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1. INTRODUCTION

The use of multilevel quantum systems as basic ele�
ments in quantum computations promises a number
of advantages. First, when a quantum algorithm is
implemented by applying one� or two�qubit elemen�
tary logical operators (gates) successively in time to a
system of working qubits, the number of gates can be
reduced by inserting a multilevel particle, for example,
a three�level particle instead of a two�level particle [1,
2]. Second, in another possible method of algorithm
implementation [3–7]—in which a qubit register
(counter or cursor) that enumerates operations is
added and the Hamiltonian of the system is written as
the sum of the products of Hamiltonians of individual
gates by an operator that changes the counter state,
three�particle large�radius interaction between qubits
from different registers is required as a minimum. It is
possible to return to the common nearest�neighbor
pair interaction by passing to multilevel particles and
virtually realizing working qubits and counter qubits at
different levels of the same particle [3–7]. Third, the
preparation of a stable initial state for quantum calcu�
lations by successive measurements can be more sim�
ply performed for multilevel systems than for two�level
systems [8]. Finally, calculations with qudits (quan�
tum systems with d levels) require a smaller number of
elements to obtain the needed size of the calculation
basis [9–12]. The next element after a qubit in the
number of levels is a qutrit having three states. By
implementing quantum algorithms based on qutrits,
one can pass from the binary system to the ternary sys�
tem and use its advantages [12–14].

It is known [15–17] that any quantum algorithm
can be implemented by using a sequence of one� and
two�qutrit gates [9, 10, 16, 18, 19]. Therefore, it is nec�
essary to be able to realize such gates on different
physical systems. By now this problem is far from
being completely solved. In this paper, we chose as
qutrits quadrupole nuclei with spin I = 1 controlled by
a radiofrequency (RF) magnetic field under NMR
conditions [20]. In a strong static magnetic field and
an inhomogeneous electric field, a nucleus has three
nonequidistant energy levels separated by intervals
�(ω0 ± q), where ω0 is the Larmor frequency and q is
the quadrupole interaction constant. The NMR spec�
trum is a doublet with splitting 2q caused by the selec�
tion rule, admitting only transitions accompanied by a
change in the spin projection by unity. An example is
the deuterium nucleus on which one�qutrit gates were
realized [21]. To realize two�qutrit gates, we assume
the presence of a weak spin–spin interaction. The aim
of our study (numerical simulations) was to find the
basic rules for controlling multilevel systems and pri�
marily compare experimental times for different
methods of gate realization because, to successfully
perform an experiment on a real setup, it is necessary
to have time to use the entire sequence of gates for a
time shorter than the relaxation (decoherence) time of
the system.

The most direct method to control the state of a
quadrupole nucleus involves the use of selective RF
pulses with a frequency equal to that of the required
transition and a small amplitude ωrf � q. Quantum
computations on one quadrupole nucleus using selec�
tive Gaussian pulses were performed, for example, in
[21–26]. The state of a quadrupole nucleus can be also
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transformed by means of an RF pulse with a harmon�
ically modulated amplitude [25–28]. The frequencies
of harmonics are set equal to transition frequencies,
while their amplitudes are specified according to the
required transformation, for example, the transforma�
tion of the equilibrium state to the effectively pure
state. At present, to ensure a long enough decoherence
time, quantum NMR computations are realized in a
liquid�crystal phase where thermal motions average
the inhomogeneities of magnetic fields and intermo�
lecular interactions, resulting in NMR spectra con�
sisting of very narrow lines. The same motions strongly
weaken quadrupole and intramolecular dipole–dipole
interactions. As a result, the duration of selective pulses
increases, but the additional possibility appears for
control by high�power nonselective RF pulses [21, 24].

Recently we proposed using sequences of nonse�
lective RF pulses separated by free evolution intervals
with quadrupole interaction for performing composite
selective rotations between two neighboring levels of a
quadrupole nucleus [29, 30]. The minimum duration
T
∞

 of such a composite operator was found, which is
equal to the total duration of free evolution intervals.
It was shown theoretically that for duration T of com�
posite operators exceeding T

∞
, the rotation error can

be made arbitrarily small, whereas for T < T
∞

, the error
remains finite.

Currently, the state of quadrupole nuclei is con�
trolled using optimization methods in which the time
dependences of the amplitude and phase of a RF pulse
are found numerically from the condition of ensuring
minimal error in the realization of the specified uni�
tary transformation. For example, in [31] the problem
of optimal excitation of three�quantum transitions in
the 87Rb quadrupole nucleus (I = 3/2) was solved for
rotation at the magic angle. The authors performed
calculations by the GRAPE (gradient ascent pulse
engineering) optimization method [32]. Then, this
method was applied in [33, 34] to excite the central
transition in 23Na quadrupole nuclei (I = 3/2). In [34],
the modified Krotov optimization method, ensuring
better convergence of iterations, was proposed to solve
the same problem. Finally, the spin quantum state in
the 23Na nucleus in a single crystal [35] and a liquid
crystal [36] was transformed using a so�called strongly
modulated pulse consisting of several RF pulses with
characteristics selected by the numerical optimization
method proposed in [37].

