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Abstract – This paper proposes a simple setup for introducing an artificial magnetic field for
neutral atoms in 2D optical lattices. This setup is based on the phenomenon of photon-assisted
tunneling and involves a low-frequency periodic driving of the optical lattice. This low-frequency
driving does not affect the electronic structure of the atom and can be easily realized by the same
means which are employed to create the lattice. We also address the problem of detecting this
effective magnetic field. In particular, we study the center-of-mass wave packet dynamics, which
is shown to exhibit certain features of cyclotron dynamics of a classical charged particle.

Copyright c© EPLA, 2011

Introduction. – A major motivation of the current
research with cold atoms in optical lattices is the prospect
of simulating solid-state physics. However, to have a full
access to solid-state–like phenomena in these systems
(which can be considered as artificial crystals) artifi-
cial electric and magnetic fields must be introduced.
In present-days experiments an external electric field is
routinely mimicked by accelerating the optical lattice
[1–3], by using the gravitational force [4–6] and by a combi-
nation of gravitational and levitational forces [7]. The case
of artificial magnetic field is more difficult to achieve in
laboratory realizations because it requires a setup where
the atomic wave function acquires a finite phase when the
atom tunnels along a closed path on the lattice.
Such a setup was suggested in the seminal paper [8],

where the authors used two independent 2D optical
lattices for two different internal atomic states, which are
coupled by additional Raman lasers. The Rabi transition
between internal states induces hopping of the atom
between nearest lattice sites, where the required phase
accumulation is achieved by using a special geometry for
the Raman beams. This idea was further developed in
refs. [9,10]. It was shown that one can also introduce
non-Abelian gauge potentials by using the Raman-laser
technique. For atoms in a harmonic trap (no lattice) the

(a)E-mail: andrey.r.kolovsky@gmail.com

Raman scheme with 3 spin states of the F = 1 electronic
ground state of 87Rb atom has been recently realized [11].
In this setup the magnitude of the effective magnetic field
is defined by the gradient of the real magnetic field which
splits the F = 1 level into Zeeman sublevels. We note that
the cited experiment also reported a drawback of the
Raman-laser based techniques. Namely, the spontaneous
emission from Raman beams kicks atoms out of the trap,
thus causing the population decay.
A different method of introducing artificial magnetic

field was proposed in ref. [12]. Unlike the setups of
refs. [8–11] it does not rely on the internal atomic structure
—the magnetic field being mimicked by an oscillating
quadrupole potential at frequency ω, together with a
periodic modulation of the hopping matrix elements. Here,
the magnitude of the effective field is defined by the
strength of the quadrupole potential, measured in units of
�ω. Unfortunately, because of a number of approximations
involved, this setup does not ensure exact equivalence with
a real magnetic field.
In the present work we suggest another, alternative

method of creating an artificial magnetic field for neutral
atoms in a 2D optical lattice. The method is based on the
phenomenon of photon-assisted tunneling, which is well
studied in the case of (quasi) 1D lattices [3,6,7]. It has the
great advantage over the above-discussed setups that it
does not involve Raman lasers and, yet, ensures complete
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equivalence with a charged particle in the real magnetic
field.
The problem of creating artificial magnetic fields for

neutral atoms is closely related to the detection problem.
Here one addresses magnetic-field effects, which can be
observed by using detection techniques of cold-atoms
physics. In particular, it was argued in the already cited
paper [8] that the effective magnetic field produces a
specific interference pattern for the atomic density (see
fig. 1 below), which carries information about the field
magnitude. We revisit here the problem of detecting an
artificial magnetic field. In particular, we discuss a variety
of interference patterns developed by the atomic wave
function in the course of time and study the center-of-mass
wave packet dynamics, which exhibits certain features of
the cyclotron dynamics of a classical particle.

Photon-assisted tunneling and effective
magnetic field. – The phenomenon of photon-assisted
tunneling refers to a quantum particle (an atom) in
a 1D lattice, which is subject to DC and AC fields1.
Using the tight-binding approximation (which will be
our theoretical framework from now on) the system
Hamiltonian reads

H = −J
2

∑
m

(|m+1〉〈m|+h.c.)

