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1. INTRODUCTION

The intensive development of experimental meth�
ods of multipulse NMR spectroscopy of condensed
media has led to the formation of multiple�quantum
(MQ) NMR spectroscopy [1]. The physics behind this
spectroscopy is the transformation, by means of
sequences of high�power rf pulses, of the original
Hamiltonian of internuclear spin–spin interactions
into a new Hamiltonian (spin alchemy) under which
the original magnetization is transformed into differ�
ent rather complicated multifrequency time correla�
tion functions [1–4]. It is these functions that indicate
the emergence of MQ states in the spin system.

The emerging coherences and their dynamics pro�
vide a powerful and often irreplaceable means to study
the behavior of particles in different systems: their
clusterization and the rise of local structures situated,
for example, on surfaces, in liquid crystals, in nanosize
voids, etc. [5–7]. Depending on the experimental pro�
gram, MQ coherences may or, generally speaking,
may not (see below) be subjected to different addi�
tional (for example, relaxational) effects. At the final
stage of the experiment, a time reversal is performed
by means of a magic sandwich, owing to which the
order is again transferred to the magnetization [8, 9].

Even if we set aside the above�mentioned applied
aspects of MQ NMR spectroscopy, which ensure its
widest application (from superconductivity studies to
medicine), to realize its fundamental value, it suffices

to note that the methods of MQ spectroscopy allow for
the experimental study of the development of multi�
particle (multispin) correlations with time through the
observation of emerging coherences by means of MQ
NMR [10–17], which, of course, is essentially impor�
tant for the statistical mechanics of irreversible pro�
cesses [18].

The study of the rise and decay of multiparticle cor�
relations is of primary importance for modern meth�
ods of processing quantum information and for quan�
tum computations. When implementing these meth�
ods, one controls the coherences prepared in a nuclear
spin system by sequences of rf pulses, thus initiating
the required processes. Note that the practical appli�
cation of the huge potential of quantum computers
requires the careful control of a quantum register; the
more qubits (spins) are contained in the system, the
more careful this control should be, because, as the
number of correlated spins increases, the instability
(brittleness) of the arising clusters increases due to the
development of various relaxation processes that
destroy the quantum�mechanical superposition of
states in the system.

Thus, one of the central (and also the most compli�
cated) problems in the field of spin MQ dynamics is
the problem of relaxation (degradation of coherence
[19]) of an MQ register depending on time, its size,
quantum number, and the imperfections of the pulse
sequences applied. In [10–12, 14, 15], this depen�
dence was investigated experimentally on protons in
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an adamantane and on fluorine nuclei in CaF2. The
authors of [10–12, 15] analyzed the growth of coher�
ences and their relaxation under either a secular part
of the internuclear dipole–dipole interaction or the
same interaction transformed by pulse sequences.
In [14], the method was significantly modified for the
first time. The declared aim of the modification was to
analyze the question of how far quantum information
can be transmitted in the presence of isolators of finite
(and controlled by an experimenter) accuracy. In
other words, the authors analyzed the question of how
large size can a cluster of correlated spins (a quantum
register) reach under these conditions. The authors of
[14] observed the growth of clusters of correlated spins
by introducing a controlled perturbation into the
Hamiltonian that produces these clusters. They
assumed that the maximum size of a cluster under
these conditions is limited, and clusters of maximum
size are in dynamic equilibrium with the environment:
if the original size of a cluster is greater than its equi�
librium value, then it decreases under a perturbing
Hamiltonian, whereas the unperturbed Hamiltonian
leads to an unlimited growth of the cluster size.
According to the authors of [14], the size of the equi�
librium cluster decreases as the perturbation intensity
increases. As was assumed in [14], the process
described above is the Anderson localization [20].

