on�
site electron repulsion.

For calculations of the spectral intensity A(k, ω),
we use the diagram technique for the Hubbard opera�
tors [2, 8] and introduce the Matsubara Green’s func�
tion
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In the paramagnetic phase, the Green’s function is
independent of the spin polarization and we omit the
spin subscripts. Further on, it is important that D(k,
iωn) can be factorized into a product of the propagator
part and force operator [2]

(3)

It is easy to derive the modified Dyson equation for
G(k, iωn).

(4)

In this equation, the bold line corresponds to the
full propagator G(k, iωn) and the triangle with symbol
P is the force operator P(k, iωn). The irreducible
(according to Larkin [10]) mass operator Σ(k, iωn) is
denoted by a circle with symbol Σ inside it. The thin
line with the light (or dark) arrow denotes the bare
Green’s function for the Hubbard fermions, which
corresponds to the explicit expression

Wavy lines with light and dark arrows correspond to
the Fourier transform tk of the hopping integral. The
relation of the full propagator and the force and mass
operators can be written as [8, 11]

(5)

where ξ = ε – μ. Performing the analytic continuation
iωn  ω + iδ and introducing the real and imaginary
parts of the force and mass operators

(6)

we find

(7)

Here,
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are the real and imaginary parts, respectively, of the
irreducible (according Dyson) mass operator. Using
representation (7) for the retarded Green’s function,
we find the spectral intensity

(9)

The derived formula provides a solution of the formu�
lated problem, i.e., a relation of the spectral intensity
A(k, ω) to the force operator P(k, ω) and mass opera�
tor Σ(k, ω). Note that the denominator in Eq. (9)
includes the Dyson mass operator, whereas the
numerator includes only the part of this operator that
is irreducible according to Larkin. This occurs since
the terms in the numerator that form the product P1(k,
ω)P2(k, ω) cancel out. Therefore, the equations for the
isoenergetic surfaces (or lines in the two�dimensional
case) in the crystal momentum space differ from the
equations determining the surfaces with a constant
value of A(k, ω). This leads to the dependence of the
spectral intensity on the crystal momentum on the
Fermi surface. This dependence of the spectral inten�
sity is associated with the pseudogap state of the nor�
mal phase in strongly correlated electron systems.

In the one�loop approximation [2, 8], the correc�
tion to P(k, iωm) resulting from the interactions
included to the t–J model is given by the four graphs
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The contribution to the mass operator is deter�
mined by the two graphs
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Representing the graphs in the form of analytical
expressions, it is easy to obtain the force and mass
operators in the form

(12)

(13)

where Cn = 1 – n/2 is the Hubbard renormalization.

Taking into account the expression for the Green’s
function G(q, iωl), we can demonstrate that the solu�
tion of the equation for the force operator strongly
depends on the form of the spin�charge susceptibility

(14)

which determines the contribution of fluctuation pro�
cesses. The energy scale for the charge excitations is
relatively large; for this reason, we consider below only
the contributions related to spin fluctuations. In this
case, the nonlinear integral equation for the one�loop
correction δP(k, iωm) = P(k, iωm) – Cn to the force
operator should have the form

(15)

where ξq = ε + Cntq – μ.

3. Since the kernel of the integral equation is deter�
mined by the dynamic magnetic susceptibility, we
briefly analyze this function. For the Hubbard model,
χSF(q, ωm) was first calculated in [12]. Later on, χSF(q,
ωm) was calculated in [8, 13–15] in the context of the
active research in the field of high�Tc superconductiv�
ity. The results of these calculations demonstrate that
χSF(q, ωm) deceases rapidly with an increase in the
Matsubara frequency. Therefore, the main contribu�
tion to the integral equation comes from the summa�
tion over the range of ωl in the vicinity of ωm. Thus, we
can assume that

(16)

The function χ(q) is treated as the spin susceptibility at
zero Matsubara frequency and  ~ ΩSF/T, where
ΩSF is characteristic Matsubara frequency corre�
sponding to the onset of a steep decay of the suscepti�
bility. The order of magnitude of this frequency is
determined by the characteristic values of excitation
energies in the spin subsystem, ΩSF ~ 0.01 .

For further analysis, it is important that, in the low�
doping range, the χ(q) dependence for the t–J model
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exhibits a pronounced peak near the antiferromag�
netic instability point Q = (π, π). In Fig. 1, the dashed
line denotes the χ(q) curve calculated numerically
using the technique reported in [14]. This theoretical
result agrees well with the available experimental data
[16]. To accelerate the numerical solution of integral
equation (15), we use the model susceptibility [17, 18]

(17)

where

(18)

The validity of this approximation is illustrated in
Fig. 1 (the dashed line coincides with the solid line
calculated using expression (17)).