In this study, we used the GRAPE optimization
method to perform quantum computations on qua�
drupole nuclei with the spin I = 1. We calculated opti�
mized RF pulses for one�qutrit gates of selective rota�
tions, the quantum Fourier transform (QFT), and for
the two�qutrit SUM gate [10, 16, 18, 19, 38]. Calcula�
tions were performed for different pulse durations.
As in [32], we used the time dependences of the error
to study the time optimality of the gate realization
methods proposed earlier such as composite selective
rotation [29, 30], the QFT, and the SUM gate

obtained with the help of RF pulses selective in the
quadrupole or spin–spin splitting of the NMR line
[38]. The shape of the control RF field for realization
of the SUM gate was calculated using the GRAPE
algorithm according to two schemes: first, directly up
to the total unitary operator with the 9 × 9 matrix and,
second, by means of optimized RF pulses for one�
qutrit gates with 3 × 3 matrices. The second variant is
important because it can be applied to multiqutrit sys�
tems, since, as was pointed out in [39] with the exam�
ple of multiqubit systems, optimization over the total
basis is an exponentially complex problem. We studied
the dependences of gate errors on physical parameters
and gave recommendations for their realization.

2. ONE�QUTRIT GATES

2.1. Control Theory

Consider a quadrupole nucleus with spin I = 1
placed in a strong static magnetic field B0 and a control
RF magnetic field Brf . In a reference frame rotating
around the constant field direction (z axis) at the RF
field frequency ωrf [20], the Hamiltonian of our model
takes the form

(1)

Here, ω0 = γB0 is the Larmor frequency, I
α
 is the spin

projection operator on the α axis, q is the constant of
the quadrupole interaction of the nucleus with the gra�
dient of the axially symmetric crystal field, and u

α
(t) is

the frequency equal to the product of the gyromag�
netic ratio γ by the projection of the RF control field
Brf on the α axis (α = x, y), which for brevity we will
call the RF field amplitude. Energy will be also mea�
sured in frequency units, assuming that � = 1. In the
absence of RF field, the system has three nonequidis�
tant energy levels

for the states with different values of Iz

(2)

We use them as the computation basis for a qutrit.
To realize quantum computations, it is necessary to

find the control field in such a way that the evolution
operator

(3)

performs for time T some logical unitary transforma�
tion of the qutrit state specified by a 3 × 3 matrix in

computation basis (2). Here,  is the time�ordering
operator.

H t( ) ω0 ωrf–( )Iz– q Iz
2

2/3–( )+=

+ ux t( )Ix uy t( )Iy.+

λ0 ω0– q/3, λ1+ 2q/3, λ2– ω0 q/3,+= = =

Iz = 1| 〉 0| 〉, Iz = 0| 〉 1| 〉,= =

Iz = –1| 〉 2| 〉.=

U T( ) D̂ i H t( ) td

0

T

∫–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

D̂
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For example, a one�qutrit gate of selective rotation
through angle θ in the transition between the  and

 states is represented by the matrix

(4)

The parameter ϕ determines the direction of the rota�
tion axis in the xy plane in the reference frame. Thus,
for ϕ = 0, rotation is performed around the x axis (α =
x), and for ϕ = π/2 around the y axis (α = y).

Selective rotation (4) around the y axis can be per�
formed using a rectangular RF pulse ux(t) = 0, uy(t) =
Ω with frequency ωrf = ω0 – q and duration

(5)

To obtain selective rotation with a high precision, the
inequality Ω � q should be fulfilled because at large
field amplitudes not only the resonance transition will
be excited. The rotation error can be decreased by
choosing a more complex pulse shape, for example,
Gaussian. At present various numerical methods are
used to find the optimal shape of RF pulses.

A search for the control RF field by means of the
optimization GRAPE algorithm [32] is performed by
iterating the amplitude u

α
(t) to maximize the perfor�

mance function

and minimizing, correspondingly, the error of the
obtained gate:

(6)

Here, U(T) is the matrix of evolution operator (3) dur�
ing time T and U0 is the matrix of the ideal transforma�
tion to be obtained. The time interval T is divided into
N equal segments with duration Δt = T/N, the field
amplitude in each jth segment being constant and
equal to u

α
(tj), where tj = jΔt and j = 1, 2, …, N. The

calculation of the gradient δΦ/δu
α
(tj) by expressions

from [32] gives new values of u
α
(tj) α = x, y for the next

iteration of the algorithm:

where ε is a small parameter. Calculations stop when
the difference of errors (6) in the last two iterations
becomes smaller than some value (on the order of
10⎯10 in our calculations). Note also that we imposed
no restrictions on the control field amplitude and
shape.