+a[F +Fω cos(ωt+φ)]
∑
m

|m〉m〈m|, (1)

where |m〉 are the Wannier states, a the lattice period
and J the hopping matrix element. For vanishing DC
and AC fields the egenfunctions of (1) are extended
Bloch waves with dispersion relation E(κ) =−J cos(aκ).
If F �= 0 the eigenfunctions become localized Wannier-
Stark states with an equidistant spectrum with level spac-
ing ∆E = aF ≡ �ωB . A periodic driving of the system at
the frequency ω which matches the Bloch frequency ωB
couples these Wannier-Stark states into extended quasi-
energy states with dispersion relation E(κ) =−J̃ cos(aκ),
where J̃ = JJ1(Fω/F ) and J1(x) is the Bessel function of
the first kind2. Moreover, if

aF � J (2)

the Bloch period is small in comparison with the charac-
teristic tunneling time and the dynamics of the system (1)
can be described in terms of the effective Hamiltonian

H̃ = − J̃
2

∑
m

(|m+1〉〈m|eiφ+h.c.),

J̃ = JJ1(Fω/F ), (3)

1See refs. [3,6,7] for experimental studies and refs. [13,14] for rele-
vant theoretical analysis, which also includes the case of interacting
atoms.
2In the general case the photon-assisted tunneling takes place at

the integer ration ωB/ω= n, where J̃ = JJn(aFω/�ω). It may also
happen at rational ωB/ω, if the Hamiltonian (1) includes hopping
to the next–to–nearest-neighbor sites.

as already shown in detail in ref. [14]. The additional
parameter φ in (3), which was actually overlooked in
early studies of photon-assisted tunneling, is the phase
difference between the Bloch and field oscillations. We
mention that a possibility of experimental control over the
parameter φ has been recently demonstrated in ref. [7].
Now we consider the quantum particle in a 2D lattice.

The lattice is tilted and driven in the y-direction (indexm)
and we assume the phase of the AC field to vary linearly
along the x-direction (index l),

H = −Jx
2

∑
l,m

(|l+1,m〉〈l,m|+h.c.)

−Jy
2

∑
l,m

(|l,m+1〉〈m|+h.c.)

+a
∑
l,m

[F +Fω cos(ωt− 2παl)]|l,m〉m〈l,m|. (4)

Repeating the above arguments for the 1D lattice it is easy
to show that this setup realizes the effective Hamiltonian

H̃ = −Jx
2

∑
l

(|l+1,m〉〈l,m|+h.c.)

− J̃y
2

∑
m

(|l,m+1〉〈m|ei2παl+h.c.), (5)

which coincides with the tight-binding Hamiltonian of a
charged particle subject to a magnetic field3.
To check validity of the approximation involved in the

transition from (4) to (5) we simulate the dynamics of
both systems for a finite lattice size, 1� l,m�L, periodic
boundary conditions, and uniform initial wave function,
|Ψ(t= 0)〉=∑l,m ψl,m|l,m〉, ψl,m = 1/L. It is easy to show
that in this case the wave function remains uniform
along the y-direction. Thus, following ref. [8], we consider
the quantity nl(t) =

∑
m |ψl,m(t)|2. Time evolution of the

density nl(t) calculated on the basis of eq. (5) for Jx =

J̃y = 0.4 and α= 1/6, is shown in the right panel in fig. 1.
It is seen that the density develops a periodic pattern with
the spatial period given by 1/α and characteristic time
period defined by the cyclotron frequency ωc = 2παJ/�.
The left panel in fig. 1 shows the dynamics of the system
(4) for the same α= 1/6 and Jx = 0.4, and the other

parameters adjusted to have J̃y = Jx , namely, F = 1,
Fω = 0.4085F , and Jy = 2. A comparison of these results
indicates that the suggested setup indeed introduces an
effective magnetic field with the magnitude defined by
the phase gradient of the driving force. We note that to
observe a difference between the figures we intentionally
choose a relatively small F —for a larger F the figures
would be indistinguishable.

3For a charged partical the parameter α= eBa2/hc, where e is
the charge and B the magnetic-field magnitude.
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Fig. 1: Dynamic of the driven system (4), left, as compared
to the dynamic of the effective system (5), right. Parameters

are Jx = 0.4, Jy = 2, F = 1, Fω = 0.4085F (hence J̃y = 0.4), and
α= 1/6.

The question of how one can realize the required
driving in a laboratory experiment is in turn. A possible
scheme, which involves two crossing running-wave beams
with the wave vector k, is depicted in fig. 2. In this
scheme we assume that i) the laser frequencies are slightly
mismatched by ∆Ω, ii) the center of the 2D optical lattice
is shifted from the crossing point by the distance y0,
and iii) there is an additional homogeneous static field of
magnitude F0. Then, locally, the optical potential created
by two running-wave beams is given by the following
expression:

Hint = F0(y− y0)+ ∂V (r)

∂y
(y− y0) sin2(qx−∆Ωt), (6)

where V (r) is proportional to the envelope function for
the light intensity and q= k sin θ. In the tight-binding
approximation the potential (6) takes the form of the
driving term in the Hamiltonian (4) with F = F0+V

′/2,
Fω = V

′/2, ω= 2∆Ω, and the parameter α= (ka/2π)sin θ.

