
ar
X

iv
:1

11
1.

04
71

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  2
 N

ov
 2

01
1

Kinematic formation of the pseudogap spectral properties in a spatially homogeneous

strongly correlated electron system

Valery V. Val’kov1,2, Alexander A. Golovnya1,3, and Maxim M. Korovushkin1,2
1L.V. Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
2Siberian Aerospace State University, 660014 Krasnoyarsk, Russia

3Siberian Federal University, 660074 Krasnoyarsk, Russia

(Dated: October 2, 2018)

It is shown that the kinematic interaction caused by the quasi-Fermi character of commutation
relations for operators of the atomic representation can induce pseudogap behavior of the spectral
characteristics of an ensemble of Hubbard fermions. Mathematically, the presence of the kinematic
interaction manifests itself in modification of the faithful representation of a single-particle Green’s
function of Hubbard fermions D(k, iωn), which involves, apart from self-energy operator ΣL(k, iωn),
strength operator P (k, iωn). It is important that the strength operator enters both the numerator
and the denominator of the exact expression for D(k, iωn). The kinematic interaction, therefore,
not only renormalizes the spectrum of elementary excitations but significantly affects their spectral
weight. It results in strong modulation of spectral intensity A(k, ω) occurring on a Fermi contour.
Calculations of the spectral properties for the t−J model in the one-loop approximation yield good
quantitative agreement with the ARPES data obtained on cuprate superconductors.

PACS numbers: 71.10.Fd, 71.18.+y, 71.27.+a, 74.40.-n, 74.72.Kf

I. INTRODUCTION

The normal phase of cuprate superconductors is char-
acterized by a number of intriguing properties that can-
not be described within the traditional Fermi liquid the-
ory. These are, first of all, the pseudogap behavior in
an undoped region1–3. It still has been unclear whether
this behavior is explained basing on the modified Fermi
liquid concept or requires building the ground state of a
new type4,5. In the phase diagram of cuprates, the region
of parameters corresponding to the pseudogap state bor-
ders on the region of the superconducting state. This fact
is often interpreted as resemblance of the formation of a
pseudogap and of Cooper instability. Since in many stud-
ies the nature of coupling in cuprate superconductors is
attributed to spin fluctuation processes, these processes
are considered to be the fundamental cause of the for-
mation of the pseudogap state. In recent years, study of
the interrelation between electron and spin subsystems
has become especially important for understanding the
formation of the pseudogap state and establishing the ef-
fect of pseudogap peculiarities of the spectral properties
on Cooper instability. This has been a subject of numer-
ous experimental and theoretical works on physics of the
strongly correlated systems.
The phenomenological concept of the formation of the

pseudogap state proposed in study6 uses the idea of the
formation of a quantum spin liquid following the scenario
of the resonance valence bond (RVB) method developed
by Anderson7. This approach allowed reproducing the
formation of a pseudogap, growing with decreasing dop-
ing level, near the antiferromagnetic Brillouin zone. This
process is accompanied by rearrangement of the large
Fermi surface experimentally observed in the optimal
doping region to the small Fermi or Luttinger pockets
arising in the undoped region. This model was success-

fully used in the description of the effect of the pseudogap
on certain properties observed in undoped cuprates, such
as electronic specific heat8, London penetration depth9,
superconducting gap10, electron density of states11, elec-
trical and heat conduction12, and anomalies of optical
conduction13. The model was also employed to interpret
the photoemission spectroscopic data (ARPES)14.
The pseudogap formation was also studied using nu-

merical calculations on the basis of exact diagonaliza-
tion15, the quantum Monte Carlo method16,17, and the
dynamic mean field theory (DMFT)18,19. The results
obtained were in satisfactory agreement with the exper-
imental data, specifically, the presence of a large Fermi
surface at optimal doping20 and modulation of spectral
intensity and reduction of the density of states at the
Fermi level at weak doping18,19,21.
Analysis of the spectral properties of cuprates is of-

