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Preface

This volume is the first of three volumes reviewing the main analytical, numerical
and experimental techniques specifically devised to study Strongly Correlated
Systems. This editorial project builds upon the long-standing experience we have
acquired in organizing the “Training Course in the Physics of Strongly Correlated
Systems” in Vietri sul Mare (Salerno, Italy) since 1996 and our working scientific
experience in the field. Running a school for advanced graduate students and
junior post-docs, we realized that this field of condensed matter and solid state
physics was missing adequate textbooks and that the whole Strongly Correlated
Systems community would benefit by a systematic exposition of the field. The
present volume consists of a series of monographs on the most relevant analytical
methods currently used to tackle the hoary problem of correlations. Authors have
been selected, consulted major experts in the field, among the most world-wide
famous scientists who invented or greatly helped to improve/spread the specific
method in the community. Each chapter presents the method in a pedagogical
way and contains at least one case study where the method has proved to give a
substantial leap forward in the knowledge and a very rich bibliography. The book
is mainly intended for neophytes, who will find in one single volume all pieces
of information necessary to choose and start learning an analytical method. Also
more experienced researchers would benefit from this volume as they would gain
a deeper understanding of what any single technique can really tell them and what
cannot. Accordingly, the accent is more on the ideas behind (origins, pros/cons,
perspectives, etc.) than on the technical details, which are left to the comprehensive
bibliography.

We wish to thank all authors of this volume as they all joined this editorial project
with enthusiasm and provided the whole community with what we hope will become
a relevant resource for any researcher in the field as comprehensive and extended
reference.

Salerno, October 2011 Adolfo Avella
Ferdinando Mancini
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11.1 The CDMFT Procedure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

11.1.1 The Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
11.1.2 The Self-Consistency Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
11.1.3 The SFA Point of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

11.2 The Exact Diagonalization Implementation . . . . . . . . . . . . . . . . . . . . . . . . 347
11.2.1 Working with a Small Bath System:

The Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
11.2.2 Bath Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
11.2.3 The Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

11.3 Quantum Monte Carlo Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.3.1 The Hirsch-Fye Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
11.3.2 The Continuous-Time Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

11.4 The Mott Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
11.5 Application to the Cuprates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.6 CDMFT and DCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

12 Functional Renormalization Group for Interacting
Many-Fermion Systems on Two-Dimensional Lattices . . . . . . . . . . . . . . . . . 373
Carsten Honerkamp
12.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
12.2 Functional RG Schemes for Fermions: Exact Flow

Equations and Truncations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
12.2.1 Basic Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
12.2.2 Functional Renormalization Group

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
12.2.3 Choice of Flow Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

12.3 Implementation of the Fermionic fRG
for Two Dimensional Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

12.4 Instabilities in Two-Dimensional Lattice Systems . . . . . . . . . . . . . . . . . . 388
12.4.1 Two-Dimensional Hubbard Model Near Half Filling . . . . . 388
12.4.2 Iron Pnictides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

12.5 Remarks on the 1PI fRG Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
12.5.1 Differences to Standard Wilsonian RG .. . . . . . . . . . . . . . . . . . . 398
12.5.2 Higher Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
12.5.3 Connection to Infinite-Order Single-Channel

Summations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
12.5.4 Symmetry-Breaking: Connection

to Mean-Field and Eliashberg Theory . . . . . . . . . . . . . . . . . . . . . 400



xvi Contents

12.5.5 Normal-State Self-Energy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
12.5.6 Refined Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

12.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

13 Two-Particle-Self-Consistent Approach for the Hubbard Model . . . . . 409
André-Marie S. Tremblay
13.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
13.2 The Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

13.2.1 Physically Motivated Approach, Spin
and Charge Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

13.2.2 Mermin–Wagner, Kanamori–Brueckner
and Benchmarking Spin and Charge
Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

13.2.3 Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
13.2.4 Internal Accuracy Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
13.2.5 A More Formal Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
13.2.6 Pseudogap in the Renormalized Classical Regime. . . . . . . . 429

13.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
13.3.1 Pseudogap in Electron-Doped Cuprates . . . . . . . . . . . . . . . . . . . 432
13.3.2 d -Wave Superconductivity .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

13.4 More Insights on the Repulsive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
13.4.1 Critical Behavior and Phase Transitions .. . . . . . . . . . . . . . . . . . 441
13.4.2 Longer Range Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
13.4.3 Frustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
13.4.4 Thermodynamics, Conserving Aspects . . . . . . . . . . . . . . . . . . . . 443
13.4.5 Vertex Corrections and Conservation Laws . . . . . . . . . . . . . . . 446

13.5 Attractive Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
13.5.1 Pseudogap from Superconductivity in

Attractive Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . 447
13.6 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

... . . . .. .



Foreword

Peter Fulde

It required the discovery of the high-temperature superconducting cuprates before
the field of strongly correlated electrons obtained the attention it deserves. Shortly
after their discovery it became clear that the normal state properties of these
materials and moreover the appearance of superconductivity cannot be understood
without better insight into the strong correlations prevailing in these systems [1].
Even before that time, a sizeable amount of research had been devoted to strong
correlations. The Kondo effect, intermediate valence systems, and materials with
heavy low-energy quasiparticles are areas which required to deal with them. But
these efforts were small when compared with those which set in after high-Tc

superconductivity was discovered. In a series of three volumes, of which the present
is the first, an overall survey is made of the present status of the theory of strongly
correlated electrons. Some aspects, like numerical methods, are the subject of the
second volume in this series. The last one includes experimental techniques, which
are used to study strongly correlated electrons.

When speaking about strongly correlated electrons, the first question which
comes to one’s mind is, how can we decide whether or not electrons in a given
material are strongly correlated. In other words, how can we determine the strength
of correlations provided that we know the full many-electron wavefunction j 0i to
a reasonable approximation? For that, a simple measure can be introduced, which is
based on the degree of suppression of electronic charge fluctuations on different
atomic sites compared with those which are obtained when instead of j 0i the
uncorrelated or Hartree–Fock counterpart j˚0i is used [2]. This gives rise to a
quantity 0 � ˙A � 1. It defines the strength of correlations at a site A, so that
˙A D 0 is the limit of uncorrelated electrons, while ˙A D 1 describes the strong
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correlation limit. More specifically, we define ˙A through

˙A D
D
˚0

ˇ̌
ˇ.ınA/2

ˇ̌
ˇ˚0

E
�
D
 0

ˇ̌
ˇ.ınA/2

ˇ̌
ˇ 0

E
D
˚0

ˇ̌
ˇ.ınA/2

ˇ̌
ˇ˚0

E ; (1.1)

where ınA D n2A � Nn2A with nA denoting the electron number operator, e.g.,
of d electrons on site A and NnA its average value with respect to j˚0i or j 0i.
Note that definition (1.1) deviates slightly from the one given in [2]. Applied to
the simple example of a H2 molecule, one finds ˙H � 0:1, i.e., rather weak
correlations. A wavefunction with a doubly occupied molecular orbital would give
˙H.MO/ D 0while the Heitler-London wavefunction yields˙H.HL/ D 1, since all
ionic configurations are suppressed. It is interesting that the � electrons in graphene
have ˙� ' 0:5, showing that correlations are fairly strong in that system, while
the d electrons on a Cu site in the Cu–O planes of the cuprates have ˙Cu ' 0:8.
Thus, correlations are indeed strong here. But it is also apparent that theories which
apply, e.g., a Gutzwiller projector to a wavefunction of electrons in the Cu–O planes
overestimate the correlation strength. That projector eliminates charge fluctuations
completely and is equivalent to setting ˙Cu D 1.

Electronic charge fluctuations at a given atomic site interfere with the formation
of intra-atomic Hund’s rule correlations. When ˙A ' 1 the latter can fully form,
while with decreasing values of ˙A they become less important. This shows up in
the behavior of h 0jS2Aj 0i with changing˙A where SA is the total spin at site A.