0| 〉
1| 〉

Rα

0 1– θ( )

θ
2
��cos ie iϕ– θ

2
��sin– 0

ieiϕ θ
2
��sin– θ

2
��cos 0

0 0 1

.=

Tp
θ

Ω 2
���������� .=

Φ Sp U0*U T( ){ }
2
/ Sp 1( ){ }2=

Δ 1 Φ.–=

uα tj( ) uα tj( ) ε δΦ
δuα tj( )
�������������,+

2.2. Selective Rotations

By using the GRAPE algorithm, we calculated

u
α
(t) for selective rotations (θ) through angles

π/4, π/2, 3π/4, and π for different pulse durations T.
The control RF field was tuned to the central fre�
quency ωrf = ω0, and a small�amplitude rectangular
pulse was used as the initial condition. The calculation
results are presented in Figs. 1–3. Figure 1 shows that
error Δ (6) drastically increases with decreasing the
pulse duration below some value Tm depending on the
rotation angle θ. The value of Tm is close to the theo�

retical value T
∞

 = 3θ/2 q obtained in [29, 30] for a
composite selective pulse. We do not present here the
results for selective RF pulses of the determined shape
(rectangular or Gaussian) because at the time scale
under study they lead to errors greater by a few orders
of magnitude [29, 30, 40, 41].

Recall that a composite selective rotation through
angle θ for the time T was performed in [29, 30] with
the help of the effective Hamiltonian Heff obtained
from Hq [see the second term in (1)] under the action
of intense nonselective RF pulses. In particular, it was

found for (θ)

(7)

where t1 = 2t2 = θ/q  and η = θ/2 . For compar�
ison, Fig. 1 shows the error for composite selective�
rotation pulses obtained from Hamiltonian (7) and
simulated in the strong RF field Ω � q. The relation
between the RF�field amplitude and the composite
pulse duration is determined by the expression

(8)

where Nc is the number of cycles in the Trotter–Suzuki
expansion, which is used to improve the accuracy of
the construction of effective Hamiltonian (7) from the
noncommuting operators of the composite pulse. The
value of T

∞
 is determined by the duration of free�evo�

lution intervals in the composite pulse

(9)

It follows from our results that for T > T
∞

 the selective
rotation error can be made arbitrarily small by increas�
ing Nc. However, in this case, it is necessary to increase
the total number of nonselective RF pulses NS = 7Nc

and their amplitude Ω. As Ω is decreased, the error
increases due to the violation of the ideality of nonse�
lective rotations caused by the quadrupole interaction.
This error can be decreased by replacing simple non�

Ry
0 1–

2

Ry
0 1–

THeff

iπIx

4
��������⎝ ⎠
⎛ ⎞ Hqt1( )

iπIx

4
��������–⎝ ⎠

⎛ ⎞expexp=

+
iπIy

2
��������–⎝ ⎠

⎛ ⎞ Hqt2( )
iπIy

2
��������⎝ ⎠
⎛ ⎞expexp ηIy,+

2 2

Ω
θ/2 2 2πNc+

T T∞–
�����������������������������,=

T∞ t1 t2+ 3θ

2 2q
����������� .= =
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selective RF pulses by a more complicated sequence of
pulses [30], but such a replacement leads to an
increase in the total duration of the operation.

In the limit Ω  ∞, the time of selective rotation
produced by a composite pulse is T = T

∞
. If this time

in effective Hamiltonian (7) is decreased to T = xT
∞

 =

3xθ/2 q (x ∈ [0, 1]), the ideal selective rotation will
not be achieved. In this case, the error for operator (4)
will be ascribed by the expression

(10)

where a = (1 + x)/2, b = (1 – x)/2, and A2 = a2 + b2.
Note that error (10) is caused by the distortion of effec�
tive Hamiltonian (7) itself rather than by the use of the
Trotter–Suzuki expansion for noncommuting opera�
tors (i.e., it corresponds to the limit Nc  ∞, whereas
the error will be greater for a finite value of Nc). One
can see from Fig. 1 that dependence (10) well
describes numerical results obtained by the GRAPE
method for angles θ = π/4 and π/2. For greater rota�
tion angles, the optimized pulse is realized with the
same error for a shorter time (by 7% for the angle π).

