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The band structure of the antiferromagnetic phase of La2Cu04 has been calculated in the 
generalized tight-binding approximation with consideration of the strong electron correlations in 
the CuO, layers. It has been shown that the magnetic moment of the sublattice forms as a 
result of redistribution of the partial spin-up and spin-down densities of states without splitting into 
energy sublevels. The quasiparticle dispersion law near the bottom of the conduction band is 
consistent with the result obtained in the t-J model. The changes in the photoemission and inverse 
photoemission spectra upon the transition from the paramagnetic phase to the 
antiferromagnetic phase have been predicted. The available experimental data on photoemission 
from the La2Cu04 valence band are in qualitative agreement with our results. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

There have been many attempts to eliminate the incon- 
sistencies between the band-theory results which predict a 
metallic ground state for systems like La2Cu04, Nd,Cu04, 
and YBa2Cu306 and the experimental data indicating the in- 
sulating character of the ground state of copper oxides. 

In fact, according to the band-structure calculations in 
Refs. 1 and 2, a tight-binding p-d-hybridized band has a 
nested Fermi surface. Such a system is unstable toward the 
formation of a spin-density-wave (SDW) state, giving rise to 
a metal-insulator tran~ition."~ A similar mechanism for a 
metal-insulator transition operates in many oxides and sul- 
fides of 3d  metals5 However, the question of the electronic 
structure of copper oxides stemming from the SDW phase 
has not been resolved, since the undoped copper oxides just 
mentioned remain insulators as the temperature rises, al- 
though the SDW phase is destroyed above the Ndel point and 
the system should pass into the metallic state. 

The idea that the nature of the insulating state of 
La2Cu04 is specified by strong electron correlations has be- 
come widely accepted. Under conditions under which the 
energy Ud of the intersite correlations in copper is large 
compared with the charge-transfer energy c d ,  i.e., 
Ud>S, the insulator gap E ,  is determined by the charge- 
transfer energy.6 Just such a mechanism for the formation of 
the insulator gap is postulated in the p -d  model of CuO, 
layers, which was proposed nearly simultaneously in Refs. 7 
and 8. Subsequent band-structure calculations of La2Cu04 
and Nd2Cu04 using the generalized tight-binding approxima- 
tion, which explicitly includes the strong electron correla- 
tions, confirmed that the main contribution to the insulator 
gap in the paramagnetic phase is made by the charge-transfer 
energy.9 svanel' arrived at the same conclusion as a result of 
a band-structure calculation of the antiferromagnetic phase 
of La2Cu04, using the density-functional formalism with 
consideration of the self-interaction. 

The present work is devoted to a band-structure calcula- 
tion of an undoped CuOz layer in the antiferromagnetic 
phase and its comparison with the structure in the paramag- 

netic phase. The hole dispersion laws and the density-of- 
states picture obviously change upon transition to the antifer- 
romagnetic phase, but how much the insulator gap varies is 
unclear at the onset. The fact that antiferromagnetic ordering 
can make a contribution to the gap is clear from the forego- 
ing discussion of spin-density waves. Spin-polaron narrow- 
ing of the conduction band, which causes a blue shift of the 
absorption edge, i.e., enlargement of the insulator gap upon 
transition to the antiferromagnetic phase, is also widely 
known for narrow-gap magnetic semiconductors." As will 
be shown below, narrowing of the conduction band also oc- 
curs in our case, but the magnitude of the effect is strongly 
dependent on the state of the magnetic system. If it is as- 
sumed that the spins are classical, i.e., (SZ)=S=  112, hop- 
ping between neighboring cells is strictly forbidden and the 
narrowing of the band reaches a magnitude of the order of 
100%. However, consideration of the zero-point quantum 
fluctuations leads to a half-width of the conduction band 
equal to Z( t (&,  where Z is the number of nearest neigh- 
bors, (tl is the effective hopping integral, and tio is the con- 
centration of magnons at T=O. As a result, the antiferromag- 
netic contribution to the insulator gap is suppressed, and in 
layered copper oxides, where the value of no is small due to 
their quasi-two-dimensional nature, the shift of the band 
edge upon antiferromagnetic ordering amounts to a few per- 
cent. 

The density-of-states picture near the gap edges varies 
more strongly. Upon the transition from the paramagnetic 
phase to the antiferromagnetic phase, the peak in the density 
of states at the bottom of the empty conduction band narrows 
and its intensity increases, while the peak near the top of the 
valence band weakens. These changes should be manifested 
in the photoemission and inverse photoemission spectra of 
La2Cu04 as the temperature is varied. Such changes in the 
photoemission spectra were, in fact, discovered by Takahashi 
et a1.,l2 and our results are in qualitative agreement with the 
data in their paper. 
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2. MANY-ELECTRON MODEL OF COPPER OXIDES 

It follows from the body of photoemission data that the 
bottom of the conduction band and the valence band at a 
depth of 6-7 eV are formed by the oxygen p orbitals and the 
copper d orbitals, while the remaining filled states are deeper 
and the empty states are higher. Therefore, we restrict our- 
selves to a calculation of the hybridized p-d states of the 
CuO, layer, assuming that the effects of strong correlations 
are insignificant for the empty and filled bands and that these 
bands can be taken from standard band-structure calculations 
and simply superimposed on the p-d  band of the strongly 
correlated electrons. 