1 Ab-Initio Calculations

Ab initio electronic structure calculations are dominated by density functional
theory (DFT). They have revolutionized that field. The subject is reviewed in this
volume by Jones (see Chap. 8), one of the pioneers in the field. But DFT is a
ground-state theory and therefore it is of little surprise that it fails, in particular
for strongly correlated systems, when low-energy excitations are calculated from it.
The failure is inherent and independent of any approximations which are made for
the potential in the Kohn-Sham equation. This is seen by considering the simplest
possible system of strongly correlated electrons, i.e., two electrons in two orbitals.
As seen below, this model also shows a characteristic feature of strong correlations,
namely the appearance of new low-energy scales. In weakly correlated systems the
characteristic energy scale is given by the Fermi energy �F, or alternatively, by the
electronic hopping matrix elements tij between neighboring sites i and j . Strong
correlations cause additional, much lower energy scales.

The two orbitals are denoted by L (for ligand) and F (for 4f; for example) and
we assume the corresponding orbital energies to be �l and �f with �f < �l . Two
electrons in the F orbital are expected to repel each other with an energy U � ��

with �� D �l � �f . When both electrons are in the L orbital, or when one electron
is in the L and the other in the F orbital, we neglect their Coulomb interaction.
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This is justified, if the ligand orbital has a large spatial extent. It applies when, for
example, the ligand orbital is that of a large molecule or when it is a Bloch state.
We assume that the hybridization t between the two orbitals is small, i.e., t � ��.
The Hamiltonian of the system is

H D �l
X
�

lC� l� C �f
X
�

f C
� f� C t

X
�

�
lC� f� C f C

� l�
�C Unf"nf# : (1.2)

The lC� .l�/, f C
� .f� / create (annihilate) electrons with spin � in the L and F

orbitals, respectively; furthermore nf� D f C
� f� . The Hamiltonian is so simple that

it can be easily diagonalized. When t D 0, the ground state of the system has energy
E0 D �l C �f and is fourfold degenerate. One electron is in the F orbital, while
the other is in the L orbital. The four states are eigenstates of the total spin S and
consist of a singlet j˚SD0i and a triplet j˚SD1i. The system has one excited state of
the form

j˚exi D lC" lC# j0i: (1.3)

The energy of that state is Eex D 2�l . The state f C
" f

C
# j0i is excluded from further

consideration, since its energy is of order U and we assume U !1.
When the hybridization is turned on, the singlets j˚SD0i and j˚exi are coupled,

while the S D 1 states j˚SD1i remain unchanged. The coupling leads to the two
eigenvalues

QE0 D E0 � 2t
2

��
;

QEex D Eex C 2t2

��
: (1.4)

For small values of t there is a low-lying triplet excitation above the singlet ground
state. One can attach a characteristic temperature T � D 2t2=.kB��/ to the energy
gain associated with the singlet formation. It is by a factor t=�� smaller than the
energy scale set by the hopping matrix element t and is an example of the new low-
energy scales, which are generated by strong correlations. The same system can be
treated using the density functional theory. In fact, that is quite interesting to do so,
because one can derive explicitly the exact exchange-correlation potential vxcŒ�� as
function of the density. When the 2 � 2 Kohn–Sham equation is solved, one finds
that the energy difference between the two eigenvalues should not be interpreted
as the excitation energy, since it is of order t instead of T �. These findings hold
irrespective of approximations to the functional [3].

With the above pointed out, it is clear that treatments of low-energy excitations by
Kohn–Sham equations have no sound basis. Nevertheless, semi-empirical methods
based on density functional theory have had numerous successes. An excellent
example is the renormalized band-structure method [4]. It is the only one which
has been able to make detailed predictions for the effective mass anisotropies at
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the Fermi surface of heavy-quasiparticle systems. The idea hereby is to formulate
the quasiparticle dispersions in terms of phase shifts like in an independent
electron approach. For these phase shifts, one is using the ones obtained from
an LDA, i.e., a local approximation to the density functional, except for those of
the strongly correlated electrons. For Ce intermetallic compounds like CeRu2Si2,
CeSn3, CeCoIn5, etc., these are the f electron phase shifts at the Ce sites. For the
latter, a phenomenological ansatz is made. It has the effect of reducing the bare
bandwidth to a renormalized one of order kBT

�. Take CeRu2Si2 as an example.
The phase shifts near the Fermi energy �F are

f�Al .�/g D
n
�Ce
l .�/; �

.Ru/	
l 0 .�/; �

.Si/

l 00 .�/

o
; 	I
 D 1; 2; (1.5)

where l; l 0; l 00 are angular momenta and the indices 	,
 count different atoms within
the unit cell. Except for �Ce

lD3.�/ all other phase shifts are assumed to be given by
the LDA. Regarding the f phase shifts at a Ce site, only the one with j D 5=2

(Hund’s rule multiplet) is relevant and, more specifically, with the symmetry of
the crystalline field ground-state doublet, i.e., �Ce

� .�/ with � D 1; 2. It can be
parameterized by the resonant form

�Ce
� .�/ D arctan

�

Q� � � (1.6)

with two parameters � and Q�. One of them is fixed by the f -electron number at
a Ce site, while the remaining one is fixed by requiring that the large  coefficient
of the low temperature specific heat C D T is reproduced. As mentioned earlier,
with these phase shifts not only a Fermi surface but also the strongly anisotropic
quasiparticle masses can be determined. They agree well with experiments.

Another extension of density functional theory which is often used is the
LDACU method. Here the LDA is supplemented by adding an on-site Coulomb
interaction U and exchange interaction J term to the LDA energy. For example, for
d electrons it is

E D ELDA C U

2

X
lij�

ıni� .l/ınj�� .l/C .U � J /
2

X
li.¤j /�

ıni� .l/ınj� 0.l/; (1.7)

where l is a site index while i and j are d orbital indices. Furthermore, ıni� .l/ D
ni� .l/ � n0.l/ where n0.l/ D nd .l/=10 and nd .l/ is the total d electron number
at site l . The LDA is an orbital-independent molecular-field approximation and
therefore an inclusion of the deviations ıni� .l/ allows for an improved treatment
of correlations. The potential entering the Kohn-Sham equation is obtained from
ıE=ıni� .l/ as

V eff
i� .l/ D VLDA C U

X
j

ınj�� .l/C .U � J /
X
j¤i

ınj� .l/; (1.8)
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which shows that results different from LDA are obtained if the spin orbitals
are differently populated, i.e., when ıni� .l/ ¤ 0. An unequal population is
favored by a large Coulomb interaction U like in any unrestricted mean-field
approximation. As explained earlier, this way charge fluctuations are suppressed
and correlation energies (not wavefunctions) are improved. There has also been an
approach developed in which the LDA is used for computing Wannier functions
and Coulomb parameters as input for a multiband Hubbard Hamiltonian. The latter
is treated by a generalized tight-binding method, i.e., one which combines the exact
diagonalization of an isolated cluster, i.e., a unit cell, with a perturbation treatment
of the intercluster hopping and interactions [5] (see Chap. 4.4). The aim has been to
find, e.g., the size of the gap in La2CuO4, which in LDA is absent.

Another hybrid method is the LDA+DMFT [6]. The dynamical mean-field theory
(DMFT) [7–9] is a dynamical coherent potential approximation (DCPA) [10] which
was stimulated by work on the Hubbard model in infinite dimensions [11, 12] (see
Chap. 6.5). While the standard coherent potential approximation (CPA) introduced
by Hubbard in connection with his Hamiltonian (see below) reduces at temperature
T D 0 to a self-consistent field (SCA), i.e., Hartree–Fock theory, the DMFT (or
DCPA) contain correlation effects in that limit. A site of an infinite lattice with, e.g.,
d electrons is treated as an impurity in a medium for which an LDA calculation has
been done. The electronic self-energy˙.!/ at the impurity site is computed and the
medium is self-consistently modified until the self-energy of the impurity coincides
with that of the medium. A shortcoming of the DMFT and DCPA is that only on-
site correlations are treated, i.e., any k dependence of the self-energy is neglected.
From quantum chemical calculations it is well known that intersite correlations are
important and must be treated if one is interested in quantitative results.

Extensions of the original DMFT to a cluster DMFT [13] go in the right direction,
but the clusters one can treat are rather small. Therefore, one cannot distinguish,
e.g., between short-range AF correlations and long-range AF order. One possible
way of including properly the short-ranged correlations is by using the method of
increments in connection with a self-consistent projection operator method. This
allows˙.k; !/ to be calculated with rather high accuracy. These approaches are still
at their infancy as far as realistic calculations for specific materials are concerned,
but some promising results have been obtained.