Taking into account all of the aforementioned
assumptions, in the first Born approximation, we find

(19)

(20)

where nF(x) =  is the Fermi–Dirac

function. Then, the expression for the one�particle
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Fig. 1. Crystal momentum dependence of the susceptibil�
ity (dashed line) calculated for the t–J model [14] as com�
pared to (solid line) the model susceptibility given by
Eq. (17) determined by the numerical calculations [17,
18]. The direction of bypassing the Brillouin zone is as fol�
lows: Γ(0, 0)  M(π, π)  X(π, 0)  Γ(0, 0);
J = 0.35|t|.
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Green’s function (3) has the form

(21)

To supplement the derived set of equations, we add the
following equation determining the chemical poten�
tial μ:

(22)

The spectral intensity of the system can be calculated
using the analytical continuation of Eq. (9).

4. Figure 2 shows the spectral intensity A(k, ω) for
the model under study calculated for (left panels) the
main directions of the Brillouin zone at the electron
density n = 0.95 and (right panels) the Fermi contours
for a quarter of the Brillouin zone. The spectral inten�
sity is presented by the intensity of lines corresponding
to the energy spectrum (the darker is the line, the
larger is the value of A(k, ω)). The model parameters
in the units of 
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were chosen such that the Femi surface has the shape
of pockets according to the experimental data on mag�
netic oscillations [19]. The upper panels of Fig. 2 show
A(k, ω) corresponding to the Hubbard I approxima�
tion. In this case, the value of A(k, ω) remains
unchanged when the crystal momentum varies along
the energy spectrum as well as over the Fermi surface.
The middle panels show A(k, ω) calculated including
spin fluctuations. The comparison with the upper
panel indicates that spin fluctuations lead to the qual�
itative difference manifesting in a pronounced modu�
lation of A(k, ω) both in the spectral lines and at the
Fermi level. We can see that the most significant
decrease in the value of A(k, ω) occurs in a broad
energy range in the vicinity of the chemical potential.

There is an important feature related to the effect of
the sign of t on the behavior of the spectral intensity
modulation. To demonstrate this feature, the spectral
intensity calculated at the positive sign of t is presented
in the lower panel of Fig. 2. In the course of the calcu�
lations, all other parameters remained fixed. We can
see that, at negative t (middle panel), the spectral
intensity peak appears at the Fermi contour near the
(π, π) point. In the case of t > 0 (bottom panel), the
A(k, ω) peak at the Fermi contour is situated at the
opposite side of the pocket, namely at the part of the
contour located near the (0, 0) point. Note that this
case corresponds to the results of the ARPES experi�
ments (see, e.g., [20]).

The discussed modification of the spectral intensity
related to the fluctuation processes leads to the quali�
tative changes in the electron density of states

(23)

Figure 3 shows the densities of states calculated
(dashed line) in the Hubbard I approximation and
(solid line) taking into account spin fluctuations.
Comparing these two lines, we see that the fluctuation
processes result in a pronounced decrease in the den�
sity of states near the chemical potential. Thus, our
analysis suggests the formation of the pseudogap state
in the system of Hubbard fermions under discussion.

5. In conclusion, let us emphasize the basic con�
cepts of the discussed mechanism for the modulation
of the spectral intensity A(k, ω). The exact representa�
tion of the one�fermion Matsubara Green’s function
D(k, iωm) is of fundamental importance [2]. The force
operator in the numerator of the Green’s function and
its dependence on the Matsubara frequency and crys�
tal momentum lead to the difference between the
isoenergetic lines in the crystal momentum and the
lines in which the force operator is fixed. This discrep�
ancy of the isoenergetic lines and the lines corre�
sponding to a constant value of the force operator is a
cause of the A(k, ω) modulation at the Fermi contour.

g ω( ) 1
N
��� A k ω,( ).

k

∑=

Fig. 2. Fermi excitation curves and Fermi surfaces
obtained taking into account the spectral intensity. The
upper panel corresponds to the Hubbard I approximation
and the middle and lower panels correspond to the calcu�
lations involving the spin fluctuations with different signs
of hopping integral t.

t = 1 t = 1
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This causes also the decrease in the density of states in
the vicinity of the chemical potential.

Let us also emphasize that the sign of the hopping
integral t in the first coordination sphere is determined
by the part of the Fermi contour that exhibits a signif�
icant decrease in A(k, ω). It is clear that the revealed
mechanism favoring the formation of the pseudogap
phase is quite universal and should manifest itself in
other models of strongly correlated electron systems.
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Fig. 3. Electron density of states calculated (dashed line) in
the Hubbard I approximation and (solid line) taking into
account the spin�fluctuation processes. The vertical
straight line indicates the position of the chemical poten�
tial.