We write the Hamiltonian of the p and d electrons of the 
CuO, layer in the hole representation: 

where cp and E, are the one-particle energies of p and d 
holes, Up(Ud) and Vp(Vd) are the matrix elements of on-site 
Coulomb repulsion in the same and different oxygen (cop- 
per) orbitals, Jp(Jd) are the Hund exchange integrals, TAU 
and tap are the matrix elements for p-d  and p - p  hopping 
between nearest neighbors, VAa and JAa are the matrix ele- 
ments of the Coulomb and exchange interactions of copper- 
oxygen nearest-neighbor pairs, p is the chemical potential, u 
and u' are the projections of the hole spin, and nrA(nia) is 
the number operator for holes in a copper (oxygen) ion. In 
(1) the first two terms describe the on-site energies with con- 
sideration of the Hubbard correlations Ud and Up, the Cou- 
lomb interactions in different orbitals A, and the Hund ex- 
change. The last two terms in (1) describe the intersite p-d 

hopping and interactions and the p - p  hopping. The signifi- 
cant orbitals are: dX2-,2 (A=l) and dz2 (A=2) for copper, p, 
( a = l )  and p, (a=2) for oxygen. We introduce the notation 

Consideration of the crystal field results in splitting of the d 
and p hole levels: 

From the general properties of d orbitals we have 

3. BRIEF DESCRIPTION OF THE GENERALIZED 
TIGHT-BINDING APPROXIMATION 

The idea of calculating the band structure with exact 
calculation of the strong electron correlations was described 
in Ref. 13, and details of the calculation of dispersion laws 
and the one-particle density of states in the paramagnetic 
phase were given in Refs. 14 and 15, respectively. The es- 
sence of the method is a combination of accurate diagonal- 
ization of the many-electron Hamiltonian for small clusters 
followed by approximate description of the intercluster hop- 
ping and Coulomb interactions. 

The lattice of the CuO, layer is divided into two sublat- 
tices, whose points are CuO, clusters. The calculations are 
conveniently performed in the hole representation, and the 
p6d10p6 configuration with a number of holes nh=O is then 
the vacuum state 10). The eigenstates of a cluster are charac- 
terized by the number of holes n, the spin, the projection of 
the spin, and the orbital quantum numbers. For example, for 
n = 1 the eigenstates are mixtures of the p5d10p6 and p6d9p6 
configurations, and for n = 2  they are mixtures of the 
p5d10p5, p5d9p6, p6d8p6, and p4d10p6 configurations. Ac- 
tual calculations were performed in a six-band model, in 
which two orbitals were taken into account in each ion: 
dx2-,z and dzz in the copper ion and p, and p, in each 
oxygen ion. The states of the apical oxygen ions, which lie 
outside of the CuO, layer, are always occupied and deter- 
mine the strength of the crystal field, i.e, renormalize the 
value of the parameter ed .  We assumed that such 
renormalization has already been performed, and we shall 
not explicitly take into account the apical oxygen atoms. 

An essentially similar method for calculating the elec- 
tronic structure of the Cu02 layer was used in Ref. 16, where 
a simpler three-band p - d  model was considered and exact 
diagonalization was performed for a CuO, cluster. At first 
glance, our use of the division of the lattice into CuO, clus- 
ters violates the square symmetry, but this is not so. The unit 
cell in our division consists of two Cu02 clusters, i.e., a 
vertical cluster and a horizontal cluster (see Refs. 13-15) 
and has the required square symmetry despite the fact that an 
individual linear CuO, cluster does violate the symmetry. 
The situation is completely analogous to two magnetic sub- 
lattices in a Heisenberg antiferromagnet. In addition, such 
division is especially convenient for calculations of the anti- 
ferromagnetic phase. We note that after accurate diagonaliza- 
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FIG. 1. Diagram of the lower levels of  the multiplets with n =0, 1, 
1- 112) and 2 for sublattices A and B.  The lines with an arrow show tran- 

1-112) sitions with annihilation of a spin-up hole, and the numbers near 
them label these transitions. For the sake of simplicity, the excited 
levels for n = 1 and n =2 are not shown. 

tion of the cluster Hamiltonian, the expression for the com- 
plete Hamiltonian in the form of the sum of interacting 
clusters is exact, and all subsequent approximations relate 
only to the method for taking into account the intercluster 
hopping and interactions. 

The many-electron approach with a finite number of 
cluster states unavoidably leads to the algebra of Hubbard 
operators, if we wish to maintain the exact commutation re- 
lations for the Fermi and spin operators, as well as the local 
restrictions on the filling of the many-electron terms due to 
strong correlations. One-particle Fermi excitations in a clus- 
ter are transitions from an n-particle state to an (n+l)-  
particle state and have the energy 

where a is the projection of the spin, m labels different tran- 
sitions of the type J n ) - + J n +  1), and 11 and 12 are the al- 
lowed orbital states of the many-electron terms. 