A rather different approach to strongly correlated electron systems is based on
wavefunction methods [2]. They are combined with quantum chemical techniques
and provide a rigorous theoretical framework for addressing the correlation problem
which avoids any uncontrolled approximations. Many-body wavefunctions can be
explicitly constructed at levels of increasing sophistication and accuracy. But in
order to ensure size extensivity of the modifications induced by correlations the
wavefunctions have to be formulated using cumulants. Standard quantum chemical
methods thus offer a systematic path to converged results. They provide the right
framework for coping with issues like a rigorous treatment of the ubiquitous short-
range correlations and of a realistic representation of the crystalline environment.
The way to proceed is to cut out a finite atomic cluster C from the infinite solid
which is large enough to describe the crucial short-range correlations. Partially
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filled d -electron shells require a multiconfiguration representation of the correlated
many-electron wavefunction, which is achieved using the complete-active-space
(CAS) self-consistent field (CASSCF) method. This way, strong correlations can
be very well accounted for. The crystalline environment is described by an effective
one-electron potential which is extracted from prior Hartree–Fock calculations for
the periodic system. Remember that Hartree–Fock calculations describe charge
distributions quite well. They are robust against correlation corrections, even when
the latter are strong. With this approach the ground state of such strongly correlated
systems as LaCoO3 and LiFeAs was determined as well as the Zhang-Rice-like
electron removal band for CuO2 planes in La2CuO4 [14].

Wavefunction-based quantum chemical calculations for strongly correlated elec-
trons are a field with high potential for the future. They have been somewhat
neglected, because they require investments in program development and time,
features not particularly favored by research funding. However, concerning actual
calculations, they are the best one can do to obtain insight into the most important
microscopic processes.

2 Model Hamiltonians

From Sect. 1 it is apparent that ab-initio calculations for strongly correlated electron
systems are still at their beginning. Therefore, simplifying model Hamiltonians are
very helpful in order to unravel physical effects caused by them. The one studied
most is the Hubbard Hamiltonian [15]

H D �t
X
hij i�

cC
i� cj� C U

X
i

ni"ni#: (1.9)

It has one orbital associated with each site i and the Hamiltonian contains a hopping
term between nearest-neighbor sites and an on-site Coulomb repulsion term U . The
simplifications made by this ansatz as compared with a quantum chemical ab-initio
Hamiltonian are enormous. But nevertheless, important insight can be gained by
studying (1.9), in particular, when a system is at or close to half filling. Various
techniques have been applied to study the Hubbard model with emphasis on two
dimensions (2D). This is, because claims have been made that a 2D Hubbard model
contains all of the important physics of high-Tc superconductivity.

A large role is being played by cluster approximations. They replace the infinite
lattice by a finite cluster which is often embedded in an effective medium. In view
of the short range of the correlation hole of an electron, that seems fine even for
an infinite system, provided the correlation hole is properly constructed. In order
not to limit for computational reasons the cluster to a too-small size, the method
of increments can be used as a tool. It can be looked at as an expansion of a
(cumulant) scattering matrix in terms of one, two, three etc. site clusters. But
that is often not done and in that case translational invariance within a cluster is
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missing. Established approaches within quantum cluster theory are the dynamical
cluster approximation [16, 17] (see Chap. 8.8), the cluster DMFT mentioned earlier
[18] (see Chap. 10.7) and the cluster perturbation theory [19] (see Chap. 7.9). In
the latter case a perturbation expansion in terms of the hopping matrix element
t is combined with the exact diagonalization of small clusters. The dynamical
cluster approximation has the advantage of ensuring translational invariance within
a cluster. In that respect it differs from the cluster DMFT in which this symmetry
is violated. Otherwise, both methods are similar in many aspects. An incremental
cluster expansion of the self-energy or scattering matrix has been applied in a fully
self-consistent projection operator approach [20].

One can try to find a formalism from which all the different cluster methods
derive as special cases, at least as long as they are based on Feynman diagrams.
The hope is that this allows for the development of improved cluster methods.
Such an attempt has been made with the Self-Energy Functional Theory [21] (see
Chap. 9.5). It starts from the generating functional ˚ŒG;U � of the Green’s function
G. The self-energy is required to be given by the derivative of ˚ with respect to
G, i.e., ˙ D ı˚ŒG�=ıG. From the work of Baym and Kadanoff it is known that
conservation laws are obeyed if ˚ŒG;U � is calculated from all distinct, connected,
and closed skeleton diagrams expressed inG andU . One may then specify to which
approximations for ˚ a given cluster method corresponds to.

Quantum cluster theories are one possibility to find approximate solutions for
the Hubbard model. Of course, other methods have been developed too, which treat
the infinite system. Thereby special attention is paid to conserving approximations,
i.e., approximations which do not violate conservation laws [22] (see Chap. 12.6).
Also the functional renormalization group has been applied to the two-dimensional
Hubbard model. It works like a microscope with variable resolution. For under-
standing the low excitation energy sector of the Hubbard model, one eliminates
all degrees of freedom of the system which are irrelevant for its behavior in that
limit. For that purpose differential equations for the one-particle Green’s function
are derived which describe the flow of parameters as the degrees of freedom are
reduced. Since it is difficult to calculate the renormalization flow for a strongly
interacting system, one is starting out from a weakly interacting system in which
case the energy scale is given by the kinetics. But as the energy scale decreases,
the coupling function increases. This is indicative of possible instabilities, e.g.,
of magnetic or pair forming origin. In that case one has to switch to a modified
description of the system which accounts for these changes [23].

A much studied example is the Mott–Hubbard metal-to-insulator phase transition
at half filling when U � t [52]. But even now it is not known at which critical
ratio of Uc=t this phase transition is taking place at T D 0. The value has been
steadily increasing with improvements of the approximation schemes. At present
the most accurate estimates are obtained when the self-energy is computed with a
dynamical CPA in combination with self-consistent projection operator methods.
That allows for the calculation of ˙.k; !/ with an accuracy, which includes effects
up to the 12th nearest neighbors. Despite considerable efforts, the topic itself is still
wide open. There are several reasons for this. One is that in the Hubbard model
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we include one orbital per site only. But in a realistic multiorbital system it is
likely that criteria for localization are first fulfilled for a single orbital or for two
of them (compare with the dual model of 5f electrons) before the system becomes
an insulator. Also, there may be a redistribution of electrons among different orbitals
as the phase transition is approached. The spectral density and in particular the low-
energy peak as obtained, e.g., from a DMFT calculation behave quite different when
the ground state is paramagnetic and when it has a long-range AF order. An open
question is how AF correlations modify the spectral density as the correlation length
increases continuously near a metal-insulator transition.

For small deviations from half filling the Hubbard Hamiltonian can be transferred
into a t � J model Hamiltonian of the form

Ht�J D �t
X
hij i�

� OaC
i� Oaj� C h:c:

�C J
X
hij i

�
Si � Sj � Oni Onj

4

�

D Ht CHJ ; (1.10)

where the operators OaC
i� , Oai� are defined by

OaC
i� D aC

i� .1 � ni�� /;
Oai� D ai� .1 � ni�� /: (1.11)

The spin operators are Si D .1=2/P˛ˇ OaC
i˛� ˛ˇ Oaiˇ and Oni� D OaC

i� Oai� . The coupling
constant is J D 4t2=U and defines a low-energy scale caused by the strong
correlations. At half filling Ht D 0 and we deal with an antiferromagnetic (AF)
Heisenberg Hamiltonian. Its excitations involve only spin degrees of freedom and
constitute the simplest example of spin-charge separation. The t � J model has
been very successful in understanding the motion of doped holes or electrons in
an antiferromagnetic surroundings. The bandwidth of a coherent hole motion is of
order J and therefore strongly renormalized as compared with the bare hopping
matrix element t . The energy dispersion of the coherent quasihole motion strongly
resembles that found by ab initio calculations using quantum chemical methods.
With the t � J model one can also show that two doped holes attract each other, a
possible mechanism for high-Tc superconducting in hole-doped cuprates. One can
also study the effects of small hole concentration back on the form of AF order, i.e.,
the development of spiral spin states [24].