Different gauges and phase imprinting. – It is
worth stressing that the proposed setup (as well as
all previously suggested setups) realizes not so much a
magnetic field but the tight-binding Hamiltonian of a
charged particle corresponding to a given vector potential.
In particular, the Hamiltonian

H = −Jx
2

∑
l

(|l+1,m〉〈l,m|+h.c.)

−Jy
2

∑
m

(|l,m+1〉〈l,m|ei2παl+h.c.), (7)

which coincides with (5), refers to the Landau gauge
A=A(0, x, 0). If we choose the gauge A=A(−y, 0, 0), the

x

y

Fig. 2: Scheme of the proposed setup, which involves two
crossing running-wave beams. The location of the 2D optical
lattice created by two standing-wave laser beams (not shown)
is indicated by the circle. In this setup the magnitude of the
artificial magnetic field (the parameter α) is defined by the
angle between the running-wave beams.

Hamiltonian reads

H = −Jx
2

∑
l

(|l+1,m〉〈l,m|e−i2παm+h.c.)

−Jy
2

∑
m

(|l,m+1〉〈l,m|+h.c.), (8)

while for the symmetric gauge, A=A(−y/2, x/2, 0), one
has

H = −Jx
2

∑
l

(|l+1,m〉〈l,m|e−iπαm+h.c.)

−Jy
2

∑
m

(|l,m+1〉〈l,m|eiπαl+h.c.). (9)

Although these Hamiltonians have the same spectrum,
their eigenfuctions are different. Thus the Hamiltonians
(7)–(9) generate different dynamics. In the other words,
when evolving in time a given initial state, one gets differ-
ent interference patterns. These patterns are shown in
figs. 3(a)–(c), where we additionally assume the presence
of a harmonic confinement, i.e., the Hamiltonians are
augmented by the term

Hγ =
γ

2

∑
l,m

(l2+m2)|l,m〉〈l,m| . (10)

As the initial state we choose the ground state of the
system for α= 0, which for γ� 1 is well approximated by
the two-dimensional Gaussian G(l,m) of the width σ=
(J/γ)1/4. In the course of time the interference patterns
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Fig. 3: Panels (a)–(c): interference patterns at t= 10π for
Jx = Jy = 0.2, α= 1/6, and γ = 2 · 10−4, calculated on the basis
of the Hamiltonians (7), (8), and (9), respectively. Alternatively
the figures show the solution of the Schrödinger equation
with the Hamiltonian (7) for the initial state (11) with β = 0,
β = 2πα, and β = πα. Panel (d): interference pattern for α= 0
and β = π/6.

change with the characteristic time period defined by
the cyclotron frequency, recovering quasiperiodically the
initial state.
It is interesting to note that the interference patterns

(b), (c) can be reproduced by the system (7) alone, if the
initial state has the imprinted phase4,

ψl,m(t= 0) = e
−iβlmG(l,m), (11)

where β = 2πα and β = πα, respectively. Since phase
imprinting introduces an interference pattern by itself,
fig. 3(d) shows the case α= 0 and β = π/6 for the sake of
comparison. At first glance the depicted pattern resembles
that for α= 1/6. However, a more thorough inspection of
this pattern reveals the square symmetry of the lattice,
which becomes more transparent for larger times. Beside
this, for α= 0, the overall width of the packet oscillates
in time. This breathing of the packet width is absent if
α �= 0. It should be also mentioned that in this section we
focus on the short time dynamics for t� 2π/Ωγ , where
Ωγ is defined below in eq. (13). For these times the only
effect of the harmonic confinement is a modification of the
boundary conditions.
We come back to the original system (4). We have

checked that the system (4) well reproduces the interfer-
ence patterns depicted in fig. 3(a)–(c)), if condition (2)
is satisfied. If this condition is violated, the continuous
dynamics of the driven system (4) may not coincide with

4In a laboratory experiment phase imprinting (11) can be done
by exposing the system to a quadrupole potential for a given time.

dynamics of the target system (5), see footnote 5. However,
even in this case the discrete dynamics of (4) and (5) do
coincide6.

