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1. INTRODUCTION

In the last two decades, theoretical studies have
been developed intensely on the effect of inhomoge�
neities in the geometrical structure of initially periodic
superlattices on the spectral properties of waves of var�
ious nature or electronic excitations propagating in
such media. For this purpose, computer simulation
methods were mainly employed. In these studies, one�
dimensional (1D) geometrical disorder was consid�
ered as a rule, which was simulated either by violation
of periodicity in the arrangement of the layers of vari�
ous materials forming superlattices or by random devi�
ations in the thickness of these layers. Various analyti�
cal approaches were also developed. The Green’s’s
function method was used for investigating such struc�
tures in [1–3]. In the proposed model [4], the method
of averaged Green’s functions was proposed for
approximate analysis of geometrical 1D, 2D, and 3D
disorder in superlattices with a sinusoidal profile of the
dependence of a material parameter on the z coordi�
nate in the initial state (assuming that the z axis is per�
pendicular to the plane of the layers in the superlat�
tice). Inhomogeneities in such a superlattice were sim�
ulated by introducing a random phase u(x) into the
harmonic function, which can be a function of one
(x = {z}), two (x = {x, y}), or three coordinates (x = {x,
y, z}). In this model, the position of zeros of the har�
monic function simulates the position of boundaries

(interfaces) between superlattice layers. The 1D phase
u1 = u1(z) describes random displacements of these
interfaces from their initial periodic arrangement (or,
equivalently, the random thickness of the layers in the
superlattice). Like the 2D phase u2 = u2(x, y), the 3D
phase u3 = u3(x, y, z) describes a random deformation
(roughness) of the interfaces in the xy plane. In this
case, 2D phase inhomogeneities simulate deforma�
tions identical for all interfaces because such inhomo�
geneities have an infinitely large correlation radius
along the z axis. The correlation radius of 3D phase
inhomogeneities is finite both in the xy plane and
along the z axis. In the general case, 3D inhomogene�
ities exhibit anisotropic correlation properties and
have different correlation radii in the xy plane and
along the z axis. Therefore, such inhomogeneities can
simulate various actual situations. In particular, if the
correlation radius of 3D phase inhomogeneities along
the z axis is much smaller than the layer thickness in
the superlattice, roughnesses of the interfaces are sto�
chastically independent even at adjacent layers. In the
opposite case, when the correlation radius along the z
axis is larger than the thickness of not only the layers,
but of the entire superlattice also, correlated rough�
nesses are simulated in our model by 2D phase inho�
mogeneities.
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The only characteristic describing a random
medium and appearing in the expression for the aver�
aged Green’s function is correlation function K(r)
depending on distance r between two points of the
medium: r = x – x'. For this reason, the first part of the
problem is reduced to determining function K(r) for
the superlattice with certain inhomogeneities, while
the second part of the problem involves the extraction
of spectra characteristics from the expression for the
Green’s function containing this correlation function
with the help of standard approximate methods. To
determine correlation function K(r) of a superlattice,
the random spatial modulation (RSM) method was
developed in [4], which is a generalization of the well�
known method for calculating the temporal correla�
tion function for random frequency (phase) modula�
tion of a radio signal [5, 6] to the case of spatial (three�
dimensional in the general case) modulation of the
superlattice period. The advantage of this method is
the fact that the form of correlation function K(r)is not
postulated, but is derived from the most general
assumptions concerning the type of random spatial
modulation u = u(x) of the superlattice period. It was
shown that the form of function K(r) in the general
case considerably depends on the dimensionality of
inhomogeneities and on the structure of interfaces
between the layers.

The RSM method was subsequently generalized to
a superlattice with a rectangular profile [7] and with an
arbitrary thickness of interfaces [8]. To derive correla�
tion function K(r) in this method, it is necessary to
postulate the form of correlation function Ku(r) of the
gradient of function u(x). The analytic expressions
obtained for K(r) have a complex form determined to
a considerable extent by the form of Ku(r). It turned
out, however, that the asymptotic form of function
K(r) for small as well as large values of  is indepen�
dent of the form of function Ku(r) if the latter exhibits
a rapid decay of correlations (e.g., exponential or
Gaussian decay). It was shown that the spectral prop�
erties of waves are mainly determined by the asymp�
totic properties of correlation function K(r) of the
superlattice. Therefore, this method makes it possible
to describe geometrical inhomogeneities of different
dimensions using a unified approach. The knowledge
of function K(r) for various types of superlattice and
various dimensions of inhomogeneities permitted the
use of averaged Green’s function to study the effect of
1D and 3D phase inhomogeneities for isotropic as well
as anisotropic correlations, and also the joint effect of
1D and 3D inhomogeneities (both stochastically inde�
pendent and coupled by cross�correlations with one
another) on the spectrum, decay, and dynamic suscep�
tibility of waves in superlattices (see [9] and references
[21–27] therein).

r

The spectral properties of superlattices with 2D
phase inhomogeneities have not yet been studied as
comprehensively. A modification of the dispersion
relation and the decay of waves in a sinusoidal super�
lattice associated with 2D inhomogeneities were
briefly considered in [4] using the two�zone model. It
was shown that in contrast to 1D and 3D inhomogene�
ities, the decay associated with 2D inhomogeneities is
observed only on the spectral branch corresponding to
the second Brillouin zone, while the frequency of the
first zone remains real�valued. It should be noted that
the situation described by 2D phase inhomogeneities
is not as exotic. Such a situation may take place in
actual practice when roughness of interfaces results
from the roughness of the surface of the substrate on
which the superlattice layers are deposited. In this
case, random roughness in the xy plane can be
repeated almost in phase on the surface of each newly
deposited layer, and the superlattice can be approxi�
mately described by a correlation function of 2D inho�
mogeneities with a finite correlation radius in the xy
plane of the layers and an infinite correlation radius
along the z axis.

