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Abstract – This paper introduces a semi-analytical method for calculating the Hall conductivity
in the single-band approximation. The method goes beyond the linear response theory and thus,
it formally imposes no limitation on the electric-field magnitude. It is shown that, when the Bloch
frequency exceeds the cyclotron frequency, the Hall current decreases with increasing electric field.
The obtained results can be directly applied to the cold Bose atoms in a 2D optical lattice, where
the single-band approximation is well justified.

Copyright c© EPLA, 2011

Introduction. – Since the early works by Ohm in the
XIX century [1], and up to the seventies of the XX century,
all studies of conductivity in solid crystals have consid-
ered the weak-field regime, where the electric field can
be treated as a perturbation. This approach was actu-
ally justified, because for typical laboratory conditions the
Bloch frequency, which is proportional to the electric field,
is much smaller than the characteristic relaxation rate
in a crystal. This situation changed in 1970, when Esaki
and Tsu published their pioneering work [2] on the Ohm
current in semiconductor superlattices. It was predicted
that increasing the electric field the current would reach
some maximum value and then decrease —this phenom-
enon is known nowadays as negative differential conduc-
tivity (see eq. (1) below). Besides semiconductor super-
lattices [3–5], negative differential conductivity has been
also observed for cold neutral atoms in (quasi-) 1D optical
lattices subjected to a static force [6]. A great advantage
of the latter system over semiconductor superlattices is
that full experimental control of relaxation processes can
be achieved. Because of this control, with cold atoms one
can study both Hamiltonian and dissipative dynamics of
the carriers, i.e., Bloch oscillations and Ohmic current.
In this work we generalize the Esaki-Tsu approach to the

case of 2D superlattices in the so-called Hall configuration,
which implies the presence of a magnetic field. Needless
to say, in this case one has two field effects: one on
the longitudinal Ohm current and the other one on the
transverse Hall current. In the linear regime the problem of
Hall conductivity in 2D superlattices has been intensively

(a)E-mail: andrey.r.kolovsky@gmail.com

studied both theoretically and experimentally with respect
to quantum dot and antidot arrays: see, [7–10], to cite
just a few of some hundreds relevant papers. In the
present work we study theoretically the Hall conductivity
in the nonlinear regime. As a model we consider the
tight-binding Hamiltonian of a carrier in crossing electric
and magnetic fields. We note that besides semiconductor
systems this model can be also realized with colds atoms
in optical lattices, subjected to artificial electric and
magnetic fields [11–13].

Esaki-Tsu dependence for Ohmic current. – First
we recall the reader few results on ordinary conductivity
in the non-perturbative regime. To explain the negative
differential conductactivity in semiconductor superlattices
Esaki and Tsu used a kind of semiclassical approach, which
resulted in the following dependence for the Ohm current:

v

v0
= f(T )

ωB/γ

1+ (ωB/γ)2
, ωB =

edF

�
. (1)

In eq. (1) F is the electric field, d the lattice period,
e the electron charge, γ the relaxation constant, and the
pre-factor f(T ) accounts for the temperature dependence
of the current [f(0) = 1]. A microscopic derivation of the
Esaki-Tsu dependence (1) was given by Minot in 2004 [14].
In the cited paper this was obtained by solving the master
equation for the carriers one-particle density matrix ρ̂:

dρ̂

dt
=− i
�
[Ĥ, ρ̂]− γ(ρ̂− ρ̂0). (2)

In this equation Ĥ is the single-particle Hamiltonian of a
carrier in a biased superlattice, Ĥ = Ĥ0+ edF

∑
l |l〉l〈l|,
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Ĥ0 =−J2
∑
l(|l+1〉〈l|+h.c.), and ρ̂0 is the equilibrium

density matrix for F = 0, ρ̂0 ∼ exp(−Ĥ0/kBT ). The model
(2) results in eq. (1) with the correct temperature pre-
factor f(T ).
The above microscopic derivation of the Esaki-Tsu

dependence was revisited in ref. [15] with respect to the
problem of ordinary conductivity with cold atoms in 1D
optical lattices. A weak point of the master equation (2)
is that it is not in the Lindblad form. (Exclusions are the
cases of zero and infinite temperature, where it can be
rewritten in the Lindblad form.) Because of this drawback
it may give incorrect result for the velocity distribution
of the carriers [15]. However, it was confirmed that it
gives qualitatively (and even semi-quantitatively) correct
result for the mean velocity, i.e., the current. The master
equation (2) will be our theoretical framework in studying
the Hall conductivity in 2D lattices.