Improved Hubbard Hamiltonians have been applied to the Cu–O planes of the
high-Tc cuprates. For example, in addition to a 3dx2�y2 orbital for the Cu ions the 2p
orbitals of the O ions which hybridize with the 3dx2�y2 Cu orbitals are included.This
leads to three-band or five-band Hubbard Hamiltonian depending on whether one
includes one or two of the 2p oxygen orbitals in the Cu–O plane. A new feature
which is not contained in a one-band Hubbard description is the formation of a
Zhang–Rice singlet state, when a hole is doped in an otherwise half-filled system. It
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is mainly located on the oxygen sites and the singlet is formed with the hole on the
Cu2C ion [25].

Model Hamiltonians have also been widely used in order to study the micro-
scopic origins of different systems with heavy quasiparticle excitations. The
Anderson lattice Hamiltonian has played a prominent role. It is of the form

H D
X
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X
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�f mf
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C 1p
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2

X
im¤m0

nfm.i/n
f

m0.i/: (1.12)

There are conduction electrons with band index n which weakly hybridize with
strongly correlated electrons. They are created (destroyed) by f C, f operators
with an orbital index m and are positioned at lattice sites i . Various approximation
schemes have been applied to that Hamiltonian. They are of diagrammatic nature
like the noncrossing approximation [26, 27], which describes the Anderson lattice
as a system of independent impurities. Or they introduce auxiliary fields like
slave boson fields [28–30] which allow for mean-field treatments. Also the so-
called Gutzwiller approximation has been applied [31–33]. It renormalizes the
hybridization matrix element and moves the orbital energy close to the Fermi energy.

The common feature of those approximations is to reproduce the low-energy
scales, which strongly correlated electrons generate.

3 Systems with Heavy Quasiparticles

A sizeable number of intermetallic compounds have a high density of fermionic low-
energy excitations. Experiments show that their low-temperature thermodynamic
properties strongly resemble those of ordinary metals but with a large quasiparticle
mass. The latter can become as large as a meson or even proton mass. It is a
consequence of the low-energy scales which strong electron correlations create.
Systems with heavy quasiparticles involve 4f or 5f electrons, in one case, i.e.,
LiV2O4 even 3d electrons. Much studied examples are CeAl3, CeRu2Si2, CeCu2Si2
or Yb3As4 with 4f electrons and UPt3, UBe13 and UPd2Al3 with 5f electrons.

After the discovery of the heavy quasiparticles [34] it was generally believed that
the Kondo effect is responsible for those low-energy excitations. Indeed, breaking
up a Kondo singlet formed between a 4f electron, e.g., of Ce, with the conduction
electrons requires a small amount of energy only, i.e., of the order of a few meV.
However, in the meantime we have learned that heavy quasiparticles may have
quite different microscopic origins. In addition to the Kondo effect (e.g., CeAl3,
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CeRu2Si2, CeCu2Al2) also partial charge order (e.g., Yb4As3), partial localization
(e.g., UPt3, UPd2Al3) or the Zeeman effect (e.g., Nd2�xCexCuO4) may cause heavy
quasiparticles [35]. In LiV2O4, a spinel, the frustrated pyrochlore sublattice of
the V ions plays an important role in the formation of the large number of low-
energy excitations. While the low temperature properties of heavy quasiparticles
are reasonably well understood, the transition to higher temperatures T > T � at
which the quasiparticles lose their large effective mass is less understood. Related
with it is a transition from a large Fermi surface, in which the strongly correlated f
electrons take part to a small Fermi surface at T > T � where they are excluded. In
the latter case, they behave like localized electrons.

A field of its own are quantum critical points and their neighborhood [36]. At a
quantum critical point a system undergoes a phase transition at zero temperature as a
function of an external parameter like pressure, impurity concentration etc. Clearly,
there are many low-lying excitations in the vicinity of quantum critical point. In
some cases, e.g., YMn2 [37] heavy quasiparticle behavior is observed, but more
common is a break down of Fermi-liquid theory near such a point.

4 Mean Field Approximations

Whenever mean-field approximations (MFA) can be made to a Hamiltonian, they
not only simplify significantly its solution, but in most cases, also provide new
physical insight. The simplest MFA to a Hamiltonian of interacting electrons is
the Hartree–Fock or SCF approximation. It neglects totally electron correlations.
The question arises whether MFAs can be made which take strong correlations
reasonably well into account. Of special interest are clearly mean-field solutions
with broken symmetries, i.e., with a ground state which has a lower symmetry than
the Hamiltonian. However, care must be exercised here. Often only a symmetry
breaking occurs, because correlation effects are simulated which otherwise are
insufficiently taken into account.

For example, an AF ground state reduces on-site charge fluctuations as do
correlations. In that case, one has to decide whether an AF mean-field solution
describes the system correctly or whether it is merely favored because it suppresses
charge fluctuations. The simplest example is a H2 molecule with variable bond
length. An unrestricted SCF calculation gives a symmetry broken ground state
when the bond length exceeds a critical value. Near one proton the electrons have
predominantly spin up while near the other proton they have predominantly spin
down. In reality, there is, of course, no distinction between the spins on the two
sites. But therefore, all ionic configurations are eliminated by the unrestricted MFA
in the limit of large bond lengths.

A special object of mean-field investigations has been the Hubbard model on
a cubic or square lattice at or near half filling. With hopping limited to nearest
neighbors one finds for the half-filled case perfect nesting at the Fermi surface and
a spin-density mean-field ground state for any value of U > 0.
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An interesting variety of MF solutions is obtained when auxiliary slave boson or
fermion fields are introduced [38] (see Chap. 3). An example is the replacement

ai� D fi�bC
i ; aC

i� D f C
i� bi ; (1.13)

where the fermion operator f C
i� creates a spinon at site i while the boson bC

i creates
an empty site (holon). Strong correlations can be taken into account by forbidding
double occupancies via the subsidiary condition

X
�

f C
i� fi� C bC

i bi D 1; (1.14)

i.e., a site is either empty or singly occupied. When the t � J Hamiltonian (1.10)
is re-expressed in terms of spinons and holons, different MFAs with different order
parameters can be made [39]. One of them has the form of a BCS superconducting
order parameter, but here in terms of spinons, not electrons, while another is of
resonating valence bond (RVB) type (see Chap. 1.6). There are also other MFAs
possible, in particular, since the decomposition (1.14) of electrons in form of spinons
and holons is not the only possible one. Another decomposition is

aC
i� D fibC

i� ; ai� D f C
i bi� ; (1.15)

where the spin degree of freedom is represented by a boson field. We want to find
a representation of the Hamiltonian in terms of auxiliary fields in terms of which a
MFA describes strong electron correlations as well as possible.

5 Deviations from Fermi Liquids

There is no a priori reason why strongly correlated metallic systems should depict
Fermi-liquid behavior. But experiments show that in many cases they do. Systems
with heavy quasiparticles are an example. However, in dimensions lower than three
deviations may easily occur.

In one dimension (1D) a much discussed item is the separation of spin and charge
degrees of freedom. An example is trans-polyacetylene where it is known that
excitations involving only spin or charge degrees of freedom do exist. Moreover,
when heavily doped, those systems can have excitations with fractional charges.
Spin-charge separation is also found in Tomonaga-Luttinger liquids, i.e., one-
dimensional interacting electron systems. These features are found independent of
the strength of correlations.

In 2D, deviations from Fermi-liquid behavior have been observed not only in the
high-Tc cuprates, but also most importantly in samples which exhibit a fractional
quantum Hall effect [40]. In the latter case, excitations with fractional charges are
widely spread and their statistics changes from fermionic to anyonic. We are able
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to understand in the cuprates a number of deviations from standard Fermi-liquid
behavior by a marginal Fermi-liquid description [41].

Even in three dimensions, deviations from a Fermi liquid are known. Examples
are doped Mott–Hubbard systems, but also, e.g., Yb4As3 where due to partial charge
order, spin and charge degrees of freedom are nearly separated. The break down of
a Fermi liquid near a quantum critical point was mentioned before.