2

Δ 1 1
9
�� a2

A2
���� 1 a2

A2
����+⎝ ⎠

⎛ ⎞ θ
2
�� θA

2
�����coscos+–=

+ b2

A2
���� θ

2
��cos θA

2
�����cos+⎝ ⎠

⎛ ⎞ 2a
A

����� θ
2
�� θA

2
�����

2

,sinsin+

This is probably explained by the fact that the RF field
in the optimized pulse acts simultaneously with Hq,
whereas in the case of the ideal composite pulse, this
field acts successively. Therefore, the GRAPE algo�
rithm for the optimized pulse finds the time depen�
dence of the RF field at which the quadrupole interac�
tion does not prevent the fulfillment of the specified
operation, but on the contrary, facilitates it. Due to
such a consistent consideration of the simultaneous
action of Hq and Hrf , the high efficiency is achieved.

The shape of optimized pulses for θ = π/2 is shown
in Fig. 2. As the pulse duration is deceased, the average
amplitude of the RF field increases. The shape of the
optimized pulse weakly depends on the initial condi�
tion for T ≤ Tm, whereas for T > Tm, different pulses
can be obtained which lead to a very small error. As the
partition number N of the time interval is increased,
the pulse shape changes insignificantly and the error
tends to a limiting value, as is seen for the π pulse in
Fig. 3. For small N, the shape and average amplitude
of the RF field can noticeably change due to a poor
stability of the algorithm when the condition Δt �

 is violated [32].

The RF�field amplitudes of optimized pulses are
many times smaller than values (8) for the same dura�
tions. Thus, it follows from Figs. 1 and 2 that already

H 1–

Δ

0.5 1.5 2.0
T

1.0 2.5 3.0 3.5

θ = π/4 π/2 3π/4 π

10−6

10−4

10−5

10−3

10−2

Fig. 1. Dependences of error (6) for the operator (θ) on the optimized pulse duration T (in 1/q units) for different values of

θ. The values of Δ are calculated for the partition numbers N = 100 (�), 50 (�), and 30 (�). The vertical dotted straight lines cor�
respond to times T

∞
 (9). The solid curves show theoretical estimates of error (10) for corresponding rotation angles. The depen�

dences of the error for pulsed sequences from [30] are shown by dot�and�dash curves for Nc = 1 and dashed curves for Nc = 2.

Ry
0 1–
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for N = 30 the optimized pulse with the modulus of the
RF�field amplitude not exceeding 23q performs rota�
tion through π/2 for the time T = 1.69/q with the same
error as for a composite pulse consisting of 14 pulses
with the amplitude 550q.

We do not consider other selective rotation opera�
tors [29] because the results for them are qualitatively
the same.

Note that the GRAPE method was applied in [40,
41] to the three�level system of a superconductor for
solving a principally different problem of eliminating
the error from the third level upon controlling a qubit
at two levels. In [41], the control�field frequency was
selected equal to the resonance frequency of an indi�
vidual transition in the three�level system (optimiza�
tion of the selective pulse), whereas in our case, ωrf =
ω0. Both variants are admissible when a large�ampli�
tude RF field required for decreasing the pulse dura�
tion is used. Our tuning to the central frequency is
more universal because it provides the control of all
transitions with the help of a RF field at one frequency,
for example, upon performing the QFT at three levels.

2.3. Computation of an Optimized QFT Pulse

To perform the QFT of a qutrit, selective rotations
should be disposed successively in time according to
the scheme [42]

(11)

If the sequence of selective rotations (11) is realized by
means of the optimized pulses described above and
their duration is approximately estimated by the value
of T

∞
, the total QFT duration is 5.36/q when z rotation

is performed by the RF�field phase shift or 12.02/q
when the composite z rotation

F iRy
1 2– π

2
��–⎝ ⎠

⎛ ⎞Ry
0 1– 2 2arctan–( )=

× Rz
0 1– π( )Ry

1 2– π
2
��⎝ ⎠
⎛ ⎞

=  1
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�����
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Fig. 2. Change in the shape of the optimized RF pulse for the operator (π/2) for (a) the duration T = 1.67 and N = 50 (solid

curves), 30 (dashed curves) and (b) N = 50 and T = 1.5 (solid curves), 1.6 (dotted curves), and 1.7 (dashed curves). Amplitudes
and time are measures in units q and 1/q, respectively.
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(12)

is used. The same QFT operator can be obtained by
calculating u

α
(t) directly for matrix (11) by the

GRAPE method. The calculation results are shown in
Fig. 4. It is seen that the minimal QFT time is Tm ≈
3.15/q in this case, which is 1.7 and 3.8 times smaller
than the values 5.36/q and 12.02/q, respectively, pre�
sented above.

3. TWO�QUTRIT SUM GATE

The SUM gate performs the logical operation
[10, 19]

(13)

of changing the n state of the second qutrit depending
on the m state of the first qutrit. The computation basis
in the space of two qutrits is formed by the direct prod�
uct of one�qutrit bases (2). The SUM gate (13) in this
basis will be the 9 × 9 block matrix

(14)

Rz
0 1– π( ) Ry

0 1– π
2
��⎝ ⎠
⎛ ⎞Rx

0 1– π( )Ry
0 1– π

2
��–⎝ ⎠

⎛ ⎞=

SUM12 m| 〉1 n| 〉2⊗ m| 〉1 m n mod3( )+| 〉2⊗=

SUM12

E 0 0

0 A 0

0 0 A '

,=

A
0 0 1

1 0 0

0 1 0

,=

where A' is the transposed matrix and E is the unit
matrix.

