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1. INTRODUCTION

Discovery of high�Tc superconductors stimulated
investigation of the properties of two�dimensional
antiferromagnets (2D AFMs), since the magnetic
properties of undoped high�Tc superconductors can be
described by a spin Hamiltonian on a square lattice.
One of the central questions of theory is associated
with the effect of quantum fluctuations on the charac�
teristics of 2D AFMs [1–12]. A special emphasis was
put to studying the stability of the Néel phase. It
turned out that the influence of quantum fluctuations
in an isotropic 2D AFM with the interaction between
the nearest neighbors is insignificant at T = 0 and
expansion in powers of the parameter 1/2S is justified
even for S = 1/2 [7].

For the Hamiltonian of cubic symmetry, the spin
invariants that describe the pair interaction are
reduced to the isotropic forms Ifm(Sf Sm) and the
Hamiltonian is invariant with respect to the transfor�
mations of group SU(2). The appearance of the Néel
phase is accompanied by spontaneous symmetry
breaking and, according to the Goldstone’s theorem,
the excitation spectrum is gapless (Δ ≡ ωq = 0 = 0). In
this case, the question of the gap renormalization does
not even arise.

The situation changes if the Hamiltonian includes
the fourth�order invariants, whose symmetry is no
higher than cubic. Spontaneous symmetry breaking
upon the formation of the Néel phase concerns only
the discrete group and the gap of the excitation spec�
trum is nonzero. Thus, quantum fluctuations lead to
renormalization of the “bare” gap Δ0 found in the har�
monic approximation. In this case, the additional
condition appears that results in a displacement of the
stability boundary of the Néel phase. The situation

when the Néel phase stable in the linear theory is
destroyed by quantum fluctuations upon the inclusion
of even a weak anisotropic interaction is of special
interest. The present work is focused on studying this
particular problem.

2. HAMILTONIAN 
OF THE NON�HEISENBERG 

ANTIFERROMAGNET

The effect of quantum fluctuations on the stability
of the Néel phase of an anisotropic non�Heisenberg
2D AFM on a square lattice will be studied with the
use of the Hamiltonian

(1)
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Three first terms of Hamiltonian (1) describe the iso�
tropic Heisenberg exchange interaction within the F
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and G sublattices and the exchange interaction
between the spins of different sublattices. The sub�
scripts f, f ' and g, g' refer to the sites of the F and G sub�
lattice, respectively. The Hamiltonian Hms corre�
sponds to the four�site spin–spin interaction of cubic
symmetry, whereas the Heisenberg interaction is
determined by three invariants with the constants K1,
K2, and K3. If 2K3 = K1 – K2, the four�spin Hamilto�
nian takes the isotropic form

(3)

The summation over the site indices in the non�
Heisenberg part of H is performed in such a manner
that four interacting spins situate at the sites forming
the smallest square elementary placket. The said
restriction on the indices f, g, f ', g' in Hms is formally
denoted by the angular brackets. The factor 1/S2 in
front of Hms ensures that the dependence of the energy
of the system on the magnitude of the spin is identical
for Heisenberg and non�Heisenberg (~S2) part in the
S � 1 limit. The numerical coefficients in Hms are cho�
sen such that the energy per one placket for the
allowed configuration be ±KiS2 in the classical limit.

To solve the problem of the elementary excitation
spectrum and stability of the Néel phase we use the
Holstein–Primakoff transformation [13] taking into
account the presence of F and G sublattices

(4)

where ,  are the Bose quasiparticle cre�
ation (annihilation) operators in the sublattice F and
G, respectively.

Using Eq. (4) and proceeding in a conventional
manner we find that in the Hamiltonian of the system
in the momentum representation takes the form

(5)

The part of the Hamiltonian that is quadratic in the
operators is given by the expression
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(7)

The processes involving four magnons are represented
by the operator

(8)

For the convenience of the notation, the wave vectors,
over which the summation is performed, are denoted
by the digits 1, 2, 3, 4. The x and y components of these
vectors are denoted respectively as 1x, 1y, etc. The bare
amplitudes Γ(0) entering H(4) are given in the Appendix.