The model. – Now we consider a quantum particle in a
square 2D lattice. The particle is subjected to an in-plane
electric field F , aligned with the y-axis, and a magnetic
field B normal to the x-y plane. Using the tight-binding
approximation and the gauge A=B(−y, 0, 0) the particle
Hamiltonian reads

Ĥ = Ĥ0+ edF
∑
l,m

|l,m〉m〈l,m| , (3)

where

Ĥ0 = −Jx
2

∑
l,m

(|l+1,m〉〈l,m|ei2παm+h.c.)

−Jy
2

∑
l,m

(|l,m+1〉〈l,m|+h.c.) . (4)

The dimensionless parameter α in (4) is the Peierls phase,
which is given by number of magnetic flux quanta per
unit-cell area, α= eBd2/hc. Besides the Peierls phase α
and the Bloch frequency ωB = edF/� the other important
characteristics of the system are the carrier effective
mass,M∗ = d2(JxJy)1/2/�2, the cyclotron frequency, ωc =
eB/cM∗ = 2πα(JxJy)1/2/�, and the drift velocity v∗ =
ceF/B = d2eF/hα. We note that for a charged particle
(electron in a solid crystal) the Hamiltonian (4) can be
justified only in the limit of small α, where the cyclotron
radius of the classical orbit essentially exceeds the lattice
period. This is, however, not the case for cold atoms in
optical lattices, where the actual parameter of the system
is the Peierls phase but not the magnitude of a magnetic
field [11,12]. Hence, we impose no limitations on α and,
without any loss of generality, one may consider |α|� 1/2.
Our aim is to calculate the Hall (vx) and the Ohm (vy)

currents,

vx,y =Tr[v̂x,yρ̂st] , (5)

where ρ̂st is the stationary solution of the master equa-
tion (2) and v̂x,y the current operators: v̂x =− i� [Ĥ0, x̂]

with x̂= d
∑
l,m |l,m〉l〈l,m|, and for v̂y one has a similar

expression. Substituting (4) in the last equation we have

v̂x =
v
(x)
0

2i

∑
l,m

(|l+1,m〉〈l,m|ei2παm−h.c.) ,
v̂y =

v
(y)
0

2i

∑
l,m

(|l,m+1〉〈l,m| −h.c.) ,
(6)

where v
(x,y)
0 = dJx,y/�.

Landau-Stark states. – We shall perform calcula-
tions in the basis of the Landau-Stark states, which are
the eigenstates of the Hamiltonian (3). To simplify equa-
tions, we set the lattice period d and the Planck constant
� to unity from now on.
One finds the Landau-Stark states semi-analytically by

using the following ansatz [16,17]:

|Ψ〉=
∑
l,m

eiκl√
Lx
bm|l,m〉. (7)

In eq. (7) κ= 2πk/Lx is the quasimomentum, 0� κ< 2π,
Lx the lattice size in the x direction and we eventually
let Lx tend to infinity. Substituting (7) into the stationary
Schrödinger equation with the Hamiltonian (3), we reduce
it to the following 1D eiqenvalue problem:

−Jy
2
(bm+1+ bm−1)+ [Fm−Jx cos(2παm−κ)]bm=Ebm.

(8)

Equation (8) is a kind of the 1D Wannier-Stark problem
and can be easily solved numerically. Labeling the solu-
tion by the discrete index ν and scanning over the quasi-
momentum κ we find the energy spectrum E =Eν(κ) and
the Landau-Stark states |Ψν,κ〉.
The energy spectrum and properties of the Landau-

Stark states were studied in some detail in our recent
work [18] devoted to Hamiltonian dynamics of the
system (3). (Note that in ref. [18] we use different Landau
gauge with the vector potential A=B(0, x, 0).) As an
example, fig. 1 shows the energy spectrum for Jx = Jy = 1,
α= 1/10, and two different values of F . This figure is
aimed to illustrate a qualitative change in the spectrum,
which takes place around

Fcr = 2παJx . (9)