We consider the realization of this gate in the sys�
tem of two quadrupole nuclei with spin I = 1 coupled
by the spin–spin interaction (dipole–dipole in aniso�
tropic media) with the Hamiltonian in the RCS,

(15)

Here, ωk = γkB0 is the Larmor frequency of spin k, qk

are the corresponding quadrupole constants, and J is
the spin–spin interaction constant.

Note that in real systems, as a rule, J � q, ω. Con�
sider, for example, the nitrogen nucleus 14N and the
deuteron 2H. Both these nuclei have spin I = 1. For
example, in the solid state in the magnetic field B0 =
70 kOe, we have for the N2 molecule ω1 ≈ 22 MHz, q ≈
4 MHz, and J ≈ 200 Hz, i.e., J/q ~ 10–4. For the heavy
water D2O molecule, ω1 ≈ 46 MHz, q ≈ 200 kHz, and
J ≈ 1 kHz (interaction between deuterons), and the
ratio is J/q ~ 10–2. Finally, in [43], the triplet state of a
system of two hydrogens in the CH2 group was used as
a qutrit. In this case, the ratio of dipole–dipole con�
stants between groups and inside a group will be about
10–1. These relations between the spin–spin and qua�
drupole interactions are used below in calculations.

H ω1 ωrf–( )I1z– ω2 ωrf–( )I2z–=

+ q1 I1z
2 2

3
��–⎝ ⎠

⎛ ⎞ q2 I2z
2 2

3
��–⎝ ⎠

⎛ ⎞+

– JI1zI2z Hrf t( ),+

Hrf t( ) ux t( )
γ1I1x

γ2

��������� I2x+⎝ ⎠
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+ uy t( )
γ1I1y
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Fig. 3. Dependence of operator (π) error on parti�

tion number N for a fixed duration of an RF pulse T = 3.1.
The inset shows the shape of the optimized RF pulse for
N = 200 (Δ = 1.9 × 10–4); ux and uy are shown by the dot�
ted and solid curves, respectively. The maximum ampli�
tudes at the ends of the time interval ux(0) = 42.61, uy(0) =
44.21, ux(3.1) = –61.16, and uy(3.1) = 57.66 are not
shown. The amplitudes and time are measured in units q
and 1/q, respectively.

Ry
0 1–

Δ

3.00 3.05 3.10 T
10−10

10−8

10−4

10−2

3.15

0 1 2 3
t

20

0

−20

10−6

Fig. 4. Dependence of the QFT operator error on the opti�
mized RF pulse duration for N = 50. The inset shows the
shape of the optimized pulse for T = 3.15; ux and uy are
shown by the dotted and solid curves, respectively. The
amplitudes and time are measured in units q and 1/q,
respectively.
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In the case of a weak spin–spin interaction, the
SUM gate can be realized with the help of a RF field
inducing transitions selective in the quadrupole inter�
action. The scheme of such a realization has the form
[10, 18, 19]

(16)

where F2 is the Fourier�transform operator acting on
the second spin, and P12 is the two�qutrit operator of
the controllable phase shift of states with a 9 × 9 diag�
onal matrix having matrix elements

(17)

The operator P12 shifts the phase by an angle depend�
ing on the states m and n of qutrits, which can take val�
ues of 0, 1, or 2.

Diagonal operator P12 (17) can be expressed in
terms of operators I1z and I2z [11, 18, 38] as

(18)

The first operator is realized by means of the free evo�
lution of a quantum system with the spin–spin inter�
action Hamiltonian HJ = –JI1zI2z during time

(19)

To eliminate the undesirable phase shift caused by the
quadrupole interaction [24], the time between the
direct and inverse QFTs in (16) should be a multiple of
the period 2π/q2. For this reason, we will round off
time tJ (19) to a smaller value corresponding to the
duration of an integer of such periods. The second and
third operators in (18) perform two additional z rota�
tions through anglers 2π/3 in each spin [20]

(20)

These spin�selective operators, which are not transi�
tion�selective, can be realized by several transition�
selective RF pulses [38]. The common phase factor in
(18) does not affect the final result and therefore can
be discarded.