6 Superconductivity

Two features of superconductivity in strongly correlated electron systems need
special attention. One is the form of the pair state and the other is the origin of
electron-electron attraction resulting in a Cooper pair formation. Before the discov-
ery of the high-Tc cuprates, s-wave pairing was assumed to be ubiquitous, although
there were indications that in some of the systems with heavy quasiparticles the
pair state was of a more complex form. However, it turned out that in the high-Tc

materials, electrons pair in a d wave state. This state is preferred when the electron-
electron attractions are caused by electronic excitations rather than phonons. Here,
one has to distinguish between excitations within the electron system, which forms
the Cooper pairs and those, which take place in another, i.e., localized electron
system with which the itinerant electrons are interacting. The first case seems to
be realized in the cuprates with spin fluctuations leading to electron attractions
[42, 43] (see Chap. 5.8). Their form is though quite different in the underdoped
and overdoped regimes. The second case is realized, e.g., in the filled skutterudite
compound PrOs4Sb12 where intra-atomic, i.e., crystal field excitations of the 4f 2

subshell of Pr3C provide for an attraction between conduction electrons. The more
recent FeAs superconducting compounds, which came as a complete surprise,
re-emphasize the need for a better understanding of strongly correlated electrons.

A main topic of research is to describe the high-Tc cuprates for low and high
hole doping concentrations, i.e., in the under- and overdoped regimes. While in
the overdoped regime a Fermi liquid description applies, this is different in the
underdoped regime, where the system is close to a Mott–Hubbard transition to an
insulating state.

Understanding the form of the Fermi surface as function of hole doping is an
important issue. Angular-resolved photon emission spectroscopy is an invaluable
tool here [44]. For a satisfactory description of the normal state a broad spectrum of
methods has been used. At one end, are MFA to the Hubbard Hamiltonian rewritten
in terms of auxiliary fields [39], at the other end, are quantum chemical calculations
with a basis set of respectable size for the energy dispersion of a hole in a Cu–O
plane. A separate question is the form of the wavefunction in the superconducting
state. An obvious choice is a BCS wavefunction multiplied by a Jastrow function in
order to take the strong correlations into account. A simplified form of the Jastrow
factor is a Gutzwiller projector which eliminates all configurations with doubly
occupied sites [45] (see Chap. 3.7). This wavefunction relates to an RVB state as
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mentioned earlier. It is used to estimate the transition temperature in the regime of
small hole doping. In the overdoped regime, solving Eliashberg’s equations with a
spin fluctuation propagator determined within the FLEX approximation has given
good results [46].

7 Composite Operator and Projection Techniques

One way of dealing with strongly correlated electrons is to limit the operator or
Liouville space within which one wants to describe the many-body system. Stated
differently, among all possible degrees of freedom of the system only those are kept,
which are considered to be the most important ones. The composite operator method
developed by Mancini and Avella [47] and expanded continuously [48–50] (see
Chap. 3.7) and the projection operator method (see, e.g., [2]) share this goal. They
differ in the way the relevant part of the operator space is chosen. The composite
operator method starts from the equation of motion for the single particle Green’s
function, which generates a new Green’s function, this time for composite operators
instead of a single electron operator. This procedure is repeated until the sequence of
Green’s function is terminated at some stage. The projection operator method selects
the relevant operator space simply by specifying the microscopic processes which
one wants to include, independent of the order in which they appear in the hierarchy
of Green’s function. This has to do with the lack of a proper expansion parameter,
when kinetic energy and Coulomb repulsion are of comparable size. After the space
of composite or relevant operators has been chosen, one can diagonalize the matrix
of Green’s functions. However, there are constants appearing in the solution and
different methods differ in the way they are computed They may or may not include
couplings to the neglected part of the full operator space. Notwithstanding the
possible derivation of low energy scales in certain special cases, like the Kondo
problem [51], the selection of a limited number of composite operators is best suited
for determining high-energy incoherent excitations of strongly correlated systems.
The Zhang–Rice singlet in Cu–O planes or satellite peaks in transition metals serve
as examples here. Usually, the lower the considered energy scales are, the more the
relevant operator space, i.e., the number of composite operators has to be extended
to deal with them.

8 Summary

We have tried to point out a number of features which are characteristic for systems
with strongly correlated electrons. Needless to say that neither are they complete
nor do they give a historical account of their development. For example, we have not
mentioned the effects characteristic for transition metals. The interplay of Hund’s
rule correlations and the kinetic energy requires a description which interpolates
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between a tight binding and a Heisenberg Hamiltonian. A multiband Hubbard
Hamiltonian contains that physics. We have also not touched on the topic of orbital
ordering, a phenomena widely spread in transition metal oxides. Here, Hund’s rule
correlations and crystalline electric field effects compete with each other. Other
topics like strongly correlated electrons on frustrated lattices could be added. Some
of them, like numerical methods, are the subject of the second volume in this
series. Nevertheless, we hope that the introduction given here will help the reader
of the present volume to view the different aspects of strong correlations which are
discussed in the following chapters in a more general context.

Dresden, October 2011 Peter Fulde
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Chapter 1
Density Functional Theory: A Personal View

Robert O. Jones

Abstract A practical definition of “strongly correlated” systems covers those that
cannot be described well by density functional (DF) theory. DF theory has become
an indispensable part of computational condensed matter physics and chemistry, but
its origins go back to the early years of quantum mechanics in the late 1920s, and
this chapter is devoted to a historical view of its development. Thomas and Fermi
recognized the electron density as a basic variable, and Dirac showed already in
1930 that the state of an atom is completely determined by its density; it is not
necessary to specify the wave function. We follow the development of these ideas
in the following decades to the single-particle equations of Kohn and Sham in 1965.
Many details of the history are not well known, even to specialists in the field. The
single application discussed is the Be2, which was perhaps the first unexpected DF
prediction on small molecules that proved to be correct.

1.1 Introduction

Many seminars and publications on “strongly correlated” systems mention at the
outset the widespread use of density functional (DF) theory in condensed matter
physics and chemistry and point out the physical insight that often results. The
second sentence, however, often lists the systems where DF results are disastrous (an
insulator is found to conduct, almost anything to do with rare earth elements, etc.),
emphasizing the importance of describing strongly correlated materials correctly
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2 R.O. Jones

(see, e.g., the Foreword of this volume). At first sight, one might wonder about the
relevance of an article on DF theory in a book devoted to the areas where it fails.
Further reflection, however, suggests that we should have a feel for the areas where it
does a good job, i.e., cases where physical insight can be obtained without recourse
to the methods described in other articles in this volume. It is also important to know
why approximations used in DF calculations should give sensible answers far from
their regions of obvious validity. Yes, the DF approach should be understood by all
who are interested in systems where it fails, and the editors have asked me to help
you.

The DF formalism shows that ground state properties of a system of electrons
in an external field can be determined from a knowledge of the density distribution
n.r/ alone; one does not need to know the much more complicated many-electron
wave function. We shall see below that this remarkable result was proved by Dirac
[1] already in 1930. We focus in this article on a property for which DF calculations
are particularly valuable: the total energyE of a system of electrons in the presence
of ions located at RI. Accurate calculations of the entire energy surface E.RI/ are
possible only for systems with very few atoms, and this function generally has vast
number of maxima and minima at unknown locations. The lowest energy, however,
corresponds to the ground state structure, and paths between minima are essential
to our studies of chemical reactions, including their activation energies. When I
read the autobiography of Francis Crick [2] some 15 years ago, I was taken by his
observation

If you want to study function, study structure.

This may be self-evident to molecular biologists, but it is also true in many other
areas. The DF approach allows us to calculate E.RI/, and hence the structure and
many related properties, without using experimental input. If you are more inter-
ested in “real materials” than in mathematical models, this is a crucial advantage in
the area of strongly correlated materials as well.

Twenty years ago, Olle Gunnarsson and I reviewed the DF formalism, its history,
and its prospects in an article that has been cited more than 2,000 times [3]. This
is very gratifying, particularly if all who cited it had actually read it. I have given
many seminars that took a similar perspective on the history of the method. Perhaps
colloquium organizers (editors?) think that someone who has been active in DF
research for over 30 years might have something to say. Some 4 years ago, I looked
in detail into the original literature, some of which many (including me) simply cite.
This has resulted in a substantial change in format that has been reflected in several
seminars. Many listeners, even (or particularly) DF specialists, were surprised at
what they heard. In these talks, and in the present chapter, I have traced DF history
from the first years after the development of quantum mechanics. I have quoted
the original texts in numerous places; some are in journals that are not readily
accessible, but it is important in all cases that the authors speak for themselves.
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1.2 The Early Years: The Density as a Basic Variable

The recent book by Gino Segrè, Faust in Copenhagen [4], gives a fascinating
account of the development of quantum mechanics in the years following 1926.
Methods for finding approximate solutions of the Schrödinger equation were devel-
oped almost immediately after the equations were published, and these methods
have had a profound impact on chemistry and condensed matter physics ever since.