Intercluster hopping results in the formation of the bands 
flAm,k). Due to the correlation effects the effective hopping 
integral i4t.13 Moreover, i e E , ,  whence it is clear that un- 
doped CuO, layers are far from the Mott insulator-metal 
transition. In this case the inclusion of intercluster hopping 
can be described in the "Hubbard I" approximation (which 
is equivalent to the Hartree-Fock approximation in the dia- 
gram technique for Hubbard operators17), whose corrections 
contain the small parameter ilE, and can be calculated using 
the diagram technique for Hubbard operators (X). 

We note that the bands appearing under our approach are 
bands of quasiparticles, whose statistics do not coincide in 
the general case with Fermi statistics or with Bose statistics 
and are determined by complex commutation relations for 
Hubbard operators. The number of states in each band can be 
fractional and depends on the concentration of electrons. In 
particular, with consideration of the spin, each band for an 
undoped CuOz layer with a number of holes per molecule 
nh= 1 contains only one state, rather than the two states ob- 
served for free electrons. This property is often ascribed to 
spinless fermions (holons), although the situation is more 
complicated, since spin degeneration is conserved in our ap- 
proach in both the paramagnetic and antiferromagnetic 
phases. 

4. SPECIAL FEATURES OF THE CALCULATION FOR THE 
ANTIFERROMAGNETIC PHASE 

In higher-order perturbation theory with respect to i lE, 
in the undoped case, in which the number of holes in the 
system coincides with the number of CuO, clusters, hopping 
is known to result in an effective Heisenberg Hamiltonian 
with antiferromagnetic exchange J,. In principle, Jo can be 
calculated on the basis of calculations of the band structure 
in the paramagnetic phase, but due to the large number of 
participating virtual processes this calculation is a problem in 
its own right, which is beyond the scope of the present work. 

We assume that Jo is known: Jo-0.1 eV.ls In the anti- 
ferromagnetic phase the molecular exchange field hi= Jo(Sf) 
splits the local levels R,,(i,m): 

Here the subscript i labels sublattices 1 and 2, (Sf)=(SZ), 
and (S;)= -(SZ). The method developed in Refs. 13-15 to 
calculate the band structure and density of states of Fermi 
quasiparticles is easily generalized to the case of the antifer- 
romagnetic phase. Let X r  and Y; be the Fourier transforms 
of the Hubbard operators in sublattices 1 and 2. We define 
the two-sublattice Green's function 

The zeroth (intracluster) Green's functions equal 

where F,(i,m) are end factors,17 which equal 

In the Hartree-Fock approximation with respect to hopping, 
the inverse Green's function (3) equals 

A A D - ~ = D - ~ - A - B ,  o ( 5 )  

where the matricesi and B describe p-d and p-p hopping. 
Their explicit forms were presented in Refs. 14 and 15 and 
are not reproduced here in view of their cumbersomeness. 
The main details of the motion of a hole on the background 
of an antiferromagnetic matrix are associated with the varia- 
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TABLE I. Occupation numbers of lower cluster levels. 

tion of the local occupation numbers of the one- and two- 
hole terms, through which the end factors are expressed, 
rather than with the exchange splitting (2). Figure 1 shows 
the lower sublevels for each of the subspaces of the Hilbert 
space with a different number of holes per cluster n=O, 1, 
and 2. The lines with an arrow depict various Fermi transi- 
tions with annihilation of a hole with spin up. The total num- 
ber of such transitions having nonzero end factors for each 
sublattice in our problem equals 28. 

The end factors, which, according to (4), are equal to the 
sum of the occupation numbers of the initial and final states, 
are found self-consistently together with the solution of the 
equation for the chemical potential 

and for the magnetic moment of the sublattice (Sf). Here nh 
is the number of holes per formula unit, which equals 
nh = 1 + x  for systems of the La2-,SrXCuO4 type. According 
to (6), the ground one-particle term for p-type systems is 
filled with a probability 1-x, and the two-particle state is 
filled with a probability x. We find (SZ) within each subspace 
with a fixed occupation number from the solution of the 
Heisenberg model: with S = 112 for n = 1 and S = 1 for n =2. 
Here it is convenient to utilize the formulation of the Heisen- 
berg model in the Hubbard-operator representation,19 which 
makes it possible to find at once the occupation numbers of 
the different spin sublevels along with (SZ). The results of 

Sublattice B 

(I  - x)al 
( 1 - x ) ( l - a l )  

XU: 

x a2 ( l - a* )  
.c(l - a d  

i ! i l l l  . . . . . ,  
I . . . . ,  

. . . . . .  : . a  . . . .  I ,  

Sublattice A 
1 - 1 a )  
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s ( l - a z )  
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xa: 

State 

. J 
I I I . . .  
j l !  