For the ratio J/q ~ 10–4–10–1 chosen above, the
SUM gate duration is primarily determined by the
strength of the spin–spin interaction and is T = tJ if the
duration of local operators is neglected. When the free
evolution time is decreased,

,

the required phase difference between states in (18)
will not be obtained, gate (14) will be distorted, and

SUM12 E F2⊗( ) 1– P12 E F2⊗( ),=

mn〈 |P12 mn| 〉 i2π
3

�����mn⎝ ⎠
⎛ ⎞ .exp=

P12 i2π
3

�����I1zI2z⎝ ⎠
⎛ ⎞ i2π

3
�����I1z–⎝ ⎠

⎛ ⎞expexp=

× i2π
3

�����I2z–⎝ ⎠
⎛ ⎞ i2π

3
�����⎝ ⎠

⎛ ⎞ .expexp

tJ
2π
3J
����� .=

Z1 i2π
3

�����I1z–⎝ ⎠
⎛ ⎞ , Z2exp i2π

3
�����I2z–⎝ ⎠

⎛ ⎞ .exp= =

T xtJ x2π
3J
�����= =

the dependence of this error (6) on the parameter x
will be described by the expression

(21)

This expression was obtained by assuming that the
Fourier�transform and z�rotation operators are ideal
operators that introduce no errors.

We start to analyze the dependence of the accuracy
of SUM gate (16) on the physical parameters from the
simple case when QFT operators (11) are realized
using rectangular quadrupole�splitting�selective RF
pulses (5), whereas z rotations (20) are realized by
means of the RF�field phase shift. The dependence of
error (6) on the RF�field amplitude Ω2 = γ2Brf is shown
in Fig. 5. The error increases at large field amplitudes
due to violation of the selectivity of pulses over the
quadrupole splitting (this is explained by the action of
pulses at large field amplitudes not only on the
required transitions but also to a variable degree on all
other transitions). On the contrary, a small�amplitude
RF field in the presence of detuning ±J performs rota�
tions with distortions, which also leads to errors. In the
case of the combined action of these mechanisms, a
minimum is observed at which their influence on the
error becomes equal. The dependence of the minimal
error on J is shown in Fig. 6.

If the spin–spin interaction is strong enough, the
SUM gate can be obtained by direct RF�field excita�
tion of transitions between the states of qutrits con�

Δ 1 1 8
9
�� π

3
�� 1 x–( )sin

2
–

⎩ ⎭
⎨ ⎬
⎧ ⎫

2

.–=

Δ

0.050.01 0.03
Ω2/q2

0

0.004

0.008

0.012

0.02 0.04

Fig. 5. Error of SUM gate realization by means of quadru�
pole�splitting�selective rectangular pulses as a function of
RF�field amplitude Ω2 = γ2Brf . The parameters of Hamil�
tonian (15) are ω1 = 60q2, ω2 = 20q2, q1 = 2q2, and J =
10⎯4q2. The dotted curve shows the averaged numerical
approximation of the calculated dependence with the help
of a sum of three exponentials.



188

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 113  No. 2  2011

ZOBOV, SHAURO

nected by nonzero elements of matrix (14), i.e.,
between the following states:

(22)

Transitions between energy levels (in parentheses)
are performed with the help of selective rotations
similar to (4) by π at the corresponding resonance
frequency. The pulse sequence for obtaining the gate
has the form [38]

(23)

The arrows show the order of succession of pulses in
time. This sequence ensures selective rotations not
only at the allowed transitions but also at the forbidden
6–8 and 3–5 transitions in (22). The resonance fre�
quencies of RF pulses in (15) will take values of

(24)

Because close frequencies in (24) differ by J (J � q),
the condition of selective action on the state of the sec�
ond qutrit will be the smallness of the RF�field ampli�
tude compared to the constant J (Ω2 � J). Therefore,

the duration Tp = π/Ω  (5) of each π�pulse will be
much greater than tJ (19).

1| 〉 0| 〉 1| 〉 1| 〉 λ3 λ4( )

1| 〉 1| 〉 1| 〉 2| 〉 λ4 λ5( )

1| 〉 2| 〉 1| 〉 0| 〉 λ5 λ3( )

,

2| 〉 0| 〉 2| 〉 2| 〉 λ6 λ8( )

2| 〉 1| 〉 2| 〉 0| 〉 λ7 λ6( )

2| 〉 2| 〉 2| 〉 1| 〉 λ8 λ7( )

.

Ry
6 7– π( ) Ry

7 8– π( ) Ry
4 5– π( ) Ry

3 4– π( ).