The small�angle X�ray scattering technique [10] is
the most informative method for studying inhomoge�
neities in the structure of superlattices and their inter�
faces. From the very outset of experiments with semi�
conductor superlattices, this method revealed singu�
larities in some scattering spectra, which were
attributed to correlations between the roughnesses of
different interfaces in the superlattice [11]. In [12], a
consistent theory of small�angle X�ray scattering in a
superlattice was developed taking into account the
correlation of roughnesses of interfaces. The spectral
effects caused by correlations such as peculiarities in
the formation of resonance peaks in the diffuse scat�
tering region and the formation of strips in the radia�
tion intensity distribution in the plane of wavevectors
kxkz were described. Subsequently, these effects were
studied in detail theoretically and experimentally (see,
for example, [13, 14] and the literature therein).

In the model considered here, an increase in the
correlation radius in the direction of the z axis indi�
cates a gradual approach to 2D inhomogeneities. In
this connection, it was important to reveal the effects
in the spectrum of spin and optical waves (apart from
the effect of vanishing of the decay of waves in the first
Brillouin zone of the superlattice established in [4]),
which are associated with mutual correlations between
inhomogeneities of the interfaces in this limiting case.
The dynamic susceptibility (the Green’s function) of a
superlattice with 2D phase inhomogeneities was stud�
ied in [15]. It was shown that the susceptibility peaks at
the boundary of the first Brillouin zone of the superlat�
tice become asymmetric upon an increase in the
intensity of such inhomogeneities: the peak corre�
sponding to the low�frequency edge of the band gap is
displaced to the center of the band without changing
its width, while the peak corresponding to the high�
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frequency edge of the band gap is broadened and its
height sharply decreases until it disappears completely.
Such asymmetry is not observed for 1D and 3D inho�
mogeneities and is a consequence of peculiarities in
the energy conservation law of the incident wave and
the waves scattered from 2D inhomogeneities. It was
shown in [16] that this effect must take place at the
boundaries of all odd Brillouin zones of a superlattice
containing 2D inhomogeneities. In these publica�
tions, Green’s function G(ν, k) was determined by
numerical integration for fixed values of wavenumber
k: k = kr ≡ q/2 (where q = 2π/L, L being the period of
the superlattice) at the boundary of the first Brillouin
zone in [15] or at the boundaries of the next odd Bril�
louin zones for k = (2n – 1)q/2 in [16] (n = 1, 2, 3, …).

This aim of this study is to derive an analytic
expression for the averaged Green’s function of the
superlattice in the Bourret approximation [17] and
its analysis based on the dynamic susceptibility and
1D density of states of superlattices with 2D phase
inhomogeneities, as well as with 2D phase inhomo�
geneities coexisting with 3D amplitude inhomogene�
ities simulating inhomogeneities in the layers of the
superlattice material.

2. MODEL AND METHOD

In the case considered here, the coordinate depen�
dence A(x), where x = {x, y, z}, of a material parameter
of the superlattice can be represented in the form

(1)

where A is the mean value of the parameter; (ΔA)a and
(ΔA)p are the amplitude and phase rms deviations,
respectively; and ρa(x) and ρp(x) are centered

(  = 0) and normalized (  = 1) func�
tions, i = a, p. Function ρa(x) is a random homoge�
neous function simulating inhomogeneities of the
material of the layers in the superlattice. Function
ρp(x) describes both the periodic dependence of the
parameter along the z axis of the superlattice and the
random spatial modulation of this parameter, which in
the case considered here is a function of two coordi�
nates (x and y). The random component of this func�
tion simulates the deformation of the surface of the
interfaces, which is identical for all interfaces. We
assume that random functions ρa(x) and ρp(x) are
assumed here to be stochastically independent.

We consider a superlattice with a sinusoidal depen�
dence of the material parameter on the z coordinate in
the initial state in the absence of random inhomogene�
ities. Following [15], we represent function ρp(x) in
the form

(2)

where random function u(x, y) simulates 2D deforma�
tions of the interfaces in the superlattice. Coordinate�

A x( ) A ΔA( )aρa x( ) ΔA( )pρp x( ),+ +=

ρi x( )〈 〉 ρi
2 x( )〈 〉

ρp x( ) 2 q z u x y,( )–[ ] ψ+{ },cos=

independent phase ψ is characterized by a uniform
distribution on the interval (–π, π).