In [23], based on the adiabatic approximation (a
modified Anderson model) [21, 22], we solved the
problem of relaxation of MQ coherences by a conven�
tional experimental scheme (Fig. 1a). In the present
paper, based on the earlier developed growth theory of
correlated clusters under ideal conditions [16] and the
relaxation theory of MQ coherences [23], we explain
the variations in the intensity profile of MQ coher�
ences, observed in [14], and show that the stabilization
of this profile with time is not associated with to the
stabilization of the cluster size. Namely, the cluster of
correlated spins monotonically grows, while the
observed variations in the intensity profile (MQ spec�
trum) and its stabilization are determined by the
dependence of the decay rate of an MQ coherence on
its order (its position in the MQ spectrum).

In the next section, we consider the original
nuclear spin system and a method for producing MQ
coherences and give a brief summary of the main
results obtained on the basis of a modified Anderson
model [23], which are important for the further
account. In Section 3, we study a variation in the
bandwidth of an MQ spectrum in the situation when
the decay of MQ coherences is due to the secular part
of the dipole–dipole interaction, which serves as a
“control” system on a separate distinguished time
interval following the interval in which these MQ
coherences were produced. In Section 4, we consider
the variation of an MQ coherence profile when two
processes are superposed on a single time interval: the
creation of coherences and their degradation [14].
Finally, in Section 5, we discuss the results obtained

and compare them with experimental data. In the
Appendix, we evaluate in detail the formula for the
second moment of the autocorrelation function,
which determines the growth rate of the number of
coherent states.

2. DYNAMICS AND RELAXATION
OF MQ COHERENCES IN A SOLID

It is well known [22] that the broadening of NMR
lines in nonmetallic diamagnetic solids is mainly
attributed to the secular part of internuclear dipole–
dipole interactions, which completely determines the
dynamics of a nuclear spin system:

(1)

where bij = (1/2)γ2�(1 – 3cos2θij)/ , rij is a vector
connecting spins i and j, θij is the angle between the
vector rij and an external dc magnetic field, γ is the
gyromagnetic ratio, and S

αi is the α�component
(α = z, +, –) of the vector operator of spin at site i.
Henceforth, we express energy in frequency units.

When using pulse methods in the NMR of solids,
the basic Hamiltonian (1) is usually transformed by
spin alchemy (various sequences of rf pulses) into
other Hamiltonians that are of interest for the
researcher [24]. For example, in the conventional MQ
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Fig. 1. (a) A standard scheme of experiment on the obser�
vation of MQ NMR. Interactions H0, Hd, –H0 determine
the development of the spin system at appropriate stages.
(b) The first of the experimental schemes implemented in
[14]. The formation of MQ coherences for τ1 = 0 occurs
without failures. (c) The second of the experimental
schemes implemented in [14]. A cluster of given mean size
is initially formed in the system during time N0τ0; the
development of this cluster is subsequently followed up.
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NMR spectroscopy, the original Hamiltonian is trans�
formed into the effective Hamiltonian

(2)

which is nonsecular with respect to the external dc
magnetic field. Under the effect of this Hamiltonian
during the so�called preparation period of length τ0,
the original magnetization is transformed into various
rather complicated time correlation functions that
depend on the product of a various number of spin
operators. Note that, because the preparation period
in some experimental methods is isolated and is
repeated a large number of times N0 (Fig. 1), it is expe�
dient to introduce an additional time T0 = N0τ0. Now,
the equilibrium high�temperature density matrix in a
strong static magnetic field �0 is represented as [22]

where k is the Boltzmann constant, T is temperature,
and NS is the total number of spins in a sample. This
matrix is transformed into a nonequilibrium density
matrix, which is conveniently represented as a sum ρM

of off�diagonal elements with a certain difference of M
magnetic quantum numbers, called MQ coherences
(M is the order of a coherence, which simultaneously
numbers the position of the coherence in the MQ
spectrum),