ω6 7– ω2 q2– J, ω7 8–– ω2 q2 J,–+= =

ω4 5– ω2 q2, ω3 4–+ ω2 q2.–= =

2

One of the possibilities of keeping the states of non�
resonance transitions unchanged in this SUM gate
realization method was pointed out in [44]. It is
related to a specific feature of the RF�field action on
the nearest nonresonance transitions in the spin sys�
tem at frequencies differing from the resonance fre�
quencies of pulses (22) by J due to the spin–spin inter�
action. When the resonance transitions of the second
spin rotate at frequency Ω2, these nonresonance states

will rotate at the frequency , thereby pro�
ducing an error. However, if the amplitude value is
such that upon resonance rotation of the spin through
π, the nonresonance states rotate through a multiple of
the angle 2π, the computation error will be minimal,
as confirmed by our computations [38]. A small error
about 10–3 remains from parasitic transitions in the
first block of SUM matrix (14) at frequencies differing
from resonance frequencies (22) by 2J. By using the

relation Ω2 = J/  for the first minimum of the error,
we obtain the dependence of the experiment time on J

(25)

This time is 6  times greater than the minimal time
tJ (19).

Based on the results obtained in the previous sec�
tion, we will try to reduce the error caused by the vio�
lated selectivity of RF pulses in the SUM realization
methods considered above. For this purpose, we use
RF pulses optimized by the GRAPE method. The
SUM gate will be realized according to the scheme
shown in Fig. 7. In this scheme, the operator of the
first QFT is combined with the phase shift operator Z2

and the optimized RF pulses were calculated for

matrices Z2F2 and  at the field frequency ωrf = ω2.
Because these pulses act nonresonantly on the first
spin, we will represent the related error as the result of
the action of some corresponding operators  and

 on the state of the first qutrit. To eliminate the

2Ω2
2 J2

/2+

6

T 4 3π/J.=
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Fig. 6. Error of SUM gate realization as a function of J; the
dotted curve shows the minimal error found from the
approximating curve in Fig. 5. The error of realization with
the help of optimized pulses in the scheme in Fig. 7 is
shown by the solid curve for ω1 = 300q2, ω2 = 100q2 and
the dashed curve for ω1 = 60q2 and ω2 = 20q2. In all cases,
q1 = 2q2.
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Fig. 7. Scheme of SUM gate realization by means of con�
trollable�phase�shift and QFT operators with correcting
gates switched on. The time scale shows the durations of
gates and free evolution; time tJ is rounded off to a smaller
value to the duration of an integer of periods 2π/q2.
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error caused by  and , we apply optimized

pulses at the frequency of the first spin (ωrf = ω1) per�

forming operations Z1  and . These pulses also

will affect the second spin, but because the system
parameters are selected so that γ1 > γ2, this action will
be insignificant and we will not switch additional cor�
recting pulses on the second spin. All the optimized
pulses for the above�mentioned operators were calcu�
lated for individual spins in the 3 × 3 basis, and then
their action on total system (15) was simulated in the
9 × 9 basis. To eliminate the phase shift caused by qua�
drupole interaction, the duration of each pulse was set
equal to 2π/q2.

The error of the SUM gate realized by the scheme
in Fig. 7 as a function of the spin–spin interaction
between qutrits for two values of  is shown in
Fig. 6. For small J, the error was considerably reduced
on passing from rectangular to optimized RF pulses.
As the value of J was increased, the monotonic
increase in the error Δ ~ J2 was observed beginning
from J/q ≥ 10–3. The increasing contribution to the
error, independent of , is caused by the viola�
tion of resonance conditions for quadrupole�splitting�
selective RF pulses by ±J; i.e., this error has the same
nature as that in Fig. 5 at small amplitudes of rectan�
gular RF pulses. The optimization performed for the
switched off spin–spin interaction does not eliminate
this part of the error. Note that it can be reduced at
very large values of  by applying short π pulses

VZ2F2
V

F2
1–

VZ2F2

1– V
F2

1–
1–

ω1 ω2–

ω1 ω2–

ω1 ω2–

to the first spin in the middle of operators acting on the
second spin.

To eliminate the error caused by the spin–spin
interaction and the error related to the nonselectivity
of RF pulses at small , the optimized pulse
should be calculated immediately in the 9 × 9 basis
either for individual operators (scheme in Fig. 7) or
directly for SUM gate matrix (14). The latter is prefer�
able when all the parameters have close values. An
example of such calculation is shown in Fig. 8. The
control RF field with such a complex shape used in
simulations ensures reduction in the error down to Δ ~
10–6. The oscillations of components ux(t) and uy(t) of
the RF�field amplitudes at a high frequency on the
order of  for the pulse frequency ωrf = ω2