The wave equation for the temporal Fourier trans�
formant in the superlattice can be written in the form

(3)

where function m = m(x, ω) and parameters ν and Λi

are different for waves of different origins. For spin
waves, Eq. (3) corresponds to a ferromagnetic super�
lattice with a nonuniform magnetic anisotropy param�
eter β(x) (A = β, (ΔA)i = (Δβ)i in formula (1)) in the
situation when the directions of external magnetic
field H, constant component M0 of magnetization M,
and the magnetic anisotropy axis coincide with the
direction of the z axis of the superlattice. In this case,
we have

where ω is the frequency, ω0 = g[H + (β – 4π)M0]
is the frequency of the uniform ferromagnetic reso�
nance, g is the gyromagnetic ratio, and α is the
exchange constant. For elastic waves in the scalar
approximation, for a superlattice with nonuniform
density p(x) of the medium (A = p, (ΔA)i = (Δp)i),
we have

where s is the velocity of elastic waves. For electromag�
netic waves in the same approximation in a medium
with nonuniform permittivity ε(x) (A = ε, (ΔA)i =
(Δε)i), we have

where c is the velocity of light.

The Fourier transform of the averaged Green’s
function for Eq. (3) has the form

(4)

where Ma(ν, k) and Mp(ν, k) are the mass operators of
amplitude and phase inhomogeneities, respectively; in
the Bourret approximation, these operators can be
represented in the form [18]

(5)

∇2m ν
Λa

2
�����ρa x( )–

Λp

2
�����ρp x( )– m+ 0,=

m Mx iMy, ν+
ω ω0–
αgM0

�������������, Λi
2 Δβ( )i

α
�����������������,= = =

ν ω
s
���⎝ ⎠
⎛ ⎞

2

, Λi
2ω2 Δp( )i

ps2
����������������������,= =

ν ε ω
c
���⎝ ⎠
⎛ ⎞

2

, Λi 2 Δε( )i
ω
c
���⎝ ⎠
⎛ ⎞

2

,= =

G ν k,( ) 1

2π( )3
����������� 1

ν k2– Ma ν k,( )– Mp ν k,( )–
��������������������������������������������������������,=

Mi ν k,( )
Λi

2

8π
�����

Ki r( )
r

����������∫–=

× i kr ν r+( )–[ ]dr,exp
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where Ki(r) are the correlation functions of amplitude
(i = a) and phase (i = p) inhomogeneities, which are
defined as

(6)

The correlation function of isotropic 3D amplitude
inhomogeneities has the form

(7)

where k3 =  is the correlation wavenumber for 3D
inhomogeneities and r3 is the correlation radius of
these inhomogeneities. The exact form of the correla�
tion function for 2D phase inhomogeneities was deter�
mined in [15]:

(8)

where

(9)

r⊥ = , C ≈ 1.78 is the Euler constant,

is the integral exponential function, and γ2 and k2 =

 are the rms fluctuation and the correlation wave�
number, respectively, of 2D phase inhomogeneities
(r2 is their correlation radius). In the limiting cases of
large and small values of r⊥, expression (9) assumes the
form

(10)

where e ≈ 2.72 is the base of the natural logarithm.
Expression (8) is too cumbersome. For this reason,

the following expression approximating this function
was proposed in [15]:

(11)

It was shown that model correlation function (11) cor�
rectly describes the exact correlation function in the
entire range of r⊥ and has an asymptotic form coincid�
ing with the asymptotic form of the exact function
both for k2r⊥ � 1 and for k2r⊥ � 1. The latter require�
ment plays a major role in the selection of the approx�
imating correlation function since it was shown earlier
(for 1D and 3D inhomogeneities as well as for their
mixture) that the spectral properties of waves are

Ki r( ) ρi x( )ρi x r+( )〈 〉 .=

Ka r( ) k3 r–( ),exp=

r3
1–

Kp r( ) qz( )
Q r⊥( )

2
�����������– ,expcos=

Q r⊥( ) 4γ2
2 E1 k2r⊥( ) k2r⊥C( )ln+{=

+ k2r⊥–( )exp 1},–

rx
2 ry

2+

E1 z( ) e t–

t
���� td

z

∞

∫=

r2
1–

Q r( ) γ2
2 k2

2r⊥
2

,   k2r⊥ � 1

4 k2r⊥C/e( ), k2r⊥ � 1,ln⎩
⎨
⎧

=

Kp r( ) qrz( ) 1 C2

e2
����k2

2r⊥
2+⎝ ⎠

⎛ ⎞
γ2

2–

.cos=

mainly determined by the asymptotic form of the cor�
relation function for inhomogeneities for r  ∞.

Mass operator Ma for isotropic 3D amplitude inho�
mogeneities described by correlation function (7) in
the Burre approximation has the form [19]

(12)

Mass operator Mp for 2D phase inhomogeneities
described by correlations function (11) was analyzed
in [15]. After passage to the spherical system of coor�
dinates in expression (5) with the polar axis directed
along the z axis, integration was performed over azi�
muth angle ϕ and the modulus of radius vector r. As a
result, we obtained a one�dimensional integral of a
complex integrand with respect to polar angle θ, which
was evaluated numerically. Such an algorithm for solv�
ing the problem was admissible for analysis of Green’s
function G(ν, k) for fixed values of wavenumber k: k =
kr ≡ q/2 at the boundary of the first Brillouin zone in
[15] or k = (2n – 1)q/2 at the boundaries of the next
odd Brillouin zones in [16]. For our purposes, we must
know Green’s function G(ν, k) for each value of wave�
number k because the density of states is evaluated by
integrating the imaginary part of this function with
respect to k. The method for calculating Mp used in
[15, 16] is hardly applicable for these purposes because
it involves vast numerical calculations. For this reason,
we use another approach enabling us to obtain an ana�
lytic expression for Mp(ν, k) for 2D phase inhomoge�
neities.