Namely, for F <Fcr the energy bands form a pattern
with straight lines. The Landau-Stark states belonging to
these lines are the transporting states, which transport
the quantum particle in orthogonal to the field direction
with the drift velocity v∗ = F/2πα [18].
Having the Landau-Stark states obtained we calcu-

late the current operators (6) in this basis. We have

〈Ψν,κ|v̂x,y|Ψν′,κ′〉= v(x,y)0 δ(κ−κ′)V (x,y)ν,ν′ (κ), where

V
(x)
ν,ν′(κ) =

∑
m

b(ν)m (κ)b
(ν′)
m (κ) sin(2παm−κ) (10)
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Fig. 1: (Colour on-line) A fragment of the energy spectrum of
the Landau-Stark states for Jx = Jy = 1, α= 1/10, and F = 1
(left) and F = 0.3 (right).

and

V
(y)
ν,ν′(κ) =

∑
m

[
b
(ν)
m+1(κ)− b(ν)m−1(κ)

]
b(ν

′)
m (κ) . (11)

Because of the presence of the δ-function in matrix
elements, eq. (5) for the mean currents simplifies to

vx,y =
1

2π

∫ 2π
0

dκTr[V (x,y)(κ)R(st)(κ)] , (12)

where R(st)ν,ν′(κ) = 〈Ψν,κ|ρ̂st|Ψν′,κ〉 is the κ-specific station-
ary density matrix,

R(st)ν,ν′(κ) =
γ

γ+ i[Eν′(κ)−Eν(κ)]R
(0)
ν,ν′(κ). (13)

Landau states. – Next we specify the equilibrium
density matrix ρ̂0. To have tractable results we shall
consider the case where only the lowest Landau level is
populated. Thus we assume

ρ̂0 =
1

N
N∑
j=1

|Φj〉〈Φj |, (14)

where N = αLyLx and |Φj〉 are the lowest energy Landau
states. The density matrix (14) corresponds to N fermi-
onic carriers at zero temperature. Alternative, it may be
considered as a density matrix of non-interacting bosons
at a finite temperature. We adopt the latter point of view,
where the relevant temperature interval is discussed below.
We would like to stress that our choice of the equilib-
rium density matrix is exclusively for the sake of easy
interpretation of numerical results. In principle, one may
consider an arbitrary ρ̂0. This way the reported results
can be generalized to arbitrary temperature and arbitrary
carrier statistics.

Similar to the case of Landau-Stark states, one finds
the Landau states semi-analytically by setting F = 0 in
eq. (8), which reduces it to the Harper problem [19].
Figure 2 shows the integrated density of states of the
Harper Hamiltonian for α= 1/20 and α= 1/10. The states
|Φj〉 in (14) are associated with the first step in the
integrated density of the height N = 80 and N = 160,
respectively. It is also easy to show that the length
of this step is approximately given by the cyclotron
energy �ωc = 2πα(JxJy)

1/2. Thus our condition on the
temperature reads kBT � �ωc. At the same time, to have
equal populations of the lowest Landau states, we assume
kBT �∆, where ∆ is the width of the lowest magnetic
band1.

Numerical procedure and results. – Our numerical
procedure is as follows. We fix Lx and Ly and calculate
the Landau and Landau-Stark states. The lattice size Lx
defines a discrete step for the quasimomentum, which
should be small enough to resolve main quasi-crossings
in fig. 1. The lattice size Ly is arbitrary yet, to reduce
the boundary effect when solving (8), Ly� 1/α. Next we
calculate the κ-specific matrices of the current operators
and the stationary density matrix (13). We note in passing
that for a rational α= r/q infinite matrices of the current
operators and the κ-specific density matrix obey the
translational symmetry,

V
(x,y)
ν′+q,ν+q(κ) = V

(x,y)
ν′,ν (κ) , R(st)ν′+q,ν+q(κ) =R(st)ν′,ν(κ),

(15)

which further facilitates the numerical procedure. Finally,
substituting these matrices into (12) and integrating over
the quasimomentum κ we calculate the Hall and Ohm
currents.
The left panel in fig. 3 shows the Hall current vx

as a function of the applied field F for α= 1/10 and
different values of the relaxation constant γ. We begin
with considering the case γ = 0 (thin solid line), which
corresponds to Hamiltonian dynamics of the carriers. As
shown in ref. [18], for the specified initial conditions
(population of the ground Landau level) a weak static
field transports the carriers in the orthogonal direction
with the drift velocity. Thus in the weak-field regime the
dependence vx = vx(F ) is approximated by vx = F/2πα.
An increase in the Hall current continues till F reaches
some critical value F ∗, where the function vx = vx(F ) has
a global maximum. An estimate for F ∗ is provided by
eq. (9), although we found F ∗ to be systematically larger
than Fcr by a numerical factor 1< z < 2 (see fig. 4 (left)).
With further growth of the electric field we enter the
regime of negative differential conductivity, where the Hall
current decreases with the increase of F .