Cyclotron dynamics. – Observation of the interfer-
ence patterns discussed in the previous section requires
σ� 1/α. In this section we analyze the opposite situa-
tion, where the magnetic length 1/α is larger than the
wave packet width σ. In this case the wave function does
not develop an interference pattern. Nevertheless, one can
detect the artificial magnetic field by watching the evolu-
tion of the wave packet center of gravity, which is expected
to follow the classical trajectory of the system. Needless
to say that the classical trajectories (as well as the wave
packet dynamics associated with these trajectories) do not
depend on the gauge7.
The classical counterpart of the quantum tight-binding

Hamiltonian (7) reads [15]

Hcl =−Jx cos px−Jy cos(py +2παx)+ γ

2
(x2+ y2), (12)

where the last term takes into account the parabolic
confinement and we set the lattice period a to unity. As
initial conditions we consider px = py = 0, and (x, y) =
(x0, y0). In a laboratory experiment one realizes these
initial conditions by suddenly shifting the center of the
lattice by the distance r= (x0, y0) [16]. For α= 0 this
shift induces dipole oscillations, where the wave packet
center of gravity oscillates around the lattice origin with
the frequency Ωd =

√
Jγ/� [16,17]. Unlike these dipole

oscillations, for α �= 0 the classical trajectory encircles
the lattice origin (see fig. 4). Note that for α �= 0 the
Hamiltonian (12) is not separable and, hence, trajectories
may be regular or chaotic. Regular trajectories correspond
to the stability islands around the points, where arguments
of the cosine functions in (12) are multiple of 2π and where
one may use the effective mass approximation. These
trajectories encircle the center of the parabolic lattice in
the same direction (defined by the sign of α) with the
frequency

Ωγ = γ/2π�α . (13)

Chaotic trajectories have no well-defined encircling direc-
tion and change it in a random way. This observation
helps us to understand the result of numerical simula-
tion of the wave packet dynamic shown in the right panel
in fig. 4. Here the main part of the wave packet rotates
counterclockwise with the frequency (13), while a fraction

5One can see the continuous evolution of the original system for
two different values of the static force F = 1 (see movie file slow.avi)
and F = 10 (see movie file fast.avi) as compared with the evolution
of the target system (see movie file target.avi) for the parameters
of fig. 3(a).
6By discrete dynamics we mean the dynamics in terms of the

system evolution operator over the driving period.
7For plane lattices (no harmonic confinement) the wave packet

dynamics of the system has been studied in the recent paper [15]. It
is also shown there that the semiclassical regime of the wave packet
dynamics corresponds to the limit α→ 0, where the cyclotron radius
essentially exceeds the lattice period.
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Fig. 4: Left: 4 different classical trajectories for α= 1/6, Jx =
Jy = 1 and γ = 0.01. The computational time is t= 200π, which
approximately coincides with Tγ = 209.44π. Right: occupation
probabilities at t= 200π. Initial wave packet corresponds to
the ground state of the system for α= 0, shifted by 21 lattice
periods to the right.

of the packet goes in the opposite direction. Concluding
this section we note that the frequency (13) can also be
obtained quantum-mechanically —it corresponds to the
splitting ∆E = �Ωγ of the low-energy Landau levels of the
systems (7)–(9) caused by the parabolic term (10).

Conclusion. – We have proposed a simple setup for
introducing an artificial magnetic field for neutral atoms
in 2D optical lattices. This setup involves a low-frequency
driving of the optical lattice, which can be easily realized
by the same means which employed to create the lattice.
Note that such low-frequency driving does not affect the
electronic structure of the atom. This constitutes the
main difference of our setup from the previously suggested
setups, which involve Raman transitions between atomic
spin states to mimic the magnetic field [8–12,18–20].
In the second part of the paper we have discussed

two dynamic-based methods of detecting the (artifi-
cial) magnetic field. Importantly, we take into account
harmonic confinement which is inevitably present in a
laboratory experiment.
The first method is the observation of interference

patterns developed by the atomic wave function in the
course of time. This method assumes a highly coherent
initial state (a Bose-Einstein condensate) with the coher-
ence length exceeding the magnetic period. A variety of
interference patterns signaling the presence of the effec-
tive magnetic field is identified.
The second method does not require a coherent initial

state. It relies on the underlying classical dynamics of
an atom in a parabolic lattice. For vanishing magnetic
field these dynamics consist of dipole oscillations with
the frequency defined by the strength of the parabolic
confinement [17]. Unlike these dipole oscillations, for a
finite field the atom encircles the center of the parabolic
lattice with a frequency defined by both the strength of

the parabolic confinement and the magnetic-field magni-
tude. This “encircling frequency” is shown to be well seen
in the quantum wave packet dynamics. Thus the artificial
magnetic field can be measured by measuring the encir-
cling frequency.
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