4 

. . 1  
. . I  :- 
I d  
I * '  . I 

I 

n = l  
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the calculations are presented in Table I, where a and a 2  are 
the temperature-dependent concentrations of magnons for 
S = 112 and S = 1, respectively: 

+ 2 
- 2  

I +  
11.0) 

11.-1) 
5. BAND STRUCTURE IN THE ANTIFERROMAGNETIC 
PHASE 

The results of the solution of the dispersion equation 

det l l~o '-A-~II=O (8) 

are presented in Figs. 2-4 for the undoped case, x=O. The 
set of model parameters corresponding to La2Cu04 from 
Ref. 9 was used: 

ud=up=oo ,  vd=4.5,  vp=3 ,  Vpd=0.6, 

Jd=Jp=0.5 ,  JPdz0.2,  Tpd=l ,  

tPp=0.2, S=2,  Ad=1.5, Ap=0.8. 

The energy is taken in the hole representation; therefore, the 
valence band lies above the conduction band. The level from 
which the hole energy is measured is ed=O The density of 
states for the paramagnetic phase of La2Cu04 was calculated 
with the same set of parameters as in Ref. 15. We note that 
the hole spectrum is spin-degenerate. The lower Hubbard 
bands R:(l,k) (there are two of them due to the two- 
sublattice structure) with m = l  form mainly as a result of 
10)-+ll,u) transitions. If only the intraband hopping is left in 
matrices A and B, it is easy to obtain the analytic expression 

R:( l ,k)=R(l)  

+ J J ~ ( s ~ ) ~ +  ~ : ~ ~ ( k ) ~ , ( l , l ) F , ( 2 , 1 ) .  (9) 

Here TI = Tpdu ~/f i  = 2 Tid/ V, and 

y(k) = 2(cos kxa +cos kya), 

FIG. 2. Hole band structure in the paramagnetic state of an un- 
doped CuO, layer. The solid lines are described by Eq. (11). 
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FIG. 3. Hole band structure in the antiferromagnetic state of an 
undoped CuO, layer with (Sz) =1/2 .  

where a  is the lattice constant and the coefficients u  and v  f l : ( l , k ) = f l ( l )  
define the wave function of the n = l  ground state term 

I1,a)=~IO,d~2-~2(+,0)-~(lp~a,o,o) + T ~ ~ ( k ) a l ( l - a 1 ) .  

+ 1 0 , O , p x ~ ) ) l ~ ,  (11) 
and are given by the expressions 

This spectrum is depicted by the solid lines in Figs. 2-4. It is 
seen that the contribution of interband transitions is, in fact, 

u ~ = I - u ~ ,  v 2 = ~ 2 + 8 ~ ; d .  
small and basically reduces to a small constant shift. 

The number of states in each Hubbard band is deter- 
The product of the occupation numbers in the different sub- 

mined by the end factor, and in the paramagnetic phase for 
lattices, the bands (11) we have F(1)=1/2 .  In the antiferromagnetic 

~,(1,1)~,(2,1)=(~+2a(S~))(~-2a(S~))=~-(~~)~, phase it depends on the magnetization, but the sum equals 

(10) 
F u ( 1 , 1 ) + F u ( 2 , 1 ) = 1 .  

does not depend on the projection of the spin and is deter- - - 
mined by the concentration of magnons. As a result, for the With consideration of the spin, the total number of states in 
spectrum of the lower Hubbard band we obtain the bands (11) equals two, which equals the number of holes 

. i . * . . . . . . . . . .  . . . . , , , , : : ;  i ; ;  i ; ; ; ; : ;  
j i ! , i i i i ~ ~ i ~ j i i i i ! i ~ ~  . . . . . . .  , , 

: ' . . . . . , . . . . I . . . : :  c : : .  . . . , . : ; : . . . , . . . . .  . . . . . .  . . 
. . , . : : , , : : :  t : : .  a : .  

: j ; ; t , , , m 8 , , , ! ! : I ! , "  I . .  

. . . l  

I - . . , . . .  

FIG. 4. Hole band structure in the antiferromagnetic state of an 
undoped CuO, layer with (Sz)=0.22.  
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FIG. 5. Hole density of states in an undoped 
CuOl layer. The dashed line corresponds to the 
paramagnetic phase, the solid line corresponds 
to the antiferromagnetic phase with (Sz)=1/2, 
and the dotted line corresponds the antiferro- 
magnetic phase with (Sz )  =0.22. 

in the unit cell containing two CuO, clusters when x=O. 
Thus, the lower bands Cl,'(l,k) are completely filled, since 
these bands correspond to empty bands in the electronic rep- 
resentation, and the Fermi level lies in the insulator gap. 

We consider two possible descriptions of the antiferro- 
magnetic phase: in the mean-field approximation, where 
(SZ) = 112 (Fig. 3), and with consideration of the zero-point 
quantum fluctuations (Fig. 4). The value (SZ)=0.22 in the 
latter case was previously obtained in Ref. 14 using the spin- 
wave theory of a quasi-two-dimensional Heisenberg antifer- 
romagnet with a ratio of interplanar exchange to intraplanar 
exchange J , / J , =  loV5, which corresponds to layered copper 
oxides.18 A similar value (SZ)=0.3 was obtained for a two- 
dimensional Heisenberg antiferromagnet with S = 112 using 
linear spin-wave theory in Ref. 20, where a comparison with 
the results of exact numerical calculations was made and it 
was shown that the corrections to the results of linear spin- 
wave theory are small. 