In the approximation considered in this work, only
the terms up to the fourth order are significant and we
therefore omit the expression for H(6).

3. THE LINEAR THEORY OF THE EXCITATION 
SPECTRUM OF THE NON�HEISENBERG 

2D ANTIFERROMAGNET

In the harmonic approximation, scattering of qua�
siparticles is ignored and the spin�wave spectrum is
determined solely by H(2). Making use of the Bogoli�

ubov transformation aq = uqαq + , bq = uqβq +

, we find the expression for the energy of spin

excitations ωq = . In this case, the energy gap
has the form
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conditions of the stability of the structure under con�
sideration) on the relations between the parameters

(10)

At 2K3 = K1 – K2, the excitation spectrum becomes
gapless, which is associated with a higher symmetry of
the Hamiltonian.

Another stability condition follows from the analy�
sis of the excitation energy at the point q = (π, π).
Thus, assuming that Iq = 2I(cosqx + cosqy), Jq =

4Jcos cos , we find

(11)

The energy due to zero�point quantum oscillations per

site is given by the expression Δε =  – εq).

If Δ ≠ 0, the Néel phase remains stable in a certain
finite temperature range. In this case, we consider a
decrease in the sublattice magnetization with an
increase in temperature. In the first order in 1/2S, the
magnetization is

(12)

where nq =  is the Bose–Einstein dis�

tribution function. The temperature dependence is
given by the last term, which at T � TN can be
expressed as

(13)

where 

(14)

If J, |I | � K1, K2, K3, then Q = J/(J + I). At the ultra�
low temperature T � Δ,
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4. INCLUSION OF QUANTUM 
FLUCTUATIONS IN THE FIRST ORDER

IN 1/2S

To study the influence of quantum fluctuations on
the stability of the antiferromagnetic phase we include
in the Hamiltonian the terms that describe the interac�
tion between magnons. After the Bogoliubov transfor�
mation, these terms expressed via the new operators
acquire the structure, in which some operator expres�
sions do not have a form of the normal product of cre�
ation and annihilation operators (in the normal form,
all annihilation operators appear to the right of cre�
ation ones). The use of the standard commutation
relations reduces these expressions to the normal
form. However, there appear the contributions of the
zero and first order in the second�quantization opera�
tors. The zero�order terms contribute to the ground�
state energy, whereas the quadratic terms determine
renormalization of the energy expressions of the
Hamiltonian H(2). As a result of such a procedure, we
find that excitation spectrum at zero temperature is
given by the expression

(17)

where Aq = εq + δεq, Bq = ξq + δξq. The quantities εq

and ξq are specified by Eq. (7) and δεq and δξq, accord�
ing to the above�described algorithm, are expressed in
terms of bare amplitudes and the transformation
parameters

(18)

In this approach, finding the parameters of the Bogoli�
ubov transformation taking into account the contribu�
tions quantum fluctuations is reduced to solving the
integral equation for the function Φp, which specifies
up and vp,

(19)

The use of the specific quasi�momentum dependence
of the bare scattering amplitudes allows us to reduce
the solution of the integral equation to the system of
three transcendental equations with respect to L, M
and R, in terms of which the quasi�momentum depen�
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dence of the renormalization corrections δεq and δξq

are expressed

(20)
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In this case, the equations for L, M, and R follow from
the expressions

(21)

Using the derived relations, let us analyze the renor�
malized excitation spectrum and find the displace�
ment of the stability boundaries of the Néel phase due
to the quantum fluctuations.

The numerical results are shown in Figs. 1 and 2.
The Cartesian axes in Fig. 1 are the four�site exchange
interaction parameters K1, K2 and K3 in the units of J.
The modification of the stability region of the Néel
phase is shown for three values of K3: K3 = –0.2J, 0,
and 0.2J. For each value, there is a region limited by
two straight lines

(22)

These lines result from the condition of the positive
definiteness of the spectrum at q = 0 and q = (π, π),
respectively. In Fig. 1, these correspond to two perpen�
dicular lines. Thus, the stability region of the Néel
phase does not change with the spin S in the absence
of quantum fluctuations.
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Fig. 1. Stability regions of the Néel phase of a 2D non�
Heisenberg antiferromagnet for a constant parameter I.