(3)

where  is a basis operator in which Q one�
spin operators form a product that relates Zeeman
states differing by M units and {i} are the numbers of
sites of the crystalline lattice occupied by a given clus�
ter. Thus, {i} is in fact a multi�index. The summation
over {i} implies the summation over both the set of
clusters and the set of spins in each cluster. The expres�
sion under the summation sign depends only on the
differences of coordinates; i.e., the dependence on
one of the coordinates is missing. Setting this coordi�
nate to be arbitrary, we find that, with respect to other
coordinates, the expression under summation decays
quite rapidly. Thus, a cluster is a group of spins for
which the expression under summation is not negligi�
ble. In (3), the index q numbers different basis states
with identical values of Q and M. The coherences aris�
ing during the period T0 are marked by a phase shift φ
[2, 3]. The arising phase shift is proportional to Mφ,
where M is an integer. Thus, Q�spin correlations are
additionally distinguished by the number of quanta
(M ≤ Q) [1–3]. Below, the amplitude of an M�quan�
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tum coherence can be separated as the Mth harmonic
of an appropriate Fourier series.

Further, according to the conventional experimen�
tal scheme (Fig. 1a), these coherences are relaxed over
a period of time t under the action of the secular
dipole–dipole Hamiltonian (1). After the period of
free evolution, a new sequence of pulses is applied to
the system, that reverses the sign of the effective
Hamiltonian (2); thus, a time reversal is performed [8,
9], owing to which the order again returns to the
observed quantity—the single�quantum longitudinal
magnetization. The amplitude of the partial (for a
given value of M) magnetization can be measured by
means of a π/2 pulse that turns the magnetization into
the plane perpendicular to the external magnetic field.
To determine the relaxation rate, one repeats the
experiment many times for different values of t.

Following the simplest statistical model [2, 3], we
assume in experiments that the distribution of coher�
ences of different orders in the MQ spectrum is Gaus�
sian:

The dispersion K(N0τ0)/2 of distribution in this model
is determined by the number K(N0τ0) of spins among
which a dynamic correlation is established due to
interaction (2) over the preparation time T0 = N0τ0.
This number, called the number of correlated spins, or
the effective cluster size, increases with the prepara�
tion time T0.

In [14], the variation in the MQ coherence profile
was studied by two variants of the modified method
(Figs. 1b and 1c). According to the scheme of Fig. 1b,
the authors of [14] combined, during the preparatory
period, the effects of the Hamiltonian that produces
MQ coherences (Hamiltonian (2)) and the Hamilto�
nian responsible for their relaxation (Hamiltonian (1)).
Thus, the effective Hamiltonian in the preparatory
period in the scheme of Fig. 1b is given by

(4)

In this case, the time interval τ (duration of a cycle) of
action of Hamiltonian (4) on the system is decom�
posed into two adjoined intervals: in the first interval,
Hamiltonian (2) acts during time τ0, and in the sec�
ond, Hamiltonian (1) acts during time τ1. The con�
stant p in expression (4) is defined by the condition

(5)

The second variant of the experiment carried out in
[14] involved the sequence shown in Fig. 1c. In this
approach, a cluster of a certain size was formed during
a preparatrory period of full duration N0τ0. This size
was determined by the duration N0τ0 of the interval.
Then, during the interval Nτ = N(τ0 + τ1), the system
developed under Hamiltonian (4), which allowed one
to trace the relaxation of the cluster of the given size
after the time interval of (N + N0)τ0 allotted for the
mixing (recovery) of the system.

gM N0τ0( ) M2
/K N0τ0( )–[ ].exp∝

Heff 1 p–( )H0 pHd.+=

p τ1/τ τ1/ τ0 τ1+( ).= =
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3. GROWTH AND DECAY OF MQ 
COHERENCES IN SEPARATE PROCESSES

OF FORMATION AND DEGRADATION
OF PHASE CORRELATIONS

IN A SPIN SYSTEM

Just as in [23], we will consider an individual clus�
ter from the sum in formula (3), that consists of Q
spins, is situated in the set {i} of sites of a crystalline
lattice with fixed geometry, and has the coherence
order M. Within the period of free evolution under
interaction (1), the operator component of the density
matrix is generally varied. These variations should
obviously be accompanied by variations in the param�
eters Q, q, and {i}. The parameter M is preserved
because Hamiltonian (1) commutes with the Zeeman
operator. However, if the cluster is large enough, then,
for not too large times, one can neglect variations in
the dipolar energy and other numbers. Since the main
role during the emergence and development of MQ
coherences is played by phase correlations that arise
and degrade in the spin system, here, just as in [23], it
is expedient to apply a modified Anderson model (an
adiabatic approximation). In accordance with this
model, we will assume that only the phase of the oper�
ator component of the density matrix is varied:

(6)

Here l is the number of Szk operators in the operator

. Then, according to the results of [23],
for the conventional experimental method (Fig. 1a),
the MQ coherence profile as a function of the order M
and time is expressed as

(7)

The constants A2 and b2 are directly related to the lat�
tice sums of the coefficients bij of Hamiltonian (1). We
should stress once again that, in equation (7), K(Nτ0)
is the total number of correlated spins formed during
time Nτ0 under interaction (2) alone, that exhibits
purely exponential growth [10, 11, 16].

In the experiments in [14], the authors determine
the average effective size Keff(Nτ0, t) of a cluster by the
half�maximum bandwidth of the spectrum; therefore,
it is expedient to introduce again the effective Gauss�

ρ M Q q l i{ } t, , , ,( ) M Q q l i{ }, , , ,| 〉=
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ian distribution function that characterizes the inten�
sity profile as a function of M:

Now, the degradation of a cluster defined by time�
dependent Gaussian multipliers in (7) can be taken
into consideration as follows:

(8)

The first and the last multipliers in (7) have no
effect on the effective size of a cluster because they do
not depend on the number M. The effect of these mul�
tipliers manifests itself in the variation of the ampli�
tude of the entire spectrum. According to (8), the
bandwidth of the MQ spectrum and the Keff(Nτ0, t)
decrease as the decay time increases (the evolution
time with Hamiltonian (1)), which completely agrees
with the experimental results of [12].

4. GROWTH AND DECAY OF MQ 
COHERENCES IN THE SIMULTANEOUS 

PROCESS OF FORMATION
AND DEGRADATION OF PHASE 

CORRELATIONS IN A SPIN SYSTEM

Unlike conventional MQ experiments, the varia�
tions that were introduced in [14] (see Figs. 1b and 1c)
lead to the substitution of a single Hamiltonian (4) for
Hamiltonians (1) and (2) acting separately on differ�
ent time intervals. As is shown below, these variations
manifest themselves in the experiment, first, in the
decrease of the growth rate of MQ coherences com�
pared with the case of p = 0 and, second, in the
appearance of additional decay different from that
defined by (7).

Since a quantity that characterizes the number of
spins between which a dynamic correlation is estab�
lished during the preparatory period is given by the
second moment of the MQ coherence intensity pro�
file [16],

we should next evaluate the variation in the time
dependence of this second moment for 0 < p < 1 com�
pared with the result given by (8).

In [16], we developed an appropriate diagram tech�
nique to evaluate the above�mentioned second
moment. Since the processes of the development and
mixing of correlations in the experiment generally
occur in different time intervals (Nτ and Nτ0), these
processes were described by two independent propaga�

1
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��������������� A2t2+⎝ ⎠
⎛ ⎞M2–exp

×
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tors: G(Nτ) and G(Nτ0), respectively (see formula (42)
in [16]). Now, while the propagator G(Nτ0) with
reversed time (with the Hamiltonian –H0) at the stage
of mixing remains unchanged, in the propagator
Gp(Nτ), which corresponds to the stage of develop�
ment of correlations, one should replace H0 by Heff (4).
Thus, the propagator Gp(Nτ) is now represented as a
series

(9)

containing the convolutions of one�spin autocorrela�
tion functions, which were approximated in [16] by
Gaussian functions with the averaged second moment:

(10)

where C2 = /16. A more formal derivation of

formula (10) is given in the Appendix.
Series (9) is easily summed with the use of the

Laplace transformation. Thus, for the Laplace trans�
form of the function Gp(Nτ) we obtain