In our approach the calculation of the hole density of 
states is more tedious than the calculation of the spectrum, 
since it requires knowledge of the entire Green's function in 
(3), rather than only its pole. This problem was solved for the 
paramagnetic phase in Ref. 16, and generalization to the an- 
tiferromagnetic phase requires, as in the case of the spec- 
trum, consideration of the variation of the occupation num- 
bers due to the exchange splitting of the levels flJi,rn) (2). 
The final expression for the hole density of states has the 
form 

+D;?(~ ,E  + i s ) ] ,  (12) 

where y,(rn) are the Clebsch-Gordan coefficients, which 
give a representation of the one-electron operator afAu in 
terms of the Hubbard operators X ; f ,  (see Refs. 14 and 15). 

The density of states is presented in Fig. 5 for different val- 
ues of the magnetic moment of the sublattice. 

6. CALCULATION OF THE MAGNETIZATION OF A 
SUBLAlTlCE 

In the antiferromagnetic phase the band structure and the 
density of states are spin-degenerate. However, the sublattice 
density of states can be determined for a given spin: 

which depends on the projection of the spin. Clearly, 
NB,  - ,(E) =NA, , (E) .  The partial spin densities of states 
N +  = N A , +  + NB,-  and N -  = N A ,  - + NB,+ are shown in Fig. 
6 for three values of (Sz), which are equal to 0.5, 0.22, and 
0.10, respectively. We note that in the Hubbard model the 
density of states N -  for the lower Hubbard band would be 
equal to zero when (SZ)=0.5. In our case N _ #  0, although it 
is small. This is attributed to the weak covalent mixing of the 
oxygen p states with the lower Hubbard band, which reduces 
the magnetic moment at the copper atom in comparison with 
the nominal value in the Heisenberg model by about 15%.14 
We stress that in the many-electron approach developed here, 
the formation of the magnetic moment is due to redistribu- 
tion of the occupation numbers of the spin sublevels, rather 
then to the large splitting of the spin subbands obtained in 
the one-electron approach. 

The difference between the spin densities of states for 
the valence band is more complicated: both variation of N +  
and N -  and splitting of the maxima of N +  and N -  occur 
near the top of the band. The narrow peak in the deeper part 
of the valence band with E =3.5 eV, which redistributes its 
intensity most strongly upon antiferromagnetic ordering, is 
associated with the copper d,2 states. Consideration of the 
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FIG. 6. Intralattice density of states for (Sz) =0.5 (a), 0.22 (b), and 0.1 (c) .  
Solid line-spin up, dotted line-spin down, dashed line-paramagnetic 
phase. 

quantum fluctuations (Fig. 6b) preserves the picture just de- 
scribed as a whole, causing only quantitative changes. 

We have hitherto calculated ( S z )  self-consistently in the 
Heisenberg model. Knowing the spin density of states, we 
can calculate 

which gives 0.42, 0.26, and 0.12, respectively, for cases a, b, 
and c in Fig. 6. The agreement between the results of the 
band and localized approaches is adequate. 

The density of states in Fig. 6c illustrates the influence 
of the temperature dependence of the magnetization of the 
sublattice on the band structure. As is clear from Fig. 1, as 
the excited terms are filled with increasing temperature, the 
spin sublevels of each multiplet are primarily populated, i.e. 
(SZ) varies. The remaining temperature corrections play a far 
lesser role, since they are exponentially small. 

A similar picture of the formation of the magnetic mo- 
ment in antiferromagnetic oxides of 3 d  metals was obtained 
in Ref. 21. At the same time, calculations using the density- 
functional formalism, even with consideration of corrections 
for the self-interaction, which ensure an insulating ground 
state, give a gap and a magnetic moment due to the large 
splitting of the spin subbands.'' Conclusions regarding the 
formation of a magnetic moment due to redistribution of spin 
densities of states without significant splitting into energy 
sublevels were previously drawn in the many-electron theory 
of magnetic semiconductors for chromium chalcogenide 
spinels22 and europium m o n o ~ h a l c o ~ e n i d e s . ~ ~  

7. COMPARISON WITH DATA FROM PHOTOELECTRON 
SPECTROSCOPY 

As is seen from Fig. 5, the density of states of the va- 
lence band varies differently upon the transition from the 
paramagnetic phase to the antiferromagnetic phase, depend- 
ing on the energy. Peak A. near the top of the band with 
Eo=2  eV weakens and shifts slightly toward smaller ener- 
gies, while peak A, with E = 3  eV, peak A2 with E2=3.6 eV, 
and peak A g  with E3=4.2 eV increase in intensity. 