3. MASS OPERATOR FOR 2D PHASE 
INHOMOGENEITIES

We pass to a cylindrical system of coordinates in
expression (5), introducing the following simplifying
notation:

(13)

Integrating with respect to azimuth angle ϕ and repre�
senting cosqz in expression (11) as the sum of two
exponentials, we can write the mass operator for 2D
phase inhomogeneities in the form

(14)

where

(15)

Here, k = kz and � is the decreasing part of correlation
function (11),

(16)

Ma
Λa

2

2
����� 1
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2

k2–
������������������������������� .=

ρ r⊥ rx
2 ry

2+ , z≡ rz.= =
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Mp
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Λp
2

8
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0

∞
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� ρ( ) 1 C2
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����k2
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γ2
2–
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and functions ℑ±(ν, k, ρ) are two integrals in z of the
same type, which correspond to positive and negative
values of k:

(17)

Using the substitution of variable

(18)

we transform these integrals to

(19)

where  = ( )2.

Figure 1 for k > 0 schematically shows the disper�
sion relation for spin waves in an ideal superlattice
(solid curves) in the diagram of expanded zones in the
two�zone approximation. For k = kr = q/2, a band gap
(forbidden band) is formed in the spectrum between

ℑ± zd

ρ2 z2+
����������������

∞–

∞

∫=

× i k q+−( )z ν ρ2 z2+( )+[ ]–
⎩ ⎭
⎨ ⎬
⎧ ⎫

.exp

ζ k q+−( )z ν ρ2 z2+( )+[ ],–=

ℑ± eiζ ζd

ζ2 ν νk
±–( )ρ2–

���������������������������������,

∞–

∞

∫=

νk
± k q+−

maximal frequency ν1 of the first Brillouin zone and
minimal frequency ν2 of the second zone:

(20)

where νr =  ≡ (q/2)2 is the frequency corresponding
to the center of the gap.

The dotted curve in Fig. 1 corresponds to the dis�
persion relation ν = k2 in the absence of the superlat�
tice (Λp = 0), while the dashed curve corresponds to

the auxiliary branch ν =  ≡ (k – q)2.

The frequencies of the first and second Brillouin
zones satisfy the inequalities ν < νr and ν > νr, respec�
tively. However, these frequencies (for a given k) also

satisfy the inequalities ν <  and ν > , respectively.
Consequently, it can be seen from formula (19) that
the denominators in the integrands of integrals ℑ± have
different forms for the frequencies corresponding to

the first Brillouin zone (ν <  for the given k) and for
the frequencies corresponding to the second zone

(ν > ). In the former case, the denominator con�
tains the sum of real numbers and, in accordance with
formula (2.3.3.7) in the table of integrals [20], we
obtain the following values of these integrals:

(21)

Here, K0(a±) are the Macdonald functions, a± =

ρ , and Rea± > 0 in accordance with the

requirements imposed on formula (2.3.3.7) [20].
1
 For

the second Brillouin zone (ν > ), the denominator of

the integrand in ℑ± contains the difference of real num�
bers,

(22)

where b± = ρ . We split each of these integrals
into four integrals,

(23)

The sum of the first and last integrals can be trans�
formed to one integral, which is evaluated using for�

1 Pay attention to the misprint in this formula in [20] ( Γ(ρ)

instead of /Γ(ρ); cf. formula (2.5.6.4) in the same hand�
book).
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Fig. 1 Schematic diagram of the dispersion relation for

spin waves for an ideal superlattice (solid curves ν < 

and ν >  for the first and second Brillouin zone of the

superlattice, respectively) and for a homogeneous ferro�
magnet (dotted curve, ν = k2). The dashed curve shows the

auxiliary branch  = (k – q)2.
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mula (2.5.6.2) [20]:

(24)

where Y0(b±) are the Neumann functions and Reb± > 0.
The sum of the second and third integrals can be trans�
formed analogously, and using formula (2.5.6.1) [20],
we obtain

(25)

where J0(b±) are the Bessel functions. Thus, we can
write

(26)

where (b±) are the Hankel functions of the second
kind. Since

(27)

we find, using the relation [21]

(28)

that expressions (21) for integrals ℑ±, which were
obtained for the first Brillouin zone, are also valid for

the second zone, where quantities a± =  become
imaginary numbers. Therefore, expressions (22)–(28)
will not be required in further analysis.

Substituting expression (21) into (15), we obtain

the expressions for terms (ν, k) in formula (14),
which are valid for the first as well as second Brillouin
zone (except in the vicinity of k = q in this zone) for an
arbitrary form of the decreasing part of correlation
function �(ρ) for 2D inhomogeneities:

(29)

where c± = .
Since quantities c± are real�valued in the first Bril�

louin zone and imaginary in the second zone, expres�
sions (29) imply that the decay associated with 2D
phase inhomogeneities is not observed in the first zone
and appears only in the second Brillouin zone for any
form of the decrease in correlation function �(ρ).

Let us find explicit expressions for (ν, k) corre�
sponding to different model representations of the
decreasing part of correlation function �(ρ).