ten based on the Hubbard model22 and its low-energy
version, i. e., the t − J model. Study of the Hubbard
model by the renormalization group method revealed de-
viation of its spectral properties from those described
within the theory of an ordinary Fermi liquid and a no-
ticeable decrease in the Fermi surface area23,24. The
features of the pseudogap state directly related to an-
tiferromagnetic spin fluctuations (SFs) were considered
in studies25,26 within the phenomenological spin-fermion
model27 and by phenomenological investigation of the
Hubbard model28. In study29, using the method of equa-
tions of motion31 and Mori’s technique of projection op-
erators32, the spectral functions and Fermi surface were
investigated in the framework of the t − J model. It
was shown that long-wavelength SFs govern the low-
frequency behavior of a system, leading to truncation
of a large Fermi surface, modulation of spectral inten-
sity, and a decrease in the density of states at the Fermi
level in the weak doping region. A microscopic theory
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for the electron spectrum of the CuO2 plane within the
Hubbard model was proposed in study30. In this study
the Dyson equation for the single-electron Greens func-
tion in terms of the Hubbard operators was derived and
solved self-consistently for the self-energy evaluated in
the noncrossing approximation. Electron scattering on
spin fluctuations induced by the kinematic interaction
was described by a dynamical spin susceptibility with a
continuous spectrum. At low doping, an arc-type Fermi
surface and a pseudogap in the spectral function close to
the Brillouin zone boundary was observed.
In a number of studies on microscopic investigation of

the spin-fluctuation nature of the pseudogap state, the
interaction between electrons and a spin density wave
was used as a mechanism of the spin-electron correla-
tion. The existence of such a wave was considered to
be an a priori specified property and its origin was not
discussed. Meanwhile, by now the existence of the spin
density wave in cuprate superconductors has not been
experimentally confirmed. In view of this, a reasonable
question arises concerning possible implementation of the
pseudogap phase at the interacting electron and spin de-
grees of freedom but with no use of the hypothesis of the
spin density wave existing in the system. To answer this
question, one should take into consideration the impor-
tant feature of strongly correlated systems, which include
high-temperature superconductors. As is known, in the
regime of strong correlations, the adequate description of
electron systems that takes into account Hubbard corre-
lations is based on the atomic representation33. In this
case, the operators employed in the theory do not satisfy
the commutation relations characteristic of the Fermi op-
erators, since commutation of two basis operators of the
atomic representation results in a basis operator and not
in a number

[Xpq
f , Xrs

m ]± = δfm(δqrX
ps
f ± δpsX

rq
f ). (1)

Physically, this feature of the commutation (kinematic)
relations between basis operators manifests itself (for in-
stance, in derivation of equations of motions or calcu-
lation of a scattering amplitude) as an additional inter-
action arising in a system. This interaction, with re-
gard to its nature, is named kinematic. The occurrence
of the kinematic interaction in Heisenberg ferromagnets
was mentioned by Dyson [33]. This interaction occurs in
them due to the noncommutative character of the SU(2)
algebra of spin operators. Taking into account the kine-
matic interaction, Dyson performed the correct calcula-
tion of a two-magnon scattering amplitude and obtained
valid temperature renormalizations for both the elemen-
tary excitation spectrum and the thermodynamic char-
acteristics [33].
In cuprate superconductors belonging to the Hubbard

strongly correlated systems, the kinematic interaction
manifests wider. Apart from renormalizing the proper-
ties of the normal phase, this interaction can be a mech-
anism of Cooper instability35. The kinematic interaction
originates from the fact that, in the regime of strong cor-

relations, the Hubbard model is adequately described on
the basis of the atomic representation. In this case, the
Hubbard operators are basis. For them, commutation
relations are more complex than those for spin opera-
tors, since they include both quasi-spin and quasi-Bose
operators. Commutation of two quasi-Fermi operators
results in a quasi-Bose operator expressed via the quasi-
spin operators and operators reflecting charge fluctua-
tions. Thus, the kinematic interaction in the systems of
interest couples Hubbard fermions with charge and spin
fluctuations.
The dynamic and kinematic interactions of Hubbard

fermions lead to renormalization of their energy spec-
trum. Therefore, the faithful representation for the
single-particle Green’s function of Hubbard fermions
D(k, iωn) involves, apart form self-energy operator
ΣL(k, iωn) caused by the dynamic interaction of Hub-
bard fermions, strength operator P (k, iωn) arising due
to the kinematic interaction of these fermions. It is im-
portant that P (k, iωn) enters both the numerator and
the denominator of the faithful representation for the
distinguished Green’s function. While the occurrence of
the strength operator in the denominator of D(k, iωn)
directly affects renormalization of the elementary excita-
tion spectrum, the occurrence of the strength operator in
the numerator of D(k, iωn) determines renormalization
of spectral intensity. This is of fundamental importance
for investigation of the spectral characteristics of strongly
correlated systems.
The above-mentioned coupling of the quasi-Fermi op-