These conclusions may be compared with the photo- 
emission spectra of La2Cu04 measured at T=300 K and 
T= 150 K . ' ~  Peak A, did not appear in the spectrum, appar- 
ently due to the small value of the matrix element of the 
dipole transition near the top of the band. Peaks A,, A ,, and 
A3 may be correlated with peak A,  with a width of -1 eV in 
Ref. 12, whose intensity decreased with increasing tempera- 
ture. Such behavior is consistent with our results. The higher- 
energy peaks with binding energies of 5 eV or more cannot 
be discussed in our model, since the copper t2,  state^,^ which 
are not taken into account in the present calculation using a 
six-band model, lie 4 eV below the top of the valence band. 

According to our calculations, the density of states peak 
near the bottom of the conduction band decreases in intensity 
and broadens as the temperature decreases. The same varia- 
tions should be observed in the inverse photoemission spec- 
tra. Unfortunately, we do not know of any data on the tem- 
perature dependence of these spectra for undoped La2Cu04. 

8. DISCUSSION OF THE RESULTS OF THE BAND- 
STRUCTURE CALCULATIONS 

The problem of the motion of a hole on the background 
of an antiferromagnetic lattice is a spin polaron problem, and 
this problem has been solved for Cu02 layers by many in- 
vestigators in simpler r n o d e l ~ . ~ ~ - ~ ~  At first glance, it follows 
from Eq. (2) that we describe the interaction of a carrier with 
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a spin lattice in the mean-field approximation and ignore the 
spin-polaron effects. This would also be the case for ordinary 
bands of free electrons, for which the numerator of the 
Green's function is always equal to unity. In our case the 
variation of the end factors (the residues of the Green's func- 
tion) induced by the splitting (2), rather than the splitting 
itself, has the main influence on the electronic structure. 
These factors are calculated using exact diagonalization of 
the cluster, as a result of which all local spin-flip processes 
are taken into account. A similar calculation for the narrow- 
band s-d model with exact consideration of the local ex- 
change of the carrier and the lattice spin28 demonstrated cor- 
respondence with the results of the traditional variational 
description of a spin polaronll in an antiferromagnetic semi- 
conductor. 

Let us compare the band structure in the paramagnetic 
and antiferromagnetic phases. The dispersion law of the va- 
lence band, which consists of a large number of narrow hole 
upper Hubbard bands, changes near the band edge. Redistri- 
bution of the intensities of the narrow density-of-states peaks 
occurs in the depth of the valence band. The conduction band 
undergoes greater changes. In the mean-field approximation 
for the magnetization, the lower Hubbard bands narrow dras- 
tically (see Fig. 3), and a large shift AE of the bottom of the 
conduction band appears as a consequence. The antiferro- 
magnetic contribution to the insulator gap equals AE=0.5 
eV. At the same time, consideration of the zero-point quan- 
tum fluctuations largely restores the dispersion of the states 
near the bottom of the conduction band and the top of the 
valence band, approximating it to that for the paramagnetic 
phase (compare Fig. 2 and Fig. 4). The densities of states 
continue to differ in intensity, since the end factors for the 
two lowest Hubbard bands differ from one another and from 
the paramagnetic value. 

As is seen from Fig. 5, consideration of the spin fluctua- 
tions almost completely suppresses the antiferromagnetic 
contribution AE to the insulator gap. The reason for the sup- 
pression of the spin-polaron narrowing becomes clear from 
an analysis of Eq. (11). The band edge in the paramagnetic 
phase is 

In the antiferromagnetic phase the edge of the same band is 

In the absence of spin fluctuations, a large shift of the band 
edge AE =2Tl  -J,/2 is obtained, since for La2Cu04 we 
have 2T1-0.4 eV (Ref. 15) and Jo=O.l eV. According to 
Eqs. (9)-(ll), the effective hopping integral is 

In the paramagnetic phase, where the fluctuations are maxi- 
mal, Teff=0.5Tl. In the antiferromagnetic phase Tef, 
= Tl d m ,  which amounts to 0.45 T1 when a =0.28. 
The square-root dependence on the magnon concentration 
increases their contribution to the energy of the bottom of the 

conduction band and results in compensation of the spin- 
polaron narrowing of the band. This effect is appreciable 
even for cubic isotropic antiferromagnets with a small con- - 
centration of zero-point magnons. For example, for al=O.l 
we obtain Ja,(l-a,)= 0.3, so that even such a small con- 
centration of zero-point magnons compensated 60% of the 
decrease in the effective hopping integral. Nevertheless, a 
phenomenon involving displacement of the band edge and 
associated displacement of the absorption edge is known in 
antiferromagnetic semiconductors." As follows from our 
work, there should be no displacement of the absorption 
band for La2Cu04 due to the large contribution of the zero- 
point fluctuations. 

A conclusion that hole hopping is caused by spin fluc- 
tuations was previously drawn in the context of the t-J 

This circumstance distinguishes a spin polaron in a 
system with strong electron correlations from an ordinary 
polaron and a spin polaron in systems with weak correla- 
tions, where there is a priming kinetic energy in the absence 
of phonons or magnons. 

