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1. INTRODUCTION

Photonic crystals (PCs), whose dielectric proper�
ties change periodically at a period allowing for Bragg
diffraction of light, attract interest as new optical
materials with unique properties [1–4]. The localiza�
tion of electromagnetic waves at structural defects is an
important property of PCs [5–7]. In this case, addi�
tional allowed levels corresponding to localized defect
modes appear in the bandgap of a photonic crystal.
The positions and transmission coefficients of the
defect modes can be effectively controlled by varying
the geometrical and structural parameters of PCs. PCs
with defect modes were used to create new types of
photonic crystalline waveguides [8], high�Q nanocav�
ities [9, 10], and low�threshold lasers [11, 12] and to
propose new methods for increasing the efficiency of
nonlinear optical processes [13–16]. If two embedded
defect layers in a one�dimensional PC are located at a
distance significantly larger than the size of an electro�
magnetic field localization region near a defect layer,
the defect mode frequency is doubly degenerate.
When the defect layers move toward each other, the
resonance character of the mutual effect of the defect
modes splits the frequency, a pair of frequencies
shifted with respect to each other appears instead of
this frequency, and one or two peaks are detected in
the bandgap of the transmission spectrum of the PC.
In other words, the frequency splitting results from the
interaction of two localized optical modes in coupled
cavities [17–20]. Note also that the splitting of cou�

pled oscillators is identical to the vacuum Rabi split�
ting of the mode of an optical cavity filled with two�
level atoms [21–23]. When the cavity (defect layer) of
a one�dimensional PC is filled with a resonance gas,
two absorption peaks are detected (in contrast to PC
without the dispersion of a defect layer), when the res�
onance frequencies of atoms and the defect mode
coincide. This specific feature in the absorption spec�
trum appears due to the splitting of the frequencies of
the PC defect mode and an electronic transition in
atoms, which were considered as two coupled oscilla�
tors. The splitting of the mode of an optical cavity
filled with a resonance gas can be interpreted differ�
ently. A defect layer without atoms corresponds to a
defect mode of a certain frequency, which is the eigen�
mode of the cavity. When the defect layer is filled with
a resonance gas, the Fabri–Perot resonance condition
changes because of the dispersion of the refractive
index, and two eigenmodes of the cavity are the solu�
tion to the corresponding equation [22].

Composite media with metal nanoparticles are of
great interest for creating nanostructured metal–insu�
lator PCs and new methods of controlling light based
on them [24, 25]. The resonance of an effective per�
mittivity is predicted in a nanocomposite consisting of
metallic nanoparticles suspended in a transparent
matrix provided that the optical properties of the ini�
tial materials have no resonance features [26, 27]. The
resonance position lies in the visible region and
depends on the permittivities of the initial compo�
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nents and the nanoparticle concentration and shape.
The purpose of this work is to study the spectral prop�
erties of a one�dimensional PC with a resonance
absorbing defect layer of a nanocomposite consisting
of spherical silver nanoparticles randomly distributed
in a dielectric matrix. We analyze the defect�mode
splitting and the electromagnetic�field localization
induced by a change in the volume fraction of nano�
particles in the defect layer. We also study the modifi�
cation of the absorption spectrum during the variation
of the angle of incidence and the structural parameters
of the PC and defect layer.

2. MODEL AND THE DETERMINATION
OF TRANSMISSION, REFLECTION,

AND ABSORPTION

We analyze a PC structure consisting of a finite lay�
ered medium made of alternating layers of two materi�
als with a structural lattice defect (Fig. 1).

As a defect layer, we chose a nanocomposite layer of
thickness Wd consisting of metallic nanoballs dis�
persed in a transparent matrix. The defect layer is
embedded between two identical superlattices with
unit cells consisting of materials a and b with layer
thicknesses Wa and Wb, respectively. This structure is
characterized by nanocomposite permittivity εmix(ω).
Hereafter, we assume that the medium in which the
layered structure is placed is vacuum. Permittivity εmix
is determined by the Maxwell–Garnett formula,
which is widely used to consider matrix media con�
taining dispersed isolated inclusions with a low volume
fraction [26–30],

(1)

where f is the filling factor, i.e., the fraction of nano�
particles in the matrix; εm(ω) and εd are the permittiv�
ities of the nanoparticle metal and the matrix, respec�
tively; and ω is the radiation frequency. The nanopar�
ticle size is much smaller than the wavelength and the

εmix εd 1 f
1 f–( )/3 εd/ εm εd–( )+

����������������������������������������������+ ,=

field penetration depth in the material. We find the
permittivity of the nanoparticle metal using the Drude
approximation

(2)

where ε0 is the constant that takes into account the
contributions of the interband transitions of coupled
electrons, ωp is the plasma frequency, and γ is the
reciprocal of the electron relaxation time.