erators of the atomic representation with the quasi-Bose
operators implies that, physically, the kinematic inter-
action reflects the presence of the interaction between
charge and spin degrees of freedom and between Fermi
and Bose excitations in a strongly correlated electron
system. Therefore, the calculation of contributions of
these interactions to renormalizations of energies of the
elementary excitations and their spectral intensities is re-
duced to the calculation of the self-energy ΣL(k, iωn) and
strength P (k, iωn) operators. This is the specific way of
theoretical study of the pseudogap phase in a spatially
homogeneous case. The present study is aimed at solving
this problem within the t− J model on the basis of the
diagram technique for Hubbard operators36,37. The key
point of the developed theory is that it uses the faith-
ful representation for the Matsubara Green’s function
D(k, iωn) via the self-energy ΣL(k, iωn) and strength
P (k, iωn) operators.
In Section II, using the modified Dyson equation for a

strongly correlated system, the correlation between the
spectral intensity and the strength and self-energy oper-
ators for the t− J model is established. Then, using the
diagram technique for Hubbard operators, contributions
to the strength and self-energy operators are calculated
in the one-loop approximation and the integral equation
for the correction to the strength operator is written. In
Section III, the choice of magnetic susceptibility entering
the integral equation kernels is discussed. In SectionIV,
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the results of the calculation of the Fermi excitation spec-
trum, spectral intensity, Fermi surface, and density of
electron states demonstrating the pseudogap behavior of
the system are reported. Section V presents the data for
the limiting case of strong electron correlations, which
allows obtaining relatively simple analytical expressions
for the energy of Fermi excitations and spectral intensity.
The kinematic mechanism of the pseudogap state forma-
tion is demonstrated in the microscopic scale. The final
section contains discussion of the results.

II. CORRELATION BETWEEN THE

SPECTRAL INTENSITY AND THE STRENGTH

AND SELF-ENERGY OPERATORS

The Hamiltonian of the t − J model in the atomic
representation is

Ĥ = Ĥt + ĤJ , (2)

Ĥt =
∑

fσ

(ε− µ)Xσσ
f +

∑

fmσ

tfmXσ0
f X0σ

m ,

ĤJ =
1

2

∑

fmσ

Jfm
(

Xσσ̄
f X σ̄σ

m −Xσσ
f X σ̄σ̄

m

)

,

where Xpq
f = |f, p〉〈f, q| are the Hubbard operators22 de-

scribing the transition of an ion in the f -th site from the
one-site state |f, q〉 to the state |f, p〉, ε is the energy of
one-electron one-ion state, µ is the chemical potential of
the system, σ = ±1/2 (σ̄ = −σ) is the spin moment
projection, tfm is the integral of electron hopping from
the m-th to f -th site, Jfm = 2t2fm/U is the exchange
integral, and U is the Hubbard repulsion parameter.
We calculate spectral intensity A(k, ω) with the use of

the diagram technique for Hubbard operators36,37, intro-
ducing the Matsubara Green’s function

D0σ,0σ(f, τ ; f
′, τ ′) = −〈Tτ X̃

0σ
f (τ)X̃σ0

f ′ (τ ′)〉 = (3)

=
T

N

∑

kωn

eik(f−f ′)−iωn(τ−τ ′)D0σ,0σ(k, iωn).

Here Tτ is the operator of Matsubara time ordering. In
Expression (3), the Hubbard operators are taken in the
Heisenberg representation with Matsubara time τ

X̃0σ
f (τ) = exp(τĤ)X0σ

f exp(−τĤ), 0 < τ <
1

T
, (4)

where T and Ĥ are the temperature and Hamiltonian of
the system, respectively.
Below, taking into account that the expression for the

Green’s function in the paraphase is independent of spin
polarization, we omit spin indices. An important feature
of the introduced functions is that D(k, iωn) decomposes
into the product of the propagator part and the strength
operator36

D(k, iωn) = G(k, iωn)P (k, iωn). (5)

Thus, it is easy to obtain the modified Dyson equation
for G(k, iωn)

(6)
The bold line in the equation corresponds to the total
propagator G(k, iωn) and the triangle with symbol P
denotes strength operator P (k, iωn). The circle with in-
scribed symbol ΣL corresponds to the Larkin-irreducible
self-energy operator ΣL(k, iωn)

38. The fine line with
the light (dark) arrow denotes the seed Green’s function
for a Hubbard fermion that corresponds to the analytical
expression

G0(iωm) =
1

iωm − ε+ µ
. (7)

The wavy lines with the light and dark arrows denote the
Fourier image of hopping integral tk. The total propa-
gator G(k, iωn) relates to the strength and self-energy
operators as37,39