(11)

where ωc = C  and w(x) is the Laplace transform of
the Gaussian function—the probability integral of a
complex argument, which is tabulated in the book [25].
The behavior of the function Gp(Nτ) at large times,
which we are interested in, is defined by the nearest
root of the denominator in (11). Thus, an equation for
the sought singular point of expression (11) is given by

(12)
where

When p = 0, as before [16], an approximate solution to
Eq. (12) is given by

(13)

for the propagator G0(Nτ) and the second moment of
the intensity profile, we obtain [16]

(14)

respectively. Note that the values of τ0 and τ differed
little in the experiments of [14] (see Hamiltonian (4)).
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For instance, the maximum value of the parameter p in
[14] was 0.1. Let us evaluate the sought parameters for
this value. Now the approximate solution to Eq. (12)
yields

Next, for the exponent

(15)

which describes the increase in the second moment
with time, we will use the estimate

For small values of p, we can neglect the shift of xmin(p)
and the contribution of Hd to M2c(p) and use the
expression

(16)

The Gaussian function exp(–A2M2t2) in (7), which
describes the decay of an MQ coherence as a function
of the order M, was obtained in [23] in the adiabatic
approximation under the condition that each spin in
the lattice is surrounded by a large number of approx�
imately equivalent neighbors. The exponent of this
function was obtained as a sum of a large number of
independent contributions of each neighbor of fixed
spin to the variation of its phase averaged over the posi�
tions of spins in the lattice (see the Appendix in [23]).
The quantity A2, which ultimately turns into a param�
eter, was initially formed as [23]

(17)

where the indices i and j number all the spins that
belong and do not belong to the given cluster, respec�
tively; t is the action time of the Hamiltonian Hd on
MQ coherences prepared during time N0τ0 (here N0 is
the number of cycles; Fig. 1a); and K ' is the total num�
ber of spin�raising and spin�lowering operators
defined on the cluster. To facilitate the comparison of
the theory with experimental results, it is expedient to
pass to new time variables that allow one to directly
take into account a multiple (N�fold) repetition of the
experimental cycle (see Fig. 1). Therefore, we set

In the case of simultaneous emergence and degra�
dation of MQ coherences (see Fig. 1b), a coherence
that arises at time instant t under the interaction
(1 ⎯ p)H0 from Hamiltonian (4) on the time interval
[0, T] will further degrade under the interaction pHd

from Hamiltonian (4); the decay occurs during a time
interval of T – t. It follows from the aforesaid that, to
describe the degradation in the experiment (Fig. 1b),
one should replace time t in (17) by . Here the
symbol  denotes averaging with respect to the
emergence instant of a coherence. Thus, for a function

xmin 0.1( ) 0.45, smin 0.1( ) 0.45 2M2c 0.1( ).= =
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describing the decay of a coherence with a given M, we
obtain

(18)

To perform the averaging in (18), we should find
R(t), the probability density of emerging a coherence
as a function of time. This can be done in the general
form both for the experiment illustrated by the scheme
in Fig. 1b and for the experiment with the scheme in
Fig. 1c. According to the results of [10, 11, 16], the
average number of coherences grows exponentially
with time (henceforth, we will assume for short that
a(0) = a0 and a(p) = ap:

(19)

Formula (19) shows that the exponent characterizing
the growth rate of the number of correlated spins is dif�
ferent from that in the classical situation [10, 11, 16].
The sought probability density is determined by the
time derivative [26] of expression (19):

(20)

where D is a normalization constant,

(21)

Now we can obtain the time average in (18):

(22)

Note that the coherences that appeared in the interval
[0, T0] relax during the entire interval [T0, T0 + T] (see
Fig. 1c) and make a contribution proportional to T 2 to
(22). Performing the integration and taking into con�
sideration relations (19)–(21), we finally obtain

(23)

Substituting (23) into formula (18), we find the sought
result for the time correlation function describing the
relaxation of coherence amplitudes of different orders
in the MQ spectrum and, hence, for the effective mean
size of a cluster Keff observed in the experiments in
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[14]. Hence, to describe the experiments of [14], one
should apply the expression

(24)

instead of formula (8). Since formulas (23) and (24)
are rather cumbersome, it is worthwhile to consider
some limit cases for the relation between the parame�
ters.