Function εmix(ω) is a complex function,

(3)

We neglect small factor γ2 and find the resonance
frequency position, which depends on the properties
of the initial materials and the dispersed phase con�
centration f,

(4)

At point ω = ω0, function (ω) vanishes and

(ω) becomes maximal. Function (ω) also van�
ishes at point

(5)

In the interval [ω0, ω1], function (ω) < 0; that
is, the nanocomposite in this frequency range is simi�
lar to a metal.

We study the spectra of transmission, reflection,
and absorption of p�polarized waves propagating in the
xz plane of the PC with a nanodefect using the trans�
fer�matrix method [31]. The permittivities of the lay�
ers are specified as

(6)

The magnetic�field distribution in the structure layers
is written as

(7)
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Fig. 1. Schematic representation of a one�dimensional PC
structure with a lattice defect.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 113  No. 5  2011

SPECTRAL PROPERTIES OF A ONE�DIMENSIONAL PHOTONIC CRYSTAL 757

where An and Bn are the amplitudes of the incident and
reflected waves in the nth layer, respectively,

(8)

c is the velocity of light, and θ is the angle of incidence.
The electric�field distribution in the structure lay�

ers is

(9)

From the condition of continuity of Ex and Hy at
the interface z = zn – 1, we obtain a set of equations that
can be represented as the matrix equation

(10)

where the transfer matrix is

(11)

h = αnε(n – 1)/αn – 1ε(n – 1) are the thicknesses of lay�
ers γn = z – zn – 1, and n = 1, 2, …, N. Equation (10)
relates wave amplitudes A0 and B0 of the incident and
reflected waves to wave amplitude As coming from the
PC provided that the wave reflection from the right
side of the PC is absent (Bs = 0),

(12)

where

(13)

S = N + 1, and γN + 1 = 0. The transmission coefficient
is determined by the expressions

(14)

(15)

where  is the element of matrix . Similarly, the
reflection coefficient is

(16)

The absorption coefficient is

(17)
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3. CALCULATION RESULTS
AND DISCUSSION

We now study the spectral properties of the PC with
a defect nanocomposite layer by solving Eqs. (15)–
(17) numerically and varying the medium parameters.
For definiteness, we consider zirconium dioxide ZrO2
with a permittivity εa = 4.16 and silicon dioxide SiO2
with a permittivity εb = 2.10 as the materials of the
alternating layers in the PC. The layer thicknesses are
Wa = 50 nm and Wb = 74 nm, respectively.

The composite dielectric layer of thickness Wd =
130 nm consists of silver nanoballs suspended in a
transparent optical glass. For silver, we have ε0 = 5.00,
ωp = 9 eV, γ = 0.02 eV [32]; for glass, we have εd = 2.56.
The frequency dependences of the real and imaginary
parts of the permittivity calculated by Eq. (1) demon�
strate that, as the volume concentration of nanoballs
increases, frequency ω0 corresponding to a resonance
in the defect layer shifts toward low frequencies, the
half�width of the resonance (ω) curve changes

insignificantly, the (ω) curve changes significantly,

and the frequency range where (ω) < 0 increases.
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Fig. 2. Dependences of (dashed lines) imaginary  and

(solid lines) real  parts of effective permittivity εmix on
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As an example, Fig. 2 shows the (ω) and (ω)
curves at two values of filling factor f.

Figure 3a shows the seed transmission spectrum of
p�polarized waves for the normal incidence of light
onto a PC consisting of N = 19 layers at f = 0 and other
unchanged system parameters. It is seen that, at filling
factor f = 0 (when dissipation is absent in the system),
the PC is almost transparent for radiation with a fre�
quency coinciding with defect�mode frequency ωd,
which is located near the center of the first bandgap.
The bandgap is situated in the wavelength range 355–
470 nm.

The frequency splitting effect in the transmission,
reflection, and absorption spectra is illustrated in

εmix' εmix''

Figs. 3b and 3c, respectively, for the case where the
filling factor is f = 0.01 and composite resonance fre�
quency ω0 coincides with defect�mode frequency ωd.
In contrast to the PC structure without the dispersion
of the defect layer, there are two transmission peaks,
which is caused by the dispersion and absorption in the
defect. The splitting in the transmission spectrum is
Δλ ≈ 34 nm, which is two orders of magnitude larger
than the mode splitting in a PC with similar parame�
ters and a defect layer filled with a resonance gas [22,
23]. The frequency splitting is caused by the resonance
situation that appears when the composite resonance
frequency coincides with the defect�mode frequency.

In other words, the frequency splitting effect is
induced by a change in the Fabri–Perot resonance
condition because of the dispersion of nanocomposite
permittivity εmix(ω). The Fabri–Perot resonance con�
dition has the form

(18)

where

Figure 4 shows the graphic solution to Eq. (18).
Two cavity eigenmode frequencies are clearly visi�

ble in the transmission spectrum (Fig. 3b). The inter�
mediate solution in the transmission spectrum does
not appear because of high absorption. Without regard
for losses (γ = 0), the transmission spectrum has the
three peaks corresponding to the three solutions to
Eq. (18): side peaks with T = 1 and an intermediate
peak with T = ∞ because of the permittivity pole at the
resonance frequency. The calculations at γ ≠ 0 show
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Fig. 3. Coefficients of (solid line) transmission T and
reflection R and (dashed line) absorption A as functions of
frequency for p�polarized waves. The filling factor is f =
(a) 0 and (b, c) 0.01, angle of incidence θ = 0°. 
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that the peak positions are loss�independent; there�
fore, the change in the splitting induced by a variation
in the filling factor is caused by a change in the (ω)
dispersion curve (see Fig. 2).