G(k, iωn) =
1

iωm − ξ − tkP (k, iωn)− ΣL(k, iωn)
, (8)

where ξ = ε − µ. Making the analytical continuation
iωn → ω + iδ and introducing the real and imaginary
parts of the strength and self-energy operators

P (k, iωn) → P (k, ω + iδ) = P1(k, ω) + iP2(k, ω), (9)

ΣL(k, iωn) → ΣL(k, ω + iδ) = ΣL
1 (k, ω) + iΣL

2 (k, ω),

we arrive at

D(k, ω + iδ) =
P1(k, ω) + iP2(k, ω)

ω − ξ − Σ1(k, ω) + i
(

δ − Σ2(k, ω)
) .(10)

In this expression,

Σ1(k, ω) = tkP1(k, ω) + ΣL
1 (k, ω),

Σ2(k, ω) = tkP2(k, ω) + ΣL
2 (k, ω), (11)

the real and imaginary parts of the Dyson-irreducible
self-energy operator, respectively.
Using the representation for the retarded Green’s func-

tion (10), we find the spectral intensity

A(k, ω) = −
1

π
Im D(k, ω) =

= −
1

π

{

[

ω − ξ − ΣL
1 (k, ω)

]

· P2(k, ω)

[ω − ξ − Σ1(k, ω)]
2
+ [δ − Σ2(k, ω)]

2

−

[

δ − ΣL
2 (k, ω)

]

· P1(k, ω)

[ω − ξ − Σ1(k, ω)]
2
+ [δ − Σ2(k, ω)]

2

}

. (12)

This formula establishes the interrelation between the
spectral intensity A(k, ω) and the strength P (k, ω) and
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self-energy ΣL(k, ω) operators. Note that the denomi-
nator of Expression (12) includes the Dyson self-energy
operator, whereas the numerator includes only its Larkin-
irreducible part. This resulted from mutual reduction
of the numerator terms that are the product P1(k, ω) ·
P2(k, ω). Our calculations demonstrate that the presence
of non-zero imaginary part P2(k, ω) of the strength oper-
ator in the numerator of expression (12) leads to spectral
intensity dependency of quasi-momentum on the Fermi
surface. The pseudogap state of the normal phase of
strongly correlated electron systems is attributed to this
dependence. In the one-loop approximation36,37,40, the
correction to P (k, iωm) caused by the interactions of the
t− J model is determined by the four graphs

(13)

The contribution to the self-energy operator ΣL is deter-
mined by the two plots

(14)

In diagrams (13)–(14), the wavy line with the arrow de-
notes hopping integral tq in the momentum representa-
tion. The end of this line with the dark arrow forms
the diagram fragment induced by the operator X0σ

f . The
wavy lines without arrows denote the exchange integrals
Jq. The longitudinal interaction JfmXσσ

f X σ̄σ̄
m is shown

by the wavy line with the two large circles. The end
with the light circle corresponds to the diagram frag-

ment in which the operator X↑↑
f participated in pair-

ing. The shaded circle corresponds to the operator X↓↓
f .

The transverse interaction JfmXσσ̄
f X σ̄σ

m is denoted by
the wavy line. At the ends of this line, sequence of two
opposite values of the spin moment projection is shown.
This sequence unambiguously points out that of the two
operators describing the transverse interaction, pairing
with which induced this diagram fragment. The dashed
line corresponds to the Fourier image D⊥(q, iωl) of the
quasi-spin transverse Green’s function

−〈Tτ X̃
↑↓
f (τ)X̃↓↑

g (τ ′)〉 =

=
T

N

∑

q,ωs

exp {i [q(Rf −Rg)− ωs(τ − τ ′)]}

×D⊥(q, iωs), ωs = 2sπT, (15)

and the shaded oval corresponds to the Fourier image of

the Green’s function

−
〈

Tτ∆
(

X̃00
f (τ) + X̃↑↑

f (τ)
)

∆
(

X̃00
g (τ ′) + X̃↑↑

g (τ ′)
)〉

.

In this expression, we used the notation

∆(Ãf (τ)) = Ãf (τ) − 〈Ãf (τ)〉.