(1) Ideal superlattice (γ2 = 0, �(ρ) = 1). In accor�
dance with formula (2.16.2.2) from the table of inte�
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0

∞

∫–=

k q+−( )2 ν–

Mp
+

grals [22], relation (29) leads to the well�known
expression

(30)

(2) The most general approximation of correlation
function �(ρ) for 2D phase inhomogeneities is

defined by expression (16). Functions (ν, k) can be
evaluated exactly using formula (2.16.3.14) [22]:

(31)

where Sμ, ν(u±) are the Lommel functions, u± =
(e/Ck2)c±.

(3) The particular case of correlation function (16)

corresponding to  = 1/2. In accordance with for�

mula (2.16.3.17) [22], functions (ν, k) assume a
simpler form as compared to the general case (31):

(32)

where si(x) and ci(x) are integral sine and cosine,

respectively.
2

(4) Finally, let us consider the simulation of the
decrease in the correlation function for 2D inhomoge�
neities by the exponential function

(33)

where effective correlation wavenumber kc is con�
nected with γ2 and k2 by the approximate relation kc ≈

k2/2. In this case, functions (ν, k) can be deter�
mined by formula (2.16.6.3) [22] and, after the iden�
tity transformation, reduced to the form

(34)

where  =  – ν – . In contrast to formula (31)

and (32), these expressions describe functions (ν, k)
only qualitatively because modeling correlation func�
tion (33) differs significantly from the actual function
with a power asymptotic form for ρ  ∞. However,
expression (34) is useful for understanding peculiari�
ties in the effect of 2D phase inhomogeneities on the
spectrum. This expression shows that 2D inhomoge�
neities do not result in the imaginary correction to fre�

2 Pay attention to the fact that formula (2.16.3.17) in [22] con�
tains coefficient 1/2 instead of 1/4.
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quency itself even in the second Brillouin zone (ν >

) as in the case of 1D and 3D inhomogeneities. An
imaginary correction appears in the expressions in the
parentheses in formula (34), which describe the mod�
ification of gap width Λp; therefore, it leads to a much
weaker decay of the ways as compared to the 1D and
3D cases.

4. GREEN’S FUNCTION
AND DENSITY OF STATES

The spectral properties of waves of different nature
are studied by methods specific for each type of waves.
In the case of spin waves, the high�frequency suscepti�
bility is studied by the spin�wave resonance method in
thin magnetic films as a function of constant magnetic
field (or frequency) at a preset frequency (or, accord�
ingly, for a preset magnetic field). This susceptibility
has resonances at values of field or frequency corre�
sponding to k = kp, where kp is determined by the con�
ditions of size resonances of spin waves in a thin film.
The susceptibility χ(ν) being measured is proportional
to Green’s function G(ν) itself. The proportionality
factor between χ(ν) and G(ν) depends in k = kp, but is
independent of frequency as well as the magnetic field
[23]. For the situation considered here, the Green’s
function for spin waves is calculated by formula (4),
into which we substitute expression (12) for Ma(ν, k)
and expression (14) for Mp(ν, k), in which terms

(ν, k) are defined by formula (31). For electromag�
netic waves, unlike for spin waves, no methods have
been developed for direct measurement of the form of
the Green’s function. For this reason, we will study the
characteristic that can be calculated directly from the
averaged Green’s function and compared with the
results of optical experiment; this characteristic is the
1D density of states

(35)

In this case, it is convenient to write the Green’s func�
tion appearing in this expression in the form

(36)

where γ3 = (Δε)a/ε, and Pa, P+, and P– are functions of
ν and k, which describe the effect of 3D amplitude
inhomogeneities,

(37)
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and 2D phase inhomogeneities,

(38)

In particular cases, expression (38) can assume the
form following from formulas (30), (32), and (34). Zero
value of the denominator in the Green’s function (36)
implies that in the absence of amplitude (γ3 = 0) and
phase (γ2 = 0) random inhomogeneities, the band gap
at the boundary of the first Brillouin zone of the super�
lattice for electromagnetic waves is bounded by fre�
quencies

(39)

where ωr = cq/2 .

In contrast to relevant expression (20) for spin
waves, formula (39) contains the square root in the
denominator. Expanding it in the case of narrow gaps

(Δε/ ε � 1), we obtain

(40)

It can be seen that in addition to gap Δω emerging in
the spectrum for electromagnetic waves, a displace�
ment of the center of this gap must also be observed:

(41)

Further, we will thoroughly investigate the effect of
2D phase inhomogeneities and 3D amplitude inho�
mogeneities on G ''(ν) and the density of states in the
vicinity of the band gap. However, we will first analyze
the density of states for 1D and 3D phase inhomoge�
neities. The effect of such inhomogeneities on the
dynamic susceptibility of the superlattice has been
investigated comprehensively. However, the effect of
1D and 3D inhomogeneities on the 1D density of
states with the help of the RSM model used here has
not been studied earlier. Our results will be required for
comparing with the effects associated with 2D inho�
mogeneities. Then we will consider the effect of 2D
phase inhomogeneities alone on the spectral proper�
ties of a sinusoidal superlattice. Using the analytic
expressions for the Green’s function derived in this
study, we can supplement and refine the results
obtained in [15]. Then we will investigate the joint
effect of 2D phase inhomogeneities and 3D amplitude
inhomogeneities on the Green’s function and density
of states in the sinusoidal superlattice.
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4.1. 1D and 3D Phase Inhomogeneities