A method for calculating the wave function of an atom was developed by Hartree
[5]. The “Hartree approximation” to the many-electron wave function is a product
of single-particle functions:

�.r1; r2; :::/ D  1.r1/ � � � N .rN /; (1.1)

where each  i.ri / satisfies a one-electron Schrödinger equation with a potential
term arising from the average field of the other electrons. Although the papers
of Hartree [5] introduced the idea of such a “self-consistent field,” with specific
reference to the core and valence electrons, there is no mention of the approximation
(1.1). Slater [6] and Fock [7] noted shortly afterwards that the product wave function
(1.1) in conjunction with the variational principle led to a generalization of the
method that would apply to systems more complex than atoms. Both authors noted
that replacing (1.1) by a “linear combination of such products with permuted
indices” [6] or a determinant of such functions [7] led to equations that were not
much more complicated than those of Hartree, but satisfied important symmetry
requirements such as the Pauli exclusion principle. These determinantal functions,
which had been used previously in discussions of atoms [8] and ferromagnetism
[9], are known today as “Slater determinants,” and the resulting “Hartree–Fock
equations” have formed the basis of most discussions of atomic and molecular
structure since.

This was the view of Dirac in 1929 [10]:

The general theory of quantum mechanics is now almost complete, the imperfections
that still remain being in connection with the exact fitting of the theory with relativity
ideas. These give rise to difficulties only when high-speed particles are involved, and
are therefore of no importance in the consideration of atomic and molecular structure
and ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if
one neglects relativity variation of mass with velocity and assumes only Coulomb forces
between the various electrons and atomic nuclei. The underlying physical laws necessary
for the mathematical theory of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without too much
computation.

Dirac emphasizes the difficulty of solving the equations of quantum mechanics and
the desirability of developing “approximate practical methods of applying quantum
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mechanics” to explain complex systems. Density functional theory seems to me to
be just such a method.

Dirac did not stop at this statement, but set about finding a way to improve
the newly developed Thomas–Fermi (TF) model [11, 12] for calculating atomic
properties based purely on the electron density n.r/ [10]. Here it is assumed that
the electrons form a perfect gas satisfying Fermi statistics and the kinetic energy
has a simple dependence on the n.r/. The TF equations

5

3
Ckn.r/

2
3 C e2

Z
dr 0 n.r 0/
jr � r 0j C Vext.r/C � D 0; (1.2)

where Ck D 3„2.3�2/ 23 10m�1 and � is the Lagrange multiplier related to the
constraint of constant particle number, are derived in Appendix 1. Dirac noted the
necessity of incorporating “exchange” phenomena, as in the Hartree–Fock approach
[10]:

For dealing with atoms involving many electrons the accurate quantum theory, involving
the solution of the wave equation in many-dimensional space, is far too complicated to
be practicable. One must therefore resort to approximate methods. The best of these is
Hartree’s method of the self-consistent field. Even this, however, is hardly practicable, ...
so that one then requires a still simpler and rougher method. Such a method is provided by
Thomas’ atomic model, ...

The method of the self-consistent field has recently been established on a very much
better theoretical basis in a paper by Fock, which shows how one can take into account
the exchange phenomena between equivalent electrons. Fock shows that if one takes
the best approximation to the many-dimensional wave function that is of the form of a
product of a number of three-dimensional wave functions, one for each electron, then the
three-dimensional wave functions will satisfy just Hartree’s equations. . . . . The exclusion
principle of Pauli, however, requires that the wave function representing a number of
electrons shall always be antisymmetrical. One would therefore expect to get a better
approximation if one first made the product of a number of three-dimensional wave
functions antisymmetrical, by applying perturbations and taking a linear combination, and
then made it approach as closely as possible to the accurate many-dimensional wave
function. The three-dimensional wave functions will then, as found by Fock, satisfy
equations somewhat different from Hartree’s, containing extra terms that may be considered
as representing the exchange phenomena.

Dirac included exchange effects in the “Thomas atom” [1] by means of the potential

V Dirac
x D �

�
1

�

��
3�2n.r/

� 1
3 : (1.3)

This approximation should be valid for weak spatial variations of the density n.r/,
and the correction to the TF equation is often referred to as the “Thomas–Fermi–
Dirac” equation.

The Thomas–Fermi method and its extensions give a rough description of some
properties of atoms (e.g. the charge density and the electrostatic potential), and it is
a well-defined model whose mathematical properties have attracted considerable
attention [13, 15]. The TF scheme is exact, for example, in the limit of infinite
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nuclear charge. However, the model has severe deficiencies. The charge density is
infinite at the nucleus and decays as r�6, not exponentially, far from it. It has also
been shown by Teller [16] and others that TF theory does not result in atoms binding
to form molecules or solids. There is also no shell structure in the TF atom, so that
the periodic variation of many properties with changing atomic number cannot be
reproduced, and no ferromagnetism [3]. Moreover, atoms shrink with increasing
atomic numberZ (as Z�1=3/ [17].

On rereading [1], however, I was struck particularly by the following lines, where
Dirac states quite clearly the basic premise of all involved in DF calculations:

Each three-dimensional wave function will give rise to a certain electric density. This
electric density is really a matrix, like all dynamical variables in the quantum theory. By
adding the electric densities from all the wave functions we can obtain the total electric
density for the atom. If we adopt the equations of the self-consistent field as amended for
exchange, then this total electric density (the matrix) has one important property, namely,
if the value of the total electric density at any time is given, then its value at any later time
is determined by the equations of motion. This means that the whole state of the atom is
completely determined by this electric density; it is not necessary to specify the individual
three-dimensional wave functions that make up the total electric density. Thus one can deal
with any number of electrons by working with just one matrix density function.

The italics are in the original. The observation that the density follows the equations
of motion is much in the spirit of Ehrenfest’s theorem [18]. Ehrenfest had proved
in 1927 what I have seen referred to as the “time-dependent Hellmann-Feynman
theorem,” namely that the acceleration of a quantum wave packet that does not
spread satisfied Newton’s equations of motion.

The central role of the density in the present discussion means that we must have
a clear picture of its nature. In Fig. 1.1, we show the spherically averaged density
in the ground state of the carbon atom. The density falls monotonically from the

Fig. 1.1 Logarithm of spherical average of density in ground state of C atom as a function of the
distance from the nucleus [3]
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nucleus and does not show the radial oscillations that occur if we plot 4�r2n.r/.
The charge density in small molecules is also relatively featureless, with maxima
at the nuclei, saddle points along the bonds, and a generally monotonic decay from
both. It is essential also to recognize that the electron density in molecules and solids
shows relatively small departures from the overlapped densities of the constituent
atoms. Energy differences, including binding, ionization, and cohesive energies, are
the focus of much DF work and result from subtle changes in relatively featureless
density distributions. It still amazes me that this is all we need to know to determine
ground state properties.

1.3 Towards an “Approximate Practical Method”

The basis of a quantum theory of atoms, molecules, and solids was already in place
at the beginning of the 1930s. Linear combinations of atomic orbitals formed molec-
ular orbitals, from which determinantal functions could be constructed, and linear
combinations of determinants would provide approximations to the complete wave
function. Dirac had noted, however, that this procedure could not be implemented
in practice, so that approximations are essential. Furthermore, numerical techniques
for solving the Schrödinger equation in extended systems needed to be developed.

Wigner and Seitz [19] developed a cellular method for treating the self-
consistent problems in crystals, and the “Wigner–Seitz cell” is a construction that
is known to all students of condensed matter physics. The first application was to
metallic sodium using a pseudopotential for the Na ion, and calculations of the
lattice constant, cohesive energy, and compressibility gave satisfactory results. Of
particular interest for our purposes, however, is the calculation of the probability
of finding electrons with parallel spins a distance r apart (Fig. 1.2). This function
obtains its half-value for r D 1:79 d 0 or 0:460 d for a body-centered cubic lattice
with cube edge d , which is close to the radius of the “Wigner–Seitz sphere”
. 3
8�
/
1
3 d D 0:492 d . It follows that two electrons with parallel spins will very rarely

be at the same ion, simply as a consequence of the exclusion principle. Wigner
and Seitz noted that this argument does not depend significantly on the potential
and should apply to a Fermi gas subject to periodic boundary conditions. The
corresponding curves for spin up and spin down electrons, as well as for both spins
combined, were discussed in the 1934 review article of Slater [20].