Figure 5 shows the transmission spectrum at vari�
ous filling factors. The splitting is seen to increase with
the concentration of silver nanoballs in the defect
layer: for example, when f increases from 0.01 to 0.1
(i.e., 10 times), the splitting increases threefold and is
101 nm.

For comparison, Fig. 6 shows the spatial electric�
field distributions at the defect�mode frequency corre�
sponding to the maximum transmission at f = 0 (see
Fig. 3a) and at the high�frequency peak frequency at
f = 0.01 (Fig. 5, solid line). It is seen that the field dis�
tribution inside the PC with a nanocomposite defect
layer almost coincides with the field distribution in the
defect region without dispersion. In both cases, the
field is localized in a region comparable to the wave�
length.

Figure 7 shows the dependence of the transmission
spectrum on angle of incidence θ and nanocomposite
defect layer thickness Wd. When θ or Wd changes, a
mismatch between the nanocomposite resonance fre�
quency and the defect�mode frequency Δω = ωd – ω0
appears. It is seen that the bandgap boundaries remain
almost unchanged as the defect layer thickness
decreases from 130 to 120 nm and that an increase in
the angle of incidence from 0° to 30° according to the
Bragg condition leads to their noticeable high�fre�
quency shift. The frequencies of the two defect modes
in the bandgap of the PC structure shift toward high
frequencies with the same modification of the trans�
mission peak shapes when the defect layer thickness
decreases or the angle of light incidence increases.
This behavior of the frequencies can be understood if
we represent the defect mode of the PC structure in
the form of a standing wave that appears as a result of

εmix'

reflection from the walls of the cavity formed by a nan�
odefect of thickness Wd. If we also neglect the fre�
quency dependence of the refractive index in the
region of the transmission peaks, we can write the res�
onance condition in the form

Therefore, the mode frequencies shift toward high fre�
quencies when thickness Wd decreases or angle of inci�
dence θ increases, which is observed during numerical
simulation.

A variable angle of incidence is a convenient
parameter to qualitatively change the transmission
spectrum of the PC structure. When angle of inci�
dence θ increases, the low�frequency edge of the
bandgap shifts toward defect layer resonance fre�
quency ω0. At θ = 55°, the low�frequency peak in the
bandgap of the transmission spectrum almost disap�
pears and the high�frequency peak corresponding to
the defect mode is retained. It is important that reso�
nance frequency ω0 at this angle of incidence is near
the low�frequency boundary of the bandgap. Mixing
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Fig. 5. Frequency dependences of the transmission coeffi�
cient at various filling factors at θ = 0: (1) f = 0, (2) 0.01,
(3) 0.05, and (4) 0.1.
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of the resonance mode with photon modes results in
the bandgap splitting effect; that is, an additional
5�nm�wide transmission band appears in the bandgap
(Fig. 8a). At θ = 65°, frequency ω0 coincides with the
frequency of the first side maximum of the continuous
transmission spectrum, and the appearing resonance
situation results in the appearance of an additional
bandgap, whose width is approximately 10 nm, in the
transmission spectrum (Fig. 8b). Note that these
widths are four orders of magnitude larger than the
transmission band width in the bandgap and the addi�
tional bandgap width in the transmission spectrum of
a layered medium in which a resonance gas is one of
the alternating layers [33].

4. CONCLUSIONS

We studied the spectral properties of a one�dimen�
sional PC with a structural resonance absorbing layer
of a nanocomposite consisting of silver nanoballs sus�
pended in a transparent optical glass and revealed a
number of important features in the transmission
spectrum of the PC, which are mainly related to a res�

onance character of the effective permittivity of the
nanocomposite and its substantial dependence on fill�
ing factor f. These results were obtained using the
transfer�matrix method.

The splitting of the defect mode was shown to be
very sensitive to nanoparticle concentration f and can
reach 100 nm. The light field corresponding to the
defect modes is localized near a defect in a region
comparable to the wavelength. The transmission spec�
trum of the PC was shown to be controlled by chang�
ing the angle of incidence. At a given value of filling
factor f, we found angles of incidence at which the
transmission spectrum of the PC changes qualita�
tively: additional transmission bands and bandgaps
appear. It is important that a PC with a defect nano�
composite layer filled with silver nanoballs makes it
possible to work in the visible frequency region.

To calculate these features in the transmission
spectrum of a PC, one can use the resonances of a
defect layer filled with other metallic nanoballs with
other PS structure sizes.
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identical to those for Fig. 7.
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