1. Let T = 0. Then  = 0 and hence

2. Let apT � 1. Then

(25)

and

(26)

3. Let apT � 1. Then  ≈ 2/  and

For 2K(T0 + T)A2p2/  � 1, Keff reaches its steady
state given by

(27)

Note that, for the experimental scheme illustrated in
Fig. 1b, one should set T0 = 0 in formulas (24)–(27).

The functions Keff(T) calculated for various values
of the parameters by formula (24) are shown in Fig. 2
(the experimental scheme of Fig. 1b) and Fig. 3
(the experimental scheme of Fig. 1c).

Keff T0 T,( ) K T0 T+( )( ) 1–[=

+ A2p2 t T0 T+( )–( )2〈 〉 ]
1–

=  a0T0– apT–( )exp A2p2��+

× 2

ap
2D

������� a0T0 apT+( )exp
⎩
⎨
⎧

– 2
apD
������� T 1

ap

����+⎝ ⎠
⎛ ⎞ a0T0( )exp T2

D
����

⎭
⎬
⎫

1–

–

t T0–( )2〈 〉

Keff K T0( ) K0.= =

t T0 T+( )–( )2〈 〉
T2 1 apT/3+( ),    a0T0 � 1,

T2a0T0 apT/3+
a0T0 apT+

��������������������������, a0T0 � 1
⎩
⎪
⎨
⎪
⎧

≈

Keff

K T0 T+( )

1 A2p2T2K T0 T+( )+
������������������������������������������,      a0T0 � 1,

K T0 T+( )

1 A2p2T2K T0 T+( )/3+
�����������������������������������������������, a0T0 � 1.

⎩
⎪
⎪
⎨
⎪
⎪
⎧

≈

t T0 T+( )–( )2〈 〉 ap
2

Keff

K T0 T+( )

1 2K T0 T+( )A2p2
/ap

2+
����������������������������������������������.≈

ap
2

Keff
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2

2A2p2
�����������.≈
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5. DISCUSSION OF THE RESULTS

The time dependence of the effective number Keff

of correlated spins illustrated in Figs. 2 and 3 shows
good agreement with the experimental results of [14]
and adequately reflects all the characteristic features in
the behavior of the experimental functions. We should
put special emphasis on the most important result of
the theory presented—the fact that the effective clus�
ter size Keff reaches a steady�state value predicted
by (27). Such a stabilization of the cluster size was
indeed observed in [14] (see Fig. 5 in [14]); just as
in (27), the experimental effective cluster size was
inversely proportional to the square of the parameter p
(formula (5)). The experimental value of the coeffi�
cient multiplying this function did not quite coincide

with the earlier determined ratio /2A2 of earlier

defined constants [16, 23]. This is likely to be attrib�
uted to the mutual effect of two terms in Hamiltonian
(4), which acted separately under the conditions of the
previous experiments considered in [16, 23].

According to the aforesaid, this stabilization of
the cluster size is associated with the behavior of the
MQ coherence profile as a function of the order M.

ap
2

Indeed, the dependence of the MQ spectrum on M is
expressed as

(28)

The number K in (28) grows exponentially with T;
therefore, the dependence on M of the first cofactor
becomes weaker, and the dependence of the MQ spec�
trum on M is completely determined by the second
cofactor in (28), where, according to (27),

This result is attributed to the fact that the maximum
number of coherences arises near the boundary t =
T0 + T. At a distance of Δt away from this boundary
toward smaller times, the number of emerging coher�
ences decays exponentially (as exp(–apΔt)). The mean

value of the time variable  in (22) is bounded by

this exponential function and equals 2/ ; therefore,
the exponent of the second cofactor in (28) becomes
independent of T0 and T:

(29)

gM T0 T,( ) M2

K T0 T+( )
��������������������–exp∝

× A2M2p2 t T0 T+( )–( )2〈 〉–[ ].exp

Δt2〈 〉 t T0 T+( )–( )2〈 〉 2/ap
2
.≈=

Δt2〈 〉

ap
2

gM 2A2M2p2
/ap

2–( ).exp∝

0
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Fig. 2. Evolution of the effective size of a cluster under
conditions of Fig. 1b for various values of the parameter

A2p2/  (the numbers under appropriate curves). Time is

given in the units of 1/a0.
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Fig. 3. Evolution of the effective size of a cluster according
to the scheme of Fig. 1c under different initial conditions:
T0a0 = 0 (solid lines), T0a0 = 5 (dashed lines), and T0a0 =
7 (dotted lines). The numbers at the curves indicate the

values of the parameter A2p2/  (time is given in the units

of 1/a0).
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Thus, the intensity profile becomes time�indepen�
dent; therefore, the mean cluster size defined by the
half�maximum bandwidth also becomes independent
of T0 and T, whereas a real cluster continues to grow.

In the recent publication [27],
1 the authors of [14]

argue that the distribution of coherences of different
orders in the MQ spectrum is described by the expo�
nential function

(30)

rather than by the Gaussian function. Although the
first cofactor in (28) in this case is changed, this does
not significantly influence the calculations that lead to
formula (29). Now the transition from (28) to (29)
with increasing time is not described in detail by the
simple formula (24). To obtain the function Keff(T)
under new conditions, one should solve the system of
two equations

(31)

We should specially stress that the choice of one or
other shape function of the MQ spectrum for describ�
ing the results of the experiments of [14, 27] or for the
numerical simulation [7, 17] is not unique until we
construct a rigorous microscopic theory and carry out
experiments with low error for the required results.

Let us point out that, in the definition of Keff by
(30), (31), its steady�state value (27) is preserved even
under the variation of the shape of the MQ spectrum
and the decay of MQ components as a function of M
in rather wide limits, because the decay is completely
determined by the steady�state value

In turn, the steady�state value of averaged time is
determined by the fast exponential growth (19) of the
mean cluster size, which is characterized by the sec�
ond moment of the MQ spectrum (15) rather than by
the shape of this spectrum.

APPENDIX

In this Appendix, we derive formula (10). Follow�
ing [16], we write

(A.1)

where (p) is the second moment per one link of

the simplest chain and (p) is the second moment
per one link for a chain with the maximum number of
simplest regions.

1 An addition made after referee’s corrections.

gM N0τ0( ) M / K N0τ0( )–[ ]exp∝

M

Keff T0 T+( )
��������������������������� 1,=

M

K T0 T+( )
������������������������ p2A2M2 t T0 T+( )–( )2〈 〉+ 1.=

Δt2〈 〉 t T0 T+( )–( )2〈 〉 2/ap
2
.≈=

M2c p( ) 1
2
��M2c

1( ) p( ) 1
2
��M2c

2( ) p( ),+=

M2c
1( )

M2c
2( )

1. In the simplest chain, regions with spin projec�
tions x and y successively alternate on the diagram;
these regions correspond to autocorrelation functions
Γx(t) and Γy(t) with equal second moments,

(A.2)

where

2. In the chain with the maximum number of sim�
plest regions, regions with spin projections z and y suc�
cessively alternate on the diagram. For the second
moment of the autocorrelation functions Γz(t), we
obtain

(A.3)

Hence,

(A.4)

Substituting (A2) and (A4) into (A1), we obtain the
required result (10).

Notice that formulas (A2) and (A3) are obtained in
the approximation of zz interaction for Hd, i.e., under
the assumption that the interaction between the spin
components Szi are preserved in the Hamiltonian Hd,
while the interactions with the spin components Sxi

and Syi are dropped out. Under the total Hamiltonian

Hd, the terms  and  are added to the sec�

ond moments M2y and M2z, respectively. Finally, the
notations of spin components here and in paper [16]
are related by cyclic permutations.
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