It can be easily seen that the function introduced for the
oval can be expressed via the spin longitudinal Green’s
function and the charge Green’s function. These two
functions and their Fourier images are related as

−〈Tτ S̃
z
f (τ)S̃

z
g (τ

′)〉 =

=
T

N

∑

q,ωs

exp {i [q(Rf −Rg)− ωs(τ − τ ′)]}

×D‖(q, iωs), ωs = 2sπT, (16)

−〈Tτ∆ñf (τ)∆ñg(τ
′)〉

=
T

N

∑

q,ωs

exp {i [q(Rf −Rg)− ωs(τ − τ ′)]}

×C(q, iωs), ωs = 2sπT, (17)

where

∆nf = X↑↑ +X↓↓ −
〈

X↑↑ +X↓↓
〉

,

Sz
f = (X↑↑ −X↓↓)/2.

Associating analytical expressions to plots (13)–(14), we
obtain the strength and self-energy operators in the ex-
plicit form

P (k, iωm) = Cn +
T

N

∑

q,iωl

(tq + Jk-q)G (q , iωl)×

×χ (q− k, iωl − iωm) , (18)

ΣL(k) = −
T

N

∑

q,iωl

(tq + Jk-q)G (q, iωl) , (19)

where Cn = 1− n/2 is the Hubbard renormalization.
These expressions and the faithful representation of

the Green’s function G (q , iωl) show that to solve the
equation determining the strength operator, one should
know the spin-charge susceptibility

χ(q, iωm) = χSF (q, iωm) + χCF (q, iωm), (20)

that determines the contribution of the fluctuation pro-
cesses. For convenience, this expression contains the dy-
namic spin susceptibility

χSF (q, iωm) = −D⊥(q, iωm)−D‖(q, iωm)

= −3D‖(q, iωm), (21)

and the dynamic charge susceptibility

χCF (q, iωm) =
1

4
C(q, iωm). (22)
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Expression (21) was written taking into account the
equality D⊥(q, iωm) = 2D‖(q, iωm), since without mag-
netic field and the long-range magnetic order, the Hamil-
tonian of the system is invariant relative to the transfor-
mation of the SU(2) group41,42.
Below, taking into account that the energy of charge

excitations is relatively large, we limit our consideration
to the contributions related to SFs. In this case, the
nonlinear integral equation for the one-loop correction to
the strength operator δP (k, iωm) = P (k, iωm)− Cn is

δP (k, iωm) =

=
T

N

∑

q,iωl

(tq + Jk-q)χSF (q− k, iωl − iωm)

iωl − ξq − tq δP (q, iωm)− ΣL(k)
, (23)

where ξq = ε + Cntq − µ and the Fourier image of the
hopping integral is

tq = t1q +Rq, t1q = 2t(cos qx + cos qx),

Rq = 4t′cos qxcos qy + 2t′′(cos 2qx + cos 2qy). (24)

III. MAGNETIC SUSCEPTIBILITY

Since the kernel of the integral equation is determined
by the dynamic magnetic susceptibility, let us briefly an-
alyze this function. Susceptibility χSF (q, iωm) for the
Hubbard model was calculated first in43. Later, during
the intense studies of high-temperature superconductiv-
ity, χSF (q, iωm) was calculated in37,44–46. The results of
these studies show that the function χSF (q, iωm) rapidly
drops with increasing Matsubara frequency. Therefore,
the main contribution to the integral equation is collected
by summation over ωl close in value to ωm. Hence, we
may assume that

χSF (q, iωm) = χ(q)n̄SF · δm0. (25)

The expression for χ(q) is the spin susceptibility at zero
Matsubara frequency n̄SF ∼ ΩSF /T , where ΩSF is the
value of the Matsubara frequency starting from which the
susceptibility rapidly drops. The order of magnitude of
this frequency is determined by the characteristic values
of excitation energies in a spin subsystem ΩSF ∼ 0.01|t|.
It is important for further consideration that, in the

weak doping region, the χ(q) dependence in the t − J
model is characterized by a sharp peak in the vicinity of
the antiferromagnetic instability point Q = (π, π). Re-
sults of the numerical calculations of the χ(q) dependence
using the technique from45 are shown by the dashed line
in Fig. 1. They are in good agreement with the experi-
mental data47.
To accelerate the numerical calculation in solving inte-

gral equation (34), we used the model susceptibility48,49:

χ(q) =
χ0(ξ)

1 + ξ2(1 + γ1q)
, (26)

where

χ0(ξ) =
3n

4ωsC(ξ)
, ωs = 0.55|t|, ξ = 2.7, (27)

C(ξ) =
1

N

∑

q

1

1 + ξ2(1 + γ1q)
, γ1q =

(cos qx + cos qy)

2
.

Validity of this approximation follows from comparison
of the dashed and solid lines in Fig. 1.