The picture that results is simple and appealing: The exclusion principle means
that an electron with a given spin produces a surrounding region where there is
a deficiency of charge of the same spin. This region contains unit charge and
is referred to as the “Fermi” [19] or “exchange hole” [21]. In the Hartree–Fock
scheme, the exchange hole is different for each wave function, but Slater [21]
developed a simplified “exchange potential”:

V Slater
x D �

�
3

2�

��
3�2n.r/

� 1
3 : (1.4)
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Fig. 1.2 Probability function
that electrons in Na with
parallel spins are a distance
r=d 0 apart. d 03 D V0=.3�

2/,
with V0 the atomic volume.
After Wigner and Seitz [19]
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This approximation was proposed at the time that electronic computers were
becoming available for electronic structure calculations and proved to be very useful
in practice. Methods for solving the Schrödinger equation had been developed
around this time, including the augmented plane wave (APW) [22] and Korringa–
Kohn–Rostoker approaches [23, 24].

The exchange potential of Slater (1.4) is 3/2 times that of Dirac (1.3), but Slater
[25] pointed out that an effective potential proportional to the cube root of the
density could be obtained by arguments based on the exchange hole that are quite
independent of the free electron gas arguments used in the original derivation [21].
The exchange hole discussed above for a spin up electron contains a single electron.
If we assume that it can be approximated by a sphere of radius R", then

�
4�

3

�
R3"n" D 1I R" D

�
3

4�n"

� 1
3

; (1.5)

where n" is the density of spin up electrons. Since the electrostatic potential at the
center of such a spherical charge is proportional to 1=R", the exchange potential

will be proportional to n
1
3

" . This argument was used by Slater to counter a common
misconception that local density approximations were only valid if the density was
close to that in a uniform electron gas.

In 1954, Gáspár [26] pointed out that the prefactor of the effective exchange
potential (1.4) was questionable. If one varies the spin orbitals to minimize the total
energy in the Thomas–Fermi–Dirac form, one obtains a coefficient just 2

3
as large.

Gáspár applied this approximation to the CuC ion and found good agreement with
Hartree–Fock eigenfunctions and eigenvalues. Slater noted that Gáspár’s method
was “more reasonable than mine” [27], but most calculations continued to use the
larger value.
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1.4 Density Functional Formalism

The variational principle on the energy was the basis of the formulation of the
density functional formalism given by Hohenberg and Kohn [28]. The ground state
(GS) properties of a system of electrons in an external field can be expressed as
functionals of the GS electron density, i.e., they are determined by a knowledge of
the density alone. The total energyE can be expressed in terms of such a functional,
and EŒn� satisfies a variational principle. These basic theorems were proved by
Hohenberg and Kohn [28] for densities that can be derived from some potential
V (“V -representable”). A simpler and more general proof for (“N -representable”)
densities that can be derived from some antisymmetric wave function was given by
Levy [29] and is given in Appendix 2. These proofs leave open, of course, how we
write the functional relationship between energy E and density n in practice.

1.4.1 Single-Particle Description of a Many-Particle System

The task of finding good approximations to the energy functional E.n/ is greatly
simplified if we use the decomposition introduced by Kohn and Sham [30]:

EŒn� D T0Œn�C
Z

dr n.r/
�
Vext.r/C 1

2
˚.r/

	
C ExcŒn�: (1.6)

T0 is the kinetic energy that a system with density n would have if there were no
electron–electron interactions, ˚ is the classical Coulomb potential for electrons,
and Exc defines the exchange-correlation energy. Although T0 differs from the
true kinetic energy T , it is of comparable magnitude and is treated here without
approximation. This removes many of the deficiencies of the Thomas–Fermi
approximation, such as the lack of a shell structure of atoms or the absence
of chemical bonding in molecules and solids. In the expression (1.6) all terms
other than the exchange-correlation energy Exc can be evaluated exactly, so that
approximations for this term play a central role in the following discussion.

The variational principle applied to (1.6) yields

ıEŒn�

ın.r/
D ıT0

ın.r/
C Vext.r/C˚.r/C ıExcŒn�

ın.r/
D 
; (1.7)

where 
 is the Lagrange multiplier associated with the requirement of constant
particle number. If we compare this with the corresponding equation for a system
with an effective potential V.r/ but without electron-electron interactions,

ıEŒn�

ın.r/
D ıT0

ın.r/
C V.r/ D 
; (1.8)
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we see that the mathematical problems are identical, provided that

V.r/ D Vext.r/C˚.r/C ıExcŒn�

ın.r/
: (1.9)

The solution of (1.8) can be found by solving the Schrödinger equation for non-
interacting particles,

�
�1
2
r2 C V.r/

�
 i.r/ D �i i .r/; (1.10)

yielding

n.r/ D
NX
iD1
j i.r/j2: (1.11)

Condition (1.9) can be satisfied in a self-consistent procedure.
The solution of this system of equations leads then to the energy and density

of the lowest state and all quantities derivable from them. The formalism can be
generalized to the lowest state with a given set of quantum numbers [31]. Instead
of seeking these quantities by determining the wave function of the system of
interacting electrons, the DF method reduces the problem to the solution of a single-
particle equation of Hartree form. In contrast to the Hartree–Fock potential,

VHF  .r/ D
Z

dr 0 VHF.r ; r
0/ .r 0/; (1.12)

the effective potential, V.r/ is local.
The numerical advantages of solving the Kohn-Sham equations [30] are obvious.

Efficient methods exist for solving single-particle Schrödinger-like equations with
a local effective potential, and there is no restriction to small systems. With a local
approximation toExc, the equations are no more complicated to solve than Hartree’s
equations. In contrast to the Thomas–Fermi method, where the large kinetic energy
term is approximated, the valence kinetic energy T0;v, the electrostatic interaction
between core and valence electrons Ecv, and the electrostatic interaction between
valence electronsEvv are treated exactly. However, the exchange-correlation energy
Exc is the difference between the exact energy and the terms we can evaluate
numerically exactly, and approximations are unavoidable.

1.4.2 Approximations to Exc

Kohn and Sham [30] proposed using the “local density (LD) approximation”

ELD
xc D

Z
dr n.r/ "xcŒn.r/�; (1.13)
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where "xcŒn� is the exchange and correlation energy per particle of a homogeneous
electron gas with density n. This approximation is exact in the limits of slowly
varying densities and very high densities. The authors noted that this approximation
“has no validity” in the “surface” of atoms and in the overlap regions of molecules
and concluded [30]:

We do not expect an accurate description of chemical bonding.

The generalization to spin-polarized systems is

ELSD
xc D

Z
dr n.r/ "xcŒn".r/; n#.r/�; (1.14)

where "xcŒn"; n#� is the exchange and correlation energy per particle of a homoge-
neous, spin-polarized electron gas with spin up and spin down densities n" and n#,
respectively.1 The “X˛” approximation

EX˛
x D �

3

2
˛C

Z
dr f.n".r//4=3 C .n#.r//4=3g; (1.15)

where C D 3.3=4�/1=3, was used in numerous calculations in the late 1960s
and 1970s. The ˛-dependence of energy differences for a given atom or molecule
is weak for values near 2=3, the value of Dirac [1], Gáspár [26], and Kohn and
Sham [30].

We have noted that the electron density in molecules and solids is generally far
from that of a homogeneous electron gas, and the validity of calculations based
on properties of a gas of constant density has often been questioned. The many
improved approximations for Exc that have been developed in the past 20 years are
beyond the scope of this article, but an example of a rung on the “Jacob’s ladder” of
approximations is that of TPSS [32], where n" and n# are joined by their gradients
and the kinetic energy density of the occupied Kohn–Sham orbitals. In recent years,
there has been much focus on incorporating “exact exchange” into DF calculations.
Olle Gunnarsson and I showed [33] that LD and LSD approximations could yield
very large errors in exchange energy differences if there was a change in the nodal
structure of the orbitals involved. The exact inclusion of exchange would circumvent
this problem, but the computation cost is substantial. We now discuss some general
properties of Exc using arguments closely related to the “exchange hole” picture of
Wigner and Seitz [19] and Slater [21, 25].