To understand the degree of applicability of our calcula- 
tions in the Hubbard I approximation to intercluster hopping, 
we compare the results with data from the exact diagonaliza- 
tion of small clusters using the Lanczos algorithm for the 
Hubbard model,30 the t-J and the three-band p-d 
model.31 The quasiparticle dispersion law was discussed in 
all of these studies. A comparison of perturbation theory for 
J < t  with the exact results in the t-J model reveals that the 
corrections to the peaks are Similarly, it was shown 
in the Hubbard model in the undoped case that the spectral 
density can be described in the mean-field (spin-density- 
wave) theory with self-consistent calculation of the magne- 
tization of the sublattice in spin-wave theory. 

The expression obtained for the dispersion law of a spin 
polaron in the t-J model is26,27,32-35 

= t2 cos k,a cos kya + t3(cos 2k,a + cos 2kya) + .Go, 

which corresponds to the hopping of a free particle between 
second and third nearest neighbors in the tight-binding ap- 
proximation. It follows from our Eq. (11) that although the 
region of k space where .).(k) is small is close to the Fermi 
surface of free electrons in the tight-binding approximation, 
the expansion of (11) in the small parameter Teff.).(k)/J,(Sz) 
in this region gives the quasiparticle dispersion law 

which coincides with (16) with respect to the character of the 
dispersion. At the same time, dispersion of the type 
Jy2(k+ const) is obtained far from the Fermi surface of free 
electrons both in our case and in the Hubbard model.30 As is 
seen from Fig. 4, the bottom of the hole upper Hubbard band 
(the top of the electron valence band) is located near the 
point (.rr/2,7~/2) of the Brillouin zone on the T M  [1,1] axis, in 
accordance with the results in Ref. 36. 
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Thus, a comparison of our approximate results and the 
results from Refs. 29 and 30 with the data from accurate 
numerical diagonalization of small  cluster^^^'^' reveals that if 
the mean-field theory takes into account the quantum spin 
fluctuations, the higher corrections to it are insignificant. The 
physical reason for this, as was noted above, is that the 
La,Cu04 system is far from the Mott-Hubbard transition 
point and there is a small parameter TeEIEg. A similar con- 
clusion was previously drawn in Ref. 37. 

9. CONCLUSIONS 

A more exact theory should employ a nonlinear theory 
of spin waves in a quasi-two-dimensional antiferromagnet, 
rather than a linearized approach. However, we are confident 
that such a refinement will result only in quantitative 
changes. In fact, the concentration of zero-point magnons 
will vary, but will still be of the same order. The qualitative 
aspect of the influence of zero-point magnons on the dis- 
placement of the band edge defined by Eq. (15) does not 
depend on the concentration of magnons. 

The next remark refers to the role of doping by holes. 
The principal change in the density of states upon doping is 
associated with the appearance of in-gap states, but this ef- 
fect is not associated with antiferromagnetic ordering and 
will, therefore, not be discussed here. We shall likewise not 
discuss the suppression of antiferromagnetism upon doping 
by electrons or holes. This question was considered using 
accurate diagonalization of the Hamiltonian of Emery's 
model in Ref. 38. 

As for the spin-polaron narrowing of the band, the table 
of occupation numbers reveals that when x#O, 

Teff-  TI Jx+a,. 
The dependence T , ~ - T &  was previously obtained in the 
narrow-band s-d and in the t-J when the 
zero-point quantum fluctuations were disregarded. Since the 
minimal value for a cubic isotropic antiferromagnet is 
a ,=0.0675,~~ the contribution of the carriers to the width of 
the band is small when x<0.01. 

In conclusion we note that the generalized tight-binding 
approximation developed here permits calculation of the 
band structure of copper oxides with explicit consideration 
of the strong electron correlations in both the paramagnetic 
and antiferromagnetic phases. The dispersion law of the qua- 
siparticles (spin polarons and holons) for the hole lower 
Hubbard band changes only slightly upon transition from the 
paramagnetic phase to the antiferromagnetic phase. At the 
same time, the heights of the peaks in the density of states 
and in the photoelectron spectra vary more strongly. Some of 
the temperature changes in the photoelectron spectra pre- 
dicted in the present work are already known experimentally; 
others may be confirmed by photoemission and inverse pho- 
toemission investigations. 

We thank the Scientific Council for High-T, Supercon- 
ductivity for financially supporting the present research as 
part of the "Hubbard" project under Grant No. 93237. 

'L. F. Matheiss, Phys. Rev. Lett. 58, 1028 (1987). 
'w. E. Pickett, Rev. Mod. Phys. 61, 433 (1989). 
'L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela (Leningrad) 6, 2791 
(1964) [Sov. Phys. Solid State 6, 2219 (1965)]. 

4 ~ .  N. Kozlov and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 48, 1184 (1965) 
[Sov. Phys. JETP 21, 790 (1965)l. 
' R. 0 .  Zaitsev, E. V. Kuz'min, and S. G. Ovchinnikov, Usp. Fiz. Nauk 148, 
603 (1986) [Sov. Phys. Usp. 29, 322 (1986)l. 

6 ~ .  Zaanen, G. A. Sawatzky, and G. W. Allen, Phys. Rev. Lett. 55, 418 
(1985). 