Figure 2 shows the dynamic susceptibility (imagi�
nary part G ''(ν, k)) of the Green’s function and density
of states g(ω) at the boundary of the first Brillouin
zone for k = kr = q/2 for various values of rms fluctua�

tions γ1 of 1D phase inhomogeneities for a constant

wavenumber of these inhomogeneities (κ1 = k1/  =

1.5). Bold curves in Figs. 2a and 2b correspond to  = 0
(i.e., to an ideal superlattice). However, the peaks in
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Fig. 2. (a) Effects of 1D phase inhomogeneities on Green’s function G ''(ν) at the boundary of the first Brillouin zone and (b) den�

sity of states g(ω) for κ1 = 1.5 and  = 0 (bold solid curve), 0.3 (dashed curve), 0.1 (dot�and�dash curve), 0.2 (dotted curve), and

0.5 (fine solid curve). Rarefied�dotted curve here and in Figs. 3–5 corresponds to g(ω) for a homogeneous ferromagnet in the
absence of a superlattice.
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Fig. 3. (a) Effects of 3D phase inhomogeneities on Green’s function G ''(ν) at the boundary of the first Brillouin zone and (b) den�

sity of states g(ω)for κ3 = 1.5 and  = 0 (bold solid curve), 0.08 (dashed curve), 0.5 (dot�and�dash curve), 1.5 (dotted curve),

and 2.0 (fine solid curve).
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Fig. 2a have a finite width, and the shape of the gap in
Fig. 2b differs from a rectangle because the initial
decay ν''/Λ = 0.03 has been introduced (the same
refers to all the next figures). To avoid displacements of
the center of the gap for the ideal superlattice, quantity
ω – , where  is defined by formula (41), is laid on
the abscissa axis of this figure and all the next g(ω)

graphs. It can be seen that with increasing , the
amplitudes of both peaks decrease, while their widths
increase. The peaks are slightly shifted to the center of
the gap, and the interval between the peaks is filled so
that a broad peaks appears at the center, which

becomes narrower upon a further increase in . The
depth of the gap in the density of states decreases with

increasing , and the shape of the gap gradually
changes from rectangular to rounded.

Figure 3 shows dependences G ''(ν) and g(ω) at the
boundary of the first Brillouin zone for different values

of rms fluctuations  of 3D phase inhomogeneities

for a constant value of κ3 = k3/  = 1.5. It can be seen
that the amplitude of the peaks on the G ''(ν) depen�

dence decrease with increasing  at a lower rate as
compared to the case of 1D inhomogeneities, but at
the same time, become closer quite rapidly. Accord�
ingly, the gap in the density of states is closed due to a
decrease in its depth as well as due to its quite rapid

ωr' ωr'
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2

γ1
2

γ3
2

Λ
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2

narrowing. The center of the gap is displaced thereby
towards lower frequencies. The effect of displacement
of the center of the gap is typical of 1D and 3D as well
as 2D inhomogeneities (see below). Our analysis has
shown that the gap closing regime in the spectrum

upon an increase in  shown in Fig. 3 corresponds to
values of κ3 > 1 only. For small values of κ3, an increase

in  leads to the pattern for G ''(ν) as well as for g(ω)),
which is qualitatively similar to those in Figs. 2a and 2b
corresponding to 1D inhomogeneities.

The common property of the effect of 1D and 3D
inhomogeneities is the symmetry in the behavior of the
left and right peaks upon an increase in the intensity of
inhomogeneities.

4.2. 2D Phase Inhomogeneities

Figure 4 shows dynamic susceptibility G ''(ν, k) and
density of states g(ω) at the boundary of the first Bril�
louin zone at k = kr = q/2 for different rms fluctuations
γ2 of 2D phase inhomogeneities for a constant correla�
tion wavenumber k2 of these inhomogeneities (κ2 =

k2/  = 1.5). Bold solid curves in Figs. 4a and 4b

correspond to  = 0. It can be seen that with increas�

ing , asymmetry in the behavior of low� and high�
frequency peaks at the edges of the gap appears and
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Fig. 4. (a) Green’s function G ''(ν) at the boundary of the first Brillouin zone of a superlattice and (b) 1D density of states

g(ω) for κ2 = 1.5 and  = 0 (0) (bold solid curve), 0.10 (0.15) (dashed curve), 0.33 (0.50) (dot�and�dash curve), 0.66 (1.00)

(dotted curve), 1.01 (1.50) double�dash�and�dot curve, 2.01 (3.00) (fine solid curve). The values of product κ2 are shown

in parentheses.
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increases. This effect, which is typical of only 2D
inhomogeneities, was established for the first time in
[15]. However, unlike in [15], Fig. 4a demonstrates not
only the sharp decrease in the right peak, but also its
displacement to the center of the band gap. The left
peak also shifts to the center of the band gap. The
width of the left peak remains unchanged because it is
determined only by the initial decay, while the ampli�
tude of this peak increases.