FIG. 1. (Color online) Quasimomentum dependences of spin
susceptibilities: calculation by the t−J model according to45

(dashed line) and calculation by model susceptibility (26)
(solid line). The chosen direction for rounding the Brillouin
zone is Γ(0, 0) → M(π, π) → X(π, 0) → Γ(0, 0).

With allowance for the above assumptions, we obtain,
in the first Born approximation, that

δP (k, iωm) =
1

N

∑

q

(tq + Jk-q)χ(q− k)ΩSF

iωm − ξq
, (28)

Σ(k) = −
1

N

∑

q

(tq + Jk-q)nF (ξq), (29)

where nF (x) = (exp(x−µ
T

)+1)−1 is the Fermi–Dirac func-
tion. Then, expression (5) for the single-particle Green’s
function acquires the form

D(k, iωm) =
Cn + δP (k, iωm)

iωm − ξk − tkδP (k, iωm)− Σ(k)
. (30)

The obtained system should be added with the equation
for chemical potential µ

n

2
=

T

N

∑

k,ωm

eiωmδD(k, iωm), δ → ∞. (31)

The spectral intensity of the system can be calculated
after analytical continuation using expression (12).
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IV. PSEUDOGAP BEHAVIOR OF THE

SPECTRAL INTENSITY OF HUBBARD

FERMIONS

Fig. 2 presents spectral intensitiesA(k, ω) of the model
under consideration calculated for the electron density
n = 0.95 along the principle directions of the Brillouin
zone (left plots) and on the Fermi contour for a quar-
ter of the Brilouin zone (right plots). Here, the value
of the spectral intensity is reflected by brightness of the
energy spectrum lines (the lighter the line, the larger is
the value A(k, ω)). The energy parameters of the model
was measured in units |t|

T = 0.01, t = −1, t′ = −0.65, t′′ = −0.5, J = 0.25

and chosen such that the Fermi surface would have the
form of pockets, in accordance with the experimental
data on magnetic oscillations50. The upper panel shows
A(k, ω) corresponding to the Hubbard-I approximation.
In this case, the value of A(k, ω) remains invariable at the
change in the quasimomentum along the energy spectrum
and at the Fermi surface. The middle panel demonstrates
the results of the calculation of A(k, ω) with regard to
SFs. Comparison with the upper panel shows that the
allowance for SFs results in the qualitative difference,
specifically, the occurrence of considerable A(k, ω) mod-
ulation both at the spectrum line and at the Fermi level.
It can be seen that the value of A(k, ω) decreases most
in the wide energy region near the chemical potential.
Note an important feature related to the effect of the

sign of t on modulation of the spectral intensity. This
feature is illustrated in the lower panel of Fig. 2, where
the spectral intensity calculated for positive t is shown.
In the calculation, all the rest parameters of the system
remained invariable. Comparison of the middle and lower
panels of the figure shows that at negative t the spectral
intensity at the Fermi contour in maximum in the vicinity
of the point (π, π), whereas at t > 0 the A(k, ω) maxi-
mum at the Fermi contour is located on the opposite side
of the pocket, i.e., at the contour fragment that is closer
to the point (0, 0). Note that this case corresponds to the
results of the ARPES experiments (see, for example,51).
The developed modification of the spectral intensity

by the expense of the fluctuation processes qualitatively
changes the density of electron states

g(ω) =
1

N

∑

k

A(k, ω). (32)

Fig. 3 illustrates the densities of states calculated in
the Hubbard-I approximation (dashed line) and with al-
lowance for SFs (solid line). Comparing the two curves,
one can see that the allowance for the fluctuation pro-
cesses results in the drastic reduction of the density of
states in the vicinity of the chemical potential. Thus, the
results of our analysis show the formation of the pseudo-
gap state in the considered system of Hubbard fermions.

FIG. 2. (Color online) Lines of the Fermi excitations and
Fermi surfaces with allowance for the spectral intensity. The
upper panel corresponds to the Hubbard-I approximation; the
middle and lower panels, to allowance for SFs at different signs
of hopping parameter t.