7V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987); C. M. Varma, S. Schmitt- 
Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987). 

'YU. B. Gaididel and V. M. Loktev, Preprint ITF-87-127R, Kiev (1987); 
Yu. B. Gaididei and V. M. Loktev, Phys. Status Solidi B 147, 307 (1988). 

's. G. Ovchinnikov, Zh. Bksp. Teor. Fiz. 102, 127 (1992) [Sov. Phys. JETP 
75, 67 (1992)l. 

"A. Svane, Phys. Rev. Lett. 68, 1900 (1992). 
" E. L. Nagaev, Physics of Magnetic Semiconductors, Mir, Moscow (1983). 
"T. Takahashi, F. Maeda, H. Katayama-Yoshida et al., Phys. Rev. B 37, 

9788 (1988). 
"S. G. Ovchinnikov and I. S. Sandalov, Physica C (Amsterdam) 161, 607 

(1989). 
I4s. G. Ovchinnikov and 0. G. Petrakovskii, Sverkhprovodimost: Fiz., 

Khim., Tekh. 3, 2492 (1990) [Supercond., Phys. Chem. Technol. 3, 1709- 
(199011. 

"s. G. Ovchinnikov, Zh. Bksp. Teor. Fiz. 104, 3719 (1993) [JETP 77, 781 
(1993)l. 

16s. V. Lovtsov and V. Yu. Yushankhai, Physica C (Amsterdam) 179, 159 
(1991). 

"R. 0 .  Zaitsev, Zh. ~ k s ~ .  Teor. Fiz. 68, 207 (1975) [Sov. Phys. JETP 41, 
100 (1975)l. 

"YU. A. Izyumov, N. M. Plakida, and Yu. N. Skryabin, Usp. Fiz. Nauk 159, 
621 (1989) [Sov. Phys. Usp. 32, 1060 (1989)l. 

19v. V. Val'kov and S. G. Ovchinnikov, Teor. Mat. Fiz. 50, 466 (1982) 
[Theor. Math. Phys. 50, 306 (1982)l. 

"P. Horsch and W. von der Linden, Z. Phys. B 72, 181 (1988). 
W. Nolting, L. Haunert, and G. Borstel, Phys. Rev. B 46, 4426 (1992). 

"v. A. Gavrichkov, M. Sh. Erukhimov, S. G. Ovchinnikov, and I. S. 
~del 'man,  Zh. Eksp. Teor. Fiz. 90, 1275 (1986) [Sov. Phys. JETP 63,744 
(1986)l. 

23 W. Nolting, W. Borgiel, and G. Borstel, Phys. Rev. B 37, 7663 (1988). 
"F. C. Zang and T. M. Rice, Phys. Rev. B 37, 3759 (1988). 
25V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988). 
"L. M. Roth, Phys Rev. Lett. 60, 379 (1988). 
"A. F. Barabanov, R. 0. Kuzyan, L. A. Maksimov, and G. V. Uimin, 

Sverkhprovodimost: Fiz., Khim., Tekh. 3, 8 (1990) [Supercond., Phys. 
Chem. Technol. 3, 8 (1990)l. 

2 8 ~ .  G. Ovchinnikov, J. Phys. C 20, 933 (1987). 
"G. Martinez and P. Horsch, Phys. Rev. B 44, 317 (1991). 
3 0 ~ .  Dagotto, F. Ortolani, and D. Scalapino, Phys. Rev. B 46, 3183 (1992). 
3'Y. Ohta, K. Tsutsui, W. Koshibae et al. ,  Phys. Rev. B 46, 14022 (1992). 
"A. F. Barabanov, L. A. Maksimov, and G. V. Ulmin, JETP Lett. 47, 622 

(1988). 
33D. M. Frenkel, R. J. Gooding, B. I. Shraiman, and E. D. Siggia, Phys. Rev. 

B 41, 350 (1990). 
3 4 ~ .  J. Schmidt and Y. Kuramoto, Physica B (Amsterdam) 163, 443 (1990). 
3 5 ~ .  Eder and K. W. Becker, Z. Phys. B 79, 333 (1990). 
3 h ~ .  F. Barabanov, L. A. Maksimov, and L. E. Zhukov, Phys. Lett. A 181, 

325 (1993). 
3 7 ~ .  Ashkenazi and C. G. Kuper, Physica C (Amsterdam) 162-164, 767 

(1989). 
3 8 ~ .  F. Elesin, V. A. Kashurnikov, L. A. Openov, and A. I. Podlivaev, Zh. 

Eksp. Teor. Fiz. 99, 237 (1991) [Sov. Phys. JETP 72, 133 (1991)l. 
3'~. S. Sandalov and M. Richter, Phys. Rev. B 50, 12855 (1994). 
4 0 ~ ~  Fu-Cho, Dokl. Akad. Nauk SSSR 131,546 (1960) [Sov. Phys. Dokl. 5, 

321 (1960)l. 

Translated by P. Shelnitz 

459 JETP 80 (3), March 1995 S. G. Ovchinnikov 459 