Our analysis shows that there are two modes in the
behavior of the high�frequency peak upon an increase

in , which are determined by the magnitude of
dimensionless correlation wavenumber κ2. For small
values of κ2 used in [15] (κ2 ≈ 0.45), the right peak is

almost not displaced with increasing , when its
amplitude decreases and its width increases. The sec�
ond mode corresponds to values of κ2 > 1. In this case,

an increase in  leads to a decrease in the amplitude
of the right peak and its displacement to the center of
the gap. The left and right peaks become closer and
merge into one peak. It can be seen from Fig. 4b that

with increasing , the gap in the density of states
becomes narrower and is deformed. The asymmetry
effect is manifested in the g(ω) dependence also: the
left edge of the gap remain almost vertical upon a
decrease in the width and depth of the gap, while the
right edge becomes inclined.
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2

We also studied the dynamic susceptibility and the
density of states at the boundary of the Brillouin zone
for different values of the correlation wavenumber κ2

of inhomogeneities for a constant value of . The

effect of increasing asymmetry in the susceptibility
peaks at the edges of the band gap is observed in this
case also. The curves describing the G(ν) and g(ω)

dependences, for which the values of product κ2

indicated in the parentheses in the caption to Fig. 4
are identical, are in qualitative agreement with the
curves in Fig. 4. At first glance, this regularity is not

trivial because parameters  and κ2 appear in expres�

sion (31) for the mass operator of Green’s function in

essentially different manners:  appears in the expo�
nentts of the Lommel function, while k2 appears in the
argument of this function. However, this regularity is
manifested explicitly in the approximation using
exponential correlation function (33), for which the
effective correlation wavenumber assumes the form

kc ≈ k2 /2. In contrast to two possible modes that can

be manifested upon an increase in , both left and

right peaks are displaced to the center of the band

upon an increase in κ2 for any value of = const.
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Fig. 5. Effects of 3D amplitude inhomogeneities on (a) Green’s function G ''(ν) and (b) on density of states g(ω) of the superlattice

containing 2D phase inhomogeneities with constant characteristics  = 0.51 and κ2 = 0.3. The curves correspond to κ3 = 1.0

and �3 = Λa/ Λp = 0 (bold solid curve), 0.5 (dashed curve), 1.0 (dot�and�dash curve), 1.5 (dotted curve), and 2.0 (fine solid
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4.3. 2D Phase Inhomogeneities and 3D Amplitude 
Inhomogeneities

Figure 5 shows the effect of increase in rms fluctu�
ations of 3D amplitude inhomogeneities on the
dynamic susceptibility and density of states of a super�
lattice containing 2D phase inhomogeneities also. The
magnitude of these fluctuations is characterized by

parameter �3 = Λa/ Λp. Bold solid curves in Figs. 5a
and 5b correspond to the absence of 3D inhomogene�
ities (�3 = 0) and describe the asymmetry effect due to
2D phase inhomogeneities with constant characteris�
tics (γ2 = 0.5 and κ2 = 0.3). It can be seen from Fig. 5a
that an increase in fluctuations of 3D inhomogeneities
leads to a decrease in the amplitudes of both dynamic
susceptibility peaks. However, the rate of the decrease
in the height of the left peak exceeds the rate of the
decrease in the height of the right peak. As a result, the
amplitudes and widths of the peaks are leveled out,
and the asymmetry effect associated with 2D inhomo�
geneities disappears. Figure 5b shows that an
enhancement of fluctuations in 3D amplitude inho�
mogeneities leads to a decrease in the gap depth and a
slight broadening of the gap in the density of states. In
this case, the gap remains asymmetric.

Figure 6 shows the spatial diagram of the imaginary
part G ''(ν, k) of the Green’s function in the vicinity of
the gap between the first and second Brillouin zones.
Figure 6a corresponds to the presence of only 2D
phase fluctuations, while Fig. 6b illustrates the joint
effect of 2D phase and 3D amplitude inhomogene�
ities. In plotting these graphs, we used instead of

exact expression (31) for (ν, k) approximate
expression (34) corresponding to exponentially

2

Mp
±

decreasing correlation function (33). Analysis shows
that the qualitative behavior of function G ''(ν, k)
remains the same as in the case when exact expressions

for (ν, k) are used, but the calculations are simpli�

fied significantly. The finiteness of the amplitude of
function G '' in the first Brillouin zone is due to the
introduction of initial decay ν''/Λp = 0.03. It can be
seen from Fig. 6a that the amplitude of function
G ''(ν, k) for the given parameters (κc ≈ γ2k2/2 = 0.1)
decreases only insignificantly towards the band
boundary k = kr upon an increase in k in the first Bril�
louin zone. In the second zone, the amplitude of func�
tion G ''(ν, k) at k = kr is much smaller than in the first
zone and increases with k. The addition of 3D ampli�
tude inhomogeneities reduces the amplitudes of func�
tion G ''(ν, k) both in the first and in the second Bril�
louin zones and suppresses the asymmetry effects in
the amplitudes of these peaks at the edges of the band
gap. Figures 6a and 6b show that the asymmetry effects
for the peaks of the Green’s function under the action
of 2D phase inhomogeneities is clearly manifested
only for exact tuning of wavenumber k to boundary kr

of the Brillouin zone. For k < kr, the amplitudes of the
peaks in the G ''(ν) dependence are first leveled out,
after which the amplitude of the high�frequency peak
becomes larger than the amplitude of the low�fre�
quency peak. For k > kr, the asymmetry effect is
enhanced, but this does not indicate the presence of
precisely 2D inhomogeneities because this effect is
observed for inhomogeneities of any dimensionality.
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Fig. 6. (a) Schematic diagram of Green’s function G ''(ν, k) in the vicinity of the band gap of a superlattice in the presence of 2D
phase inhomogeneities corresponding to κc = 0.1 and (b) variation of function G ''(ν, k) after the addition of 3D amplitude inho�
mogeneities with κ3 = 0.5 and �3 = 0.4. Cross sections of function G ''(ν, k) corresponding to k = kr (solid curves), k < kr (dashed
curves), and k > kr (dot�and�dash curves).
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5. CONCLUSIONS