V. SPECTRUM OF HUBBARD FERMION

EXCITATIONS AND THE PSEUDOGAP

BEHAVIOR IN THE LIMIT U → ∞

In this Section, we thoroughly analyze the physical na-
ture of modulation of the spectral intensity in the system
of Hubbard fermions. To elucidate the key points, we
consider a simplified problem allowing us to obtain an-
alytical expressions for the Fermi energy spectrum and
spectral intensity but, at the same time, preserving the
fundamental features of Hubbard fermions. It is possible
with the use of the Hubbard model (2) in the regime of
extremely strong electron correlations (U → ∞) when
the Hamiltonian contains only the part corresponding to
the operator of kinetic energy in the atomic representa-
tion (t model)

Ĥ = Ĥt. (33)

Note that, since the model is simplified down to the limit,
the below results on the properties of the Fermi excita-
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FIG. 3. (Color online) Density of electron states calculated
in the Hubbard-I approximation (dashed line) and with al-
lowance for the spin-fluctuation processes (solid line). The
vertical line reflects the position of the chemical potential.

tion spectrum cannot be applied to the description of the
experimental ARPES data and are used only to explain
clearly the physical nature of the modulation of the spec-
tral intensity in the ensemble of Hubbard fermions. This
approach is analogous, in a sense, to the way in which
the idealized Kronig–Penney model52 illustrates the na-
ture of the occurrence of energy bands in a crystal at the
analysis of electron motion in a periodic potential.
To study the spectral properties of Hubbard fermions

in the t model, we use, as earlier, the method developed
in Section II. In our case, the one-loop correction for
δP (k, iωm) is determined only by the two upper plots
from (13). The corresponding nonlinear integral equation
for the strength operator will have the form

δP (k, iωm) =
T

N

∑

q,iωl

tq χ(q− k, iωl − iωm)

iωl − ξq − tq δP (q, iωm)
. (34)

Choosing the quasimomentum dependence for the spin
susceptibility, we again take into account the experimen-
tal fact of the presence of a sharp peak of this function
in the vicinity of the antiferromagnetic instability point
Q = (π, π)47. However, unlike the previous case, now we
obtain simplified analytical expressions considering the
limiting situation where the peak of magnetic suscepti-
bility is delta-like. Then, χSF (q, 0) is presented as

χSF (q, 0) = χ0 · δ(q−Q). (35)

To determine the value of χ0, we use, as earlier, model
susceptibility (27). Then, for the first Born approxima-
tion, we have

δP (k, iωm) =
ΩSFχ0tk+Q

iωm − ξk+Q

(36)

and expression (5) for the single-particle Green’s function

acquires the two-pole structure

D(k, iωm) =
Cn + δP (k, iωm)

iωm − ξk − tkδP (k, iωm)
= (37)

=
Cn(iωm − ξk+Q) + ΩSFχ0tk+Q

(iωm)2 + ξkξk+Q − iωm(ξk + ξk+Q)− ΩSFχ0tktk+Q

.

Hence, the allowance for SFs forms two branches of the
Fermi excitation spectrum

E±
k = CnRk ±

√

(C2
n − ΩSFχ0) t21k +ΩSFχ0R2

k. (38)

The equation for chemical potential µ is

n

2
=

1

N

∑

k

(

nF (E
+
k )A+

k + nF (E
−
k )A−

k

)

, (39)

where the functions

A±
k =

1

2
(Cn ± λk),

λk =
(C2

n − ΩSFχ0)t1k +ΩSFχ0Rk
√

(C2
n − ΩSFχ0) t21k +ΩSFχ0R2

k

(40)

determine partial contributions of each branch of the
spectrum to the total spectral intensity

A(k, ω) = A+(k, ω) + A−(k, ω),

A±(k, ω) = A±
k δ(ω − E±

k ).

As will be shown below, the change in the values of the
A±

k functions at the change in k (for example, upon mo-
tion along the isoenergetic line) leads to the formation of
significant modulation of A(k, ω) as soon as SFs become
strong.
The occurrence of A(k, ω) modulation is illustrated in

Fig. 4. The upper plot on the left presents the energy
spectrum development in the limit of the vanishingly
small power of SFs (ΩSF ·χ0 → 0) for the electron density
n = 0.95. As earlier, the values of the energy parameters
of the model in the units of |t|

T = 0.01, t = −1, t′ = −0.65, t′′ = −0.4, (41)

were chosen such that the Fermi surface would have the
form of the pockets. The dashed line corresponds to the
lower branch E−

k of the spectrum; the solid line, to the

upper branch E+
k . Despite there are two solutions of the

dispersion equation, in reality the only branch is revealed.
This is due to the fact that at ΩSFχ0 → 0 the partial
contributions