1Here we use the notion of the magnetic band irrespectively of
the commensurability condition. In the other words, ∆ is the width
of the vertical part of a step in the integrated density of state, which
is essentially the same for a rational α and irrational α′ ≈ α.
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Fig. 2: (Colour on-line) Integrated density of states of the system (4) for α= 1/20 (left) and α= 1/10 (right). The other
parameters are Jx = Jy = 1 and Lx =Ly = 40. A piece of straight line indicates the energy interval �ωc.
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Fig. 3: (Colour on-line) The Hall (left) and Ohm (right) currents as functions of the electric field F for α= 1/10 and different
relaxation rates γ. The straight dash-dotted lines are predictions of the linear response theory. Additional thin solid line in the
left panel shows the Hall current for γ = 0, where the Ohm current vanishes.

As mentioned above, one finds an explanation for the
transition from positive to negative differential conduc-
tivity regimes in structural changes of the Landau-Stark
states, which take place around Fcr. Another explanation
is based on the Landau states picture. Namely, using the
Kramers-Hennenberger transformation an electric field is
seen as periodic driving of the system with the Bloch
frequency ωB = F . When ωB matches the energy gap
between the ground and the first magnetic band (i.e., the
length of the first step in fig. 2, approximately given by the
cyclotron frequency ωc), the driving induces transitions
between the Landau levels and we observe the local mini-
mum in the dependence vx = vx(F ), which always precedes
the global maximum.
The other (solid) lines in fig. 3 (left) show the dissipative

Hall current for γ = 0.1, 0.5, 1. It is seen that a finite
relaxation rate suppresses the Hall current and smoothes
the fine features of the dependence vx = vx(F ) for the non-
dissipative Hall current. In addition to fig. 3 (left) the left
panel in fig. 4 shows the Hall current for fixed γ = 0.1 and
different α. The vertical dashed lines in this figure indicate
the critical electric field (9) for each case.

The right panels in fig. 3 and fig. 4 show the Ohm
current. It is seen in fig. 3 that larger relaxation rates
suppress the Hall current but enhance the Ohm current.
In the limit γ→∞ the Hall current vanishes and the
dependence vy = vy(F ) for the Ohm current approaches
the Esaki-Tsu dependence (1). Alternatively, one recovers
the Esaki-Tsu result by considering the limit α→ 0, see
fig. 4 (right). In fig. 3 and fig. 4 we also depict predictions
of the linear response theory, v= σF, where the off-
diagonal and diagonal elements of the conductivity tensor
are given by the Drude-type formulas

σxy =
1

γ

ωc/γ

1+ (ωc/γ)2
, σyy =

1

γ

1

1+ (ωc/γ)2
. (16)

Conclusions. – We considered the quantum particle
in a 2D lattice subject to (real or artificial) electric and
magnetic fields and calculated the Hall and Ohm currents
as functions of the electric-field magnitude. Although
the obtained dependence vx = vx(F ) for the Hall current
resembles the Esaki-Tsu dependence vy = vy(F ) for the
Ohm current in the absence of magnetic field, the physics
behind these two dependences is completely different.
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Fig. 4: (Colour on-line) The Hall (left) and Ohm (right) currents as functions of electric field F for γ = 0.1 and different α.
Additional thin solid line in the right panel shows the Ohm current for α= 0, where the Hall current vanishes.

Indeed, the Esaki-Tsu dependence for the Ohm current
appears due to an interplay between Bloch oscillations
and relaxation processes and the Ohm current vanishes
if γ = 0. Conversely, the Hall current in the transverse
direction takes place even in the absence of dissipation.
The actual reason for the Esaki-Tsu–like dependence for
the Hall current is a qualitative change in the structure of
the Landau-Stark states, which happens around Fcr. Note
that the condition F = Fcr means that the Bloch frequency
coincides with the cyclotron frequency. Thus the Esaki-
Tsu–like dependence for the Hall current is the result of
an interplay between Bloch and cyclotron oscillations but
not Bloch oscillations and relaxation processes.
Let us discuss possible candidates for a laboratory