In this study, the Bourret approximation is used for
deriving an analytic expression for averaged Green’s
function G(ν, k) of an initially sinusoidal superlattice
with 2D phase inhomogeneities simulating random
in�phase deformations of the interfaces between the
layers of the superlattice. The expression derived here
is valid for the first and second Brillouin zones of the
superlattice except in the neighborhood of the bound�
ary of the second zone. This enabled us to study the
dynamic susceptibility and one�dimensional density
of states of the superlattice with 2D phase inhomoge�
neities as well as with 2D phase inhomogeneities coex�
isting with 3D amplitude inhomogeneities, the latter
inhomogeneities simulating the inhomogeneities in
the material of the layers in the superlattice. It is shown
that the absence of decay in the first Brillouin zone and
its emergence in the second zone predicted in [4] are
observed for any form of the decay in the correlation
function for 2D phase inhomogeneities.

It is shown that the asymmetry effect in the ampli�
tudes of the dynamic susceptibility peaks at the edges
of the band gap in the spectrum of the superlattice
upon an increase of rms fluctuations γ2 of 2D inhomo�
geneities, which was predicted in [15] as typical of only
2D phase inhomogeneities, is also observed upon an
increase in correlation wavenumber κ2 of such inho�
mogeneities. Detailed analysis of the asymmetry effect
has shown that in the case of an increase in γ2 for κ2 =
const, the closure of the gap in the spectrum can pro�
ceed in accordance with two different modes depend�
ing on the value of κ2. In both modes, the height of the
low�frequency peak slightly increases, while the height
of the high�frequency peak sharply decreases upon an
increase in γ2. However, for small values of κ2 (κ2 <
0.5), the low�frequency peak is displaced to the center
of the band gap, while the high�frequency peak does
not change its position. It is this mode that was studied
in [15, 16].

In this study, we considered the second mode
observed for κ2 > 1. In this mode, equally strong asym�
metry in the peak heights is accompanied by almost
symmetrical displacements of both peaks to the center
of the band gap. If the value of κ2 increases for γ2 =
const, it is only this latter mode that is manifested for
all values of γ2 investigated here. The asymmetry effect
is also manifested in the shape of the 1D density of
states: the left edge of the gap remains almost vertical,
while the right edge becomes inclined. It is shown that

for different and not very small values of κ2 and , the
dynamic susceptibility curves, as well as the curves
describing the density of states and corresponding to

the same value of product κ2  are similar both quali�
tatively and quantitatively.

We have analyzed the effect of 3D amplitude inho�
mogeneities on the dynamic susceptibility and density
of states of a superlattice containing 2D phase inho�

γ2
2

γ2
2

mogeneities. An increase in the rms fluctuations of 3D
inhomogeneities leads to a decrease in the dynamic
susceptibility peak amplitudes in both Brillouin zones.
It is shown that the rate of decrease in the amplitude of
the low�frequency peak at the edge of the gap in the
superlattice spectrum exceeds the rate of the decrease
in the amplitude of the high�frequency peak. As a
result, the amplitudes and widths of both peaks are
leveled out, and the asymmetry effect associated with
2D inhomogeneities is suppressed. An increase in
fluctuations of 3D amplitude inhomogeneities reduces
the depth of the gap in the density of states in the
region of the band gap. The gap is slightly broadened
in this case.

Thus, in contrast to phase and amplitude inhomo�
geneities of other dimensionalities, 2D phase inhomo�
geneities describing in�phase deformations of all
interfaces between the layers of a superlattice lead to
the asymmetry effect in the dynamic susceptibility and
in the density of states at the boundary of the Brillouin
zone of the superlattice. Such effects can be observed
experimentally in magnetic and optical superlattices.
It should be borne in mind that in analyzing dynamic
susceptibility by the spin�wave resonance method, the
asymmetry effects associated with correlations
between interfaces are manifested only when one of
resonant wavenumbers kn coincides with the wave�
number corresponding to the Brillouin zone boundary
of the superlattice. If this condition is violated, asym�
metry emerging in the dynamic susceptibility can be
due to other factors.

Targeted experiments on observation of the effect
studied here and in [4, 15, 16] would facilitate the
development of radio�spectroscopy and optical meth�
ods for identifying the presence of mutual correlations
between inhomogeneities in various interfaces in
superlattices. Such experiments should be performed
in complex with experiments on small�angle X�ray
scattering on the same samples. In the presence of
long�range correlations between roughnesses in inter�
faces (2D phase inhomogeneities), radio�spectros�
copy or optical methods can reveal additional decay in
the second Brillouin zone of the superlattice and
asymmetry in the susceptibility peaks and in the den�
sity of states at the Brillouin zone boundary, while
small�angle scattering technique will make it possible
to observe the resonance effects in the diffuse region of
the X�ray scattering spectra, which were studied in
detail theoretically, as well as the characteristic distri�
bution of intensity strips on the kxkz plane of wavevec�
tors [11–14].
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