A±
k =

1

2
Cn {1± sign(t1k)} . (42)

sharply grow from zero to the end value or sharply drop
from the end value to zero at the variation in the quasi-
momentum (dashed lines in Fig. 5). Therefore, at each
nonzero point of the Brillouin zone having the same
value, only one of the partial spectral intensities A±(k, ω)
may exist. The total A(k, ω) spectral intensity (the val-
ues of these functions are reflected in the plots by thick-
ness of the corresponding lines) remains invariable at
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FIG. 4. (Color online) Spectrum of the Fermi excitations
along the principal directions of the Brillouin zone and modi-
fication of the spectral intensities with allowance for the spin-
fluctuation processes.

the variation in the quasimomentum along the energy
spectrum. In our simple case, this corresponds to the
Hubbard-I approximation. The considered features are
illustrated by the left plots of the second, third, and
fourth panels in Fig. 4.
The situation becomes qualitatively different when SFs

switch (right plots in Fig. 4). The upper right plot
presents the spectra calculated at ΩSFχ0 = 0.16. As
before, the solid line shows the E+

k spectrum; the dashed

line, the spectrum E−
k . Switching of the interaction be-

tween the electron subsystem with the subsystem of spin
degrees of freedom via the kinematic mechanism leads to
repulsion of the spectrum branches at the points where
they were osculating without interaction.
The more significant effect of SFs is related to con-

Γ Μ Χ Γ
0

0.2

0.4

0.6

A
+
(k

)

Γ Μ Χ Γ
0

0.2

0.4

0.6

A
−
(k

)

FIG. 5. (Color online) Dependences of partial contributions to
the spectral intensity on the quasimomentum with allowance
for SFs (solid lines). For comparison, the dashed lines show
the dependences of these functions in the Hubbard-I approx-
imation.

FIG. 6. (Color online) Effect of the sign of hopping parameter
t on modulation of the spectral intensity.

siderable modification of the spectral weights A±
k , which

manifests itself in strong renormalization of the values of
these functions (Fig. 5). As a result, the partial spectral
intensity A+(k, ω) acquires a finite value over the entire
curve of the energy spectrum E+

k (similarly, A−(k, ω) is

finite along the entire E−
k curve) and becomes strongly

modulated. It can be clearly seen from comparison of
the left and right plots in the second and third panels
in Fig. 4. The total spectral intensity A(k, ω) acquires
the structure reflecting the presence of two branches ex-
hibiting strong modulation. In the right plot of the lower
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panel in Fig. 4, the degree of darkening of the parts in
the vicinity of the points (k, ω) corresponds to the value
of A(k, ω) in these points. It can be seen that the al-
lowance for SFs has led to induction of the shaded zone
and redistribution of the spectral intensity between the
basic and shaded zones.
The feature related to the change in the sign of param-

eter t of hopping to the first coordination sphere (Fig.2)
is characteristic of this model. Fig. 6 shows the spectral
intensity calculated along the principle directions of the
Brillouin zone (left plots) and at the Fermi contour for
a quarter of the Brillouin zone (right plots) at different
signs of t. It can be seen that, at t > 0, A(k, ω) is max-
imum in the part of the Fermi contour that is closer to
the point (0, 0), which is consistent with the experimental
data.

VI. SUMMARY

To sum up, we formulate the principles of the kine-
matic formation of modulation of the spectral intensity
A(k, ω). Of fundamental importance is the use of the
faithful representation for a single-fermion Matsubara
Green’s function D(k, iωm). For the kinematic mecha-
nism, D(k, iωm) is expressed as the product of the prop-
agator part and strength operator P (k, iωm). The pres-
ence of the strength operator in the numerator of the
Green’s function and its dependence on the Matsubara
frequency and quasimomentum lead to the fact that the
isoenergetic lines in the quasimomentum space become
different from the lines where the strength operator has
a constant value. This spacing is one of the causes of
modulation of the spectral intensity A(k, ω). It is impor-
tant that the integral of hopping to the first coordination

sphere determines the Fermi contour part where A(k, ω)
considerably decreases.
The specific cause of A(k, ω) modulation in the frame-

work of the kinematic interaction is that SFs lead to the
formation of a shaded zone, which represents the initial
zone shifted in the quasimomentum space by the vector
(π, π). As a result, the total pattern of the spectrum is
formed by coherent hybridization of these two zones, be-
tween which the spectral intensity is redistributed and,
consequently, the density of states in the vicinity of the
chemical potential drops.
To demonstrate the kinematic formation of the pseu-

dogap behavior as brightly as possible, we considered the
Hubbard model in the limit of strong correlations when
the dynamics of Hubbard fermions is governed by the
kinematic interaction. Obviously, the discovered mecha-
nism of the pseudogap phase formation is universal and
relevant for other models of strongly correlated systems.
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