1.00.2

1.00

1.0
−0.2

−0.4

I

I

I

K2

K2

K2

1

2
3

1

2

3

1

2

3

1

2

3

K2

K1

I

Fig. 2. Stability regions of the Néel phase of a 2D non�Heisenberg antiferromagnet in the space of the parameters K1, K2, and I.



PHYSICS OF THE SOLID STATE  Vol. 53  No. 10  2011

QUANTUM FLUCTUATIONS IN A TWO�DIMENSIONAL ANTIFERROMAGNET 2065

When the quantum fluctuations are taken into
account, one of the stability boundaries is given by a
more complicated nonlinear relation of the parame�
ters K1, K2, and K3 rather than the equation 2K3 – K1 +
K2 = 0. As a result, the stability boundary of the Néel
phase is substantially modified in the case of weak
anisotropy (Figs. 1 and 2) and becomes dependent on
the magnitude of spin S. This modification (change in
shape and displacement) of the boundary is most pro�
nounced at small spin. The stability boundary calcu�
lated for S = 1/2, 1 and 3/2 is shown in Figs. 1 and 2
by curves 1, 2, and 3, respectively. As is seen, the quan�
tum renormalization is quite significant at S = 1/2 and
1. The stability region of the Néel phase at S = 1/2 is
marked by hatching. Remarkably, the quantum fluctu�
ations destroy the Néel phase at infinitesimal anisot�
ropy of the four�spin interaction. The dashed line in
the central section in Fig. 1 shows the stability region
of the Néel phase at I/J = –0.2 and S = 1/2. As one
would expect, frustration leads to the reduction of the
stability region.

Figure 2 shows the cross sections of the stability
region of the Néel phase in the space of the parameters
K1, K2, and I for four values of K1 = –0.4J, –0.2J, 0,
and 0.2J. The hatched regions of the cross sections in
Fig. 2 correspond to the stability regions for S = 1/2.
In the cases of S = 1 and 3/2, the hatching (like in
Fig. 1) should continue to the lines 2 and 3, respec�
tively. Figure 2 also demonstrates instability of the
Néel phase of weakly anisotropic 2D AFM with four�
spin interaction with respect to quantum fluctuations.
The Néel phase is not destroyed by quantum fluctua�
tions only at a relatively large anisotropy of the multi�
spin exchange interaction.

5. CONCLUSIONS

In this work, we have developed the quantum the�
ory of a non�Heisenberg 2D AFM on a square lattice
to the first order in the parameter 1/2S inclusive. The
quasi�momentum dependence of the bare vertices
taking into account four�spin interactions has been
calculated in the general form (at three cubic invari�
ants). The use of these dependences allowed us to
switch from the integral equation or the renormalized
characteristics of the spectrum to the system of three
transcendental equations. As a result, the closed
expressions for the spectrum with the contributions of
quantum fluctuations have been obtained in the com�
pact form.

Based on the analysis of the elementary excitation
spectrum, the stability conditions of the Néel phase
with respect to quantum fluctuations have been found.
It turn out that, under the inclusion of all fluctuations,
the stability regions of the Néel phase strongly depend
on the magnitude of spin at small S. This qualitatively
new effect is due to the fact that quantum fluctuations
destroy the Néel phase as soon as the four spin inter�

action becomes weakly anisotropic. This effect is the
most pronounced at small S. This can be qualitatively
interpreted as follows. The anisotropy of cubic�sym�
metry leads to the appearance of a gap in the elemen�
tary excitation spectrum. From this point of view, the
anisotropy stabilizes the Néel phase. However, the
appearance of anisotropic invariants simultaneously
results in the terms, which induce quantum fluctua�
tions. These terms form the tendency of breaking the
antiferromagnetic long�range order. Apparently, the
latter processes prevail at small anisotropy and the
magnetic order disappears. The effective field of
anisotropy increases with anisotropy, the quantum
fluctuations are suppressed and the long�range mag�
netic order becomes stable at T = 0.

APPENDIX

The bare amplitudes Γ(0) entering H(4) are
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