experiment, where the depicted dependences could be
measured. As mentioned in the introductory section, it
can be a semiconductor quantum dot (antidot) array.
The main problem one encounters here is that the Fermi
energy of electrons in a typical dot array lies outside
the ground Bloch miniband and, hence, the single-band
approximation (which is used throughout the paper) may
be questioned. Beside this, in the semiconductor systems
the relaxation processes are mainly due to electron-phonon
interactions and, thus, the relaxation rate γ can be varied
only in relatively narrow interval.
Colds neutral atoms in an 2D optical lattice looks a

better candidate. Here the single-band approximation is
perfectly justified as soon as the optical lattice is deeper
than few recoil energies. Next, the dimensional static force
F (i.e., the Stark energy measured in units of the tunneling
energy J) can be set to very large values by simply
increasing the lattice depth. For example, for cesium atoms
in the gravitational field we have 5.8<F < 33.1 for the
lattice depth between 3 and 20 recoil energies. In addition,
the region of small F is reached by using the magnetic
levitation [20] to compensate, partially or completely, the
gravitational field. However, the main advantage of the
cold atoms system is a possibility to vary the relaxation
rate. This was demonstrated in the experiment [6], which
studies oscillations of spin polarized Fermi atoms in a

quasi-1D parabolic lattice in the presence of a buffer gas
of Bose atoms. Theoretical analysis of this setup [21,22]
results in the following expression for the relaxation
rate, Γ≈ 3n2U2/�J , where U is the on-site microscopic
interaction constant (proportional to the s-wave scattering
length of collisions between Bose and Fermi atoms) and
n the density of the buffer gas (the mean occupation
number of a lattice site). It follows from the displayed
equation that the relaxation rate can be adjusted to a
desired value either by varying the density of the buffer gas
or by changing the s-wave scattering length for example,
by means of the Feshbach resonance. Assuming n∼ 1
and U ∼ J , we obtain a dimensionless relaxation constant
γ = �Γ/J of the order of unity. Thus the dimensionless
numerical parameters used above perfectly fit the actual
physical parameters of the system.
Concluding the discussion we would like to stress that in

this work we do not addresss the quantum Hall effect. The
latter phenomenon occurs for fermionic carriers when the
magnetic field or the Fermi energy are varied. It would
be interesting to study the quantum Hall effect in the
non-perturbative regime, where the conductivity tensor
depends on the electric-field magnitude2. This problem
is reserved for future studies.

∗ ∗ ∗

This work was supported by Russian Foundation for
Basic Research, grant RFBR-10-02-00171-a.

REFERENCES

[1] Ohm G. S., Die galvanische Kette: mathematisch bear-
beitet (Riemann, Berlin) 1827.

[2] Esaki L. and Tsu R., IBM J. Res. Dev., 14 (1970)
61.

2With respect to quantum dots array this problem was addressed
earlier in ref. [23,24]. However, these papers analyze a different
model, where the starting point is Landau levels for free electron
gas with the electron mass substituted by the effective mass.

50002-p5



A. R. Kolovsky

[3] Sibille A., Palmier J. F., Minot C. and Mollot F.,
Appl. Phys. Lett., 54 (1989) 165.

[4] Sibille A., Palmier J. F., Wang H. and Mollot F.,
Phys. Rev. Lett., 64 (1990) 52.

[5] Rauch C., Strasser G., Unterrainer K., Boxleit-
ner W., Gornik E. and Wacker A., Phys. Rev. Lett.,
81 (1998) 3495.

[6] Ott H., de Mirandes E., Ferlaino F., Roati G.,
Modugno G. and Inguscio M., Phys. Rev. Lett., 92
(2004) 160601.

[7] Gerhards R. R., Weiss D. and von Klitzing K., Phys.
Rev. Lett., 62 (1989) 1173.

[8] Fleischmann R., Geisel T. and Ketzmerick R., Phys.
Rev. Lett., 68 (1992) 1367.

[9] Weiss D., Richter K., Vasiliadou E. and Liitjering
G., Surf. Sci., 305 (1994) 408.

[10] Ishizaka S., Nihey F., Nakamura K. and Sone J.,
Phys. Rev. B, 51 (1995) 9881.

[11] Jaksch D. and Zoller P., New J. Phys., 5 (2003) 56.
[12] Kolovsky A. R., EPL, 93 (2011) 20003.
[13] Lin Y.-J., Compton R. L., Jiménez-Garćıa K., Porto
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