show that the GRAPE algorithm selects a multifre�
quency RF field acting simultaneously on both spins
near the resonance. We repeated calculations for dif�
ferent gate durations (in this case, the condition of
multiplicity to 2π/q2 was not imposed) and two values
of J. The results for the error are shown in Fig. 9, where
the limiting dependence calculated by formula (21) is
also presented. We can see from Fig. 9 that numerical
calculations of the minimal time performed by the
GRAPE method give a value close to the boundary
value T = tJ (19). For T � 0.7tJ, the optimized gate has
a smaller error, whereas for T � 0.7tJ, the error was
larger than theoretical estimate (21), although it was
quantitatively close to the latter. These discrepancies
can be explained either by the fact that the real param�
eters of the quantum system were used instead of the
limiting parameters used in the derivation of (21) or by
the insufficient calculation accuracy due to poor con�
vergence of the algorithm for T ~ tJ. The fact of matter
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Fig. 8. Shape of optimized RF pulse for realization of the
SUM gate calculated for the total matrix of the operator in
the 9 × 9 basis. Parameters of Hamiltonian (15) are ω1 =
60q2, ω2 = 20q2, q1 = 2q2, J = 10–1q2, and ωrf = ω2. The
operation error is Δ ~ 10–6. The amplitudes and time are
measured in units q2 and 1/q2, respectively.
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Fig. 9. Dependence of SUM gate realization error on the
duration of the optimized pulse calculated for the entire
9 × 9 matrix. Calculations are performed with parameters
ω1 = 60q2, ω2 = 20q2, J = 10–1q2 (�) and ω1 = 6q2, ω2 =

2q2, J = 10–2q2 (�). In both cases, q1 = 2q2. The solid curve
is the theoretical estimate by (21).
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is that, to reproduce multifrequency oscillations
(Fig. 8), the time interval is divided into many seg�
ments. Therefore, due to the slow convergence, the
calculation time increases up to several days and the
calculation should be stopped after many iterations of
the algorithm (about 5 × 104) rather than after the
achievement of the desired accuracy.

4. CONCLUSIONS

We have studied the dependences of errors on the
duration of one� and two�qutrit gates realized on qua�
drupole nuclei with spin I = 1 by means of simple and
composite selective RF pulses and RF pulses opti�
mized by the GRAPE method. The main goal of our
numerical simulations was to propose recommenda�
tions on the reduction gate times.

Our calculations have shown that, for the same
error, the duration of selective rotations obtained by
using a simple RF pulse is considerably greater than
the duration of composite and optimized RF pulses.
The duration of a composite selective pulse can be
made close to the optimal one by using a sequence of
many high�power nonselective RF pulses. With an
optimized RF pulse, the same accuracy can be
achieved with a smaller RF�field amplitude at a small
partition number. However, the minimal operation
time is preserved in this case as well because it is deter�
mined by interaction Hq, which ensures the nonequi�
distance of the levels required for the selective action
of Hrf and, finally, the realization of the universal uni�
tary operator. This conclusion is consistent with the
general quantum system control theory [45].

Note that some particular operations with the help
of a strong RF field can be performed for an arbitrarily
short time, for example, the spin rotation by a field
arbitrarily varying in time. Among such particular
operations are those produced by pulses inverting the
states of two levels from three pulses and calculated by
the GRAPE optimization method in [41] because in
this case the phase of the state of the third level in
neglected, whereas to create a gate for the selective
control of the states of two qutrit levels, the phase of
the third level state should be zero. Otherwise, it will
be impossible, for example, to perform the QFT of a
qutrit by scheme (11).

Our study has shown that the optimized RF pulse,
calculated directly for the matrix of the QFT operator,
is considerably shorter than the same operator com�
posed of selective�rotation operators realized by opti�
mized RF pulses. Therefore, the representation of the
QFT operator by the product of selective rotations is
not optimal in time. Note that a similar conclusion
was made earlier [46] for multiqubit systems of spins
I = 1/2 controlled by spin�selective RF fields.

The numerical simulation of different methods for
realization of the SUM gate has led to the following
conclusions. The method using weak spin–spin�inter�
action�selective RF pulses is simpler, but because

small RF�field amplitudes are needed, the total time
of the experiment increases; i.e., this method is not
time�optimal. In another method based on strong
quadrupole�interaction�selective RF pulses, the
sequence of pulses is much more complicated and the
free evolution time of the system is added, but the
change in the selectivity conditions makes it possible
to increase the RF�field amplitude by tens of times.
Therefore, the duration of the experiment can be
reduced by several times.

Calculation of the SUM gate by the numerical
optimization method has shown that this method is
time�optimal in systems with a weak spin–spin inter�
action (J/q � 1), when the minimal time is deter�
mined by the value of J and is close to tJ (19). In this
case, the optimized RF pulse with the same duration
makes it possible to reduce the error by an order of
magnitude. We have found that for close values of
parameters (J/q ~ 10–2–10–1), it is preferable to calcu�
late the optimized RF pulse for the 9 × 9 matrix of the
SUM operator as a whole, whereas in the case of a very
weak spin–spin interaction (J/q ~ 10–4–10–3), suffi�
cient accuracy can be achieved by calculating opti�
mized RF pulses for one�qutrit operators with 3 × 3
matrices, which reduces the calculation time and pro�
vides a greater universality. The latter result is impor�
tant for further quantum computations in multiqutrit
systems.
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