1The calculation by Bloch [9] of ferromagnetism in a free-electron model of a metal was the first
where the exchange-correlation energy was expressed as the sum of terms proportional to n4=3

"

and n4=3
#

.
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1.4.3 Exchange-Correlation Energy, Exc

The crucial simplification in the density functional scheme is the relationship
between the interacting system, whose energy and density we seek, and the
fictitious, noninteracting system for which we solve (1.10) and (1.11). This can be
studied by considering the interaction �=jr � r 0j and varying � from 0 (noninter-
acting system) to 1 (physical system). This is done in the presence of an external
potential, V� [34], such that the ground state of the Hamiltonian

H� D �1
2
r2 C Vext.r/C V� C �Vee (1.16)

has density n.r/ for all �. The exchange-correlation energy of the interacting system
can then be expressed exactly as an integral over the coupling constant � [31]:

Exc D 1

2

Z
dr n.r/

Z
dr 0 1

jr � r 0jnxc.r; r
0 � r/; (1.17)

with

nxc.r; r
0 � r/ 	 n.r 0/

Z 1

0

d�
�
g.r; r 0; �/ � 1

	
: (1.18)

The function g.r ; r 0; �/ is the pair correlation function of the system with density
n.r/ and Coulomb interaction �Vee. The exchange-correlation hole, nxc, describes
the fact that an electron at point r reduces the probability of finding one at r 0.
The xc-energy may then be viewed as the energy resulting from the interaction
between an electron and its exchange-correlation hole. This is a straightforward
generalization of the work of Wigner and Seitz [19] and Slater [21] discussed
above.

Second, the isotropic nature of the Coulomb interaction Vee has important
consequences. A variable substitutionR 	 r 0 � r in (1.17) yields

Exc D 1

2

Z
dr n.r/

Z 1

0

dR R2
1

R

Z
d˝ nxc.r;R/: (1.19)

Equation (1.19) shows that the xc-energy depends only on the spherical average
of nxc.r;R/, so that approximations for Exc can give an exact value, even if the
description of the nonspherical parts of nxc is quite inaccurate. Third, the definition
of the pair-correlation function leads to a sum-rule requiring that the xc-hole
contains one electron, i.e., for all r ,

Z
dr 0 nxc.r ; r

0 � r/ D �1: (1.20)



12 R.O. Jones

This means that we can consider �nxc.r; r
0 � r/ as a normalized weight factor and

define locally the radius of the xc-hole

D 1
R

E
r
D �

Z
dr

nxc.r;R/

jRj : (1.21)

This leads to

Exc D �1
2

Z
dr n.r/

D 1
R

E
r
: (1.22)

Provided (1.20) is satisfied, Exc is determined by the first moment of a function
whose second moment we know exactly and depends only weakly on the details of
nxc [31]. It is therefore possible that approximations to the exchange and correlation
energy can lead to good total energies even if the details of the exchange-correlation
hole are described very poorly. This is shown in Fig. 1.3, where the exchange hole
in a nitrogen atom is shown for a representative value of r for both the local density
and exact (Hartree–Fock) cases. The holes are qualitatively different: The LD hole is

Fig. 1.3 Exact (solid) and approximate (dashed) exchange hole nxc.r; r
0 � r/for spin up electron

in a nitrogen atom for 0:63 a.u. The top figure shows the hole along a line through the nucleus and
the electron. The arrow shows the electron position, and r � r 0 D 0 gives the electron position.
The lower figure shows the spherical average of the hole around the electron, as well as the value
of h1=Ri (1.21) [3]
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spherically symmetric and centered on the electron, while the exact hole has a large
weight at the nucleus and is very asymmetric. Nevertheless, the spherical averages
are very similar, and the exchange energies differ by only a few percent.

1.4.4 DF Theory in Retrospect

Density functional calculations are so well established in condensed matter physics
and chemistry that one might assume that they have always found general accep-
tance. This was not the case. Condensed matter physicists were generally pleased to
have justification for the “local density” calculations they had been performing for
decades, and they were sometimes less than critical of the approximations involved.
A well-known condensed matter theorist, Volker Heine, looked back on the 1960s
in this way [35]:

Of course at the beginning of the 1960s the big event was the Kohn Hohenberg Sham
reformulation of quantum mechanics in terms of density functional theory (DFT). Well,
we recognize it now as a big event, but it did not seem so at the time. That was the second
big mistake of my life, not to see its importance, but then neither did the authors judging
from the talks they gave, nor anyone else. Did you ever wonder why they never did any
calculations with it?

Nevertheless, large number of electronic structure theorists and a few theoretical
chemists moved seamlessly from performing “X˛” or “Hartree–Fock–Slater” cal-
culations into the density functional world.

It took many years for DF calculations to be taken seriously by most chemists.
The reasons given were often quite convincing: (1) Unlike the TF theory, the Kohn-
Sham expression for the energy is not really a “functional” of the density, since the
kinetic energy term is treated exactly and is defined by an effective potential that
leads to the density. (2) The original functional of Hohenberg and Kohn [28] is not
even defined for all n, because not all densities can be derived from the ground
state of some single-particle potential [13]. (3) Approximations to the exchange-
correlation energy are essential, and their usefulness can only be determined by
performing calculations. (4) There is no systematic way to approach the exact
solution of the Schrödinger equation.

This last point was emphasized by many. The Hartree–Fock method could
be extended to multiple determinants (“configuration interaction”) and, coupled
with a large basis set, we could obtain, in principle, the exact wave function and
all properties obtainable from it. This is a very attractive proposition, and new
generations of computers might make the reservations of Dirac [10] less formidable.
Nevertheless, obtaining numerically exact total energies from calculations of the
wave function remains a major challenge to this day, and it is not surprising that
several groups looked at alternatives.

Hartree–Fock–Slater calculations were carried out in the early 1970s, particularly
by Evert Jan Baerends and collaborators in Amsterdam, and some of the first DF
calculations on small molecules were carried out during the thesis work of Olle
Gunnarsson in Göteborg [31]. John Harris and I were very surprised that the LD
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and LSD approximations gave reasonable results for small molecules, and we
decided to expand the effort when Olle joined our group in 1975. We invested
man-years in the development of a full-potential LMTO code for small molecules
and clusters, and we performed calculations on many small systems. The local
density approximations led to good geometries and reasonable binding energies in
most cases. Most condensed matter physicists were not surprised, but theoretical
chemists remained sceptical or critical, and this situation continued throughout the
1980s and into the 1990s.

Two developments changed this. Axel Becke developed a nonlocal exchange
functional that promised improvements over local approximations [36], and applica-
tion of this functional to the atomization energies of small molecules by John Pople
and coworkers gave very promising results [37]:

In summary, these initial results indicate that DFT is a promising means of obtaining
quantum mechanical atomization energies; here, the DFT methods B-VWN and B-LYP
outperformed correlated ab initio methods, which are computationally more expensive.

In addition to the growing body of results on molecules and clusters that were
beyond the scope of calculations of correlated wave functions, this change in attitude
by one of the most prominent theoretical chemists led to a dramatically new attitude
towards the DF method in chemistry. One sign of this was the incorporation of DF
options into molecular program packages.

One willing convert seems to have been Michael Frisch, first author of the
Gaussian program package, who gave a seminar at the ACS National Meeting in
San Francisco (13 April 1997) on “Ab initio calculations of vibrational circular
dichroism and infrared spectra using SCF, MP2, and density functional theories for
a series of molecules.” At the end of the talk, an unknown (to me) member of the
audience asked:

What about Hartree–Fock?

The answer was unambiguous and so much to my liking that I wrote it down
immediately:

It does not matter what you want to calculate, and it does not matter what functional you
use; density functional results are always better than Hartree–Fock.

Fritz Schaefer, a prolific and much-cited theoretical chemist, gave his perspective
on this transitional period when summarizing a conference in 1996 [38]:

This conference has displayed a remarkable synthesis of density functional methods with ab
initio quantum mechanical methods. In light of this successful synthesis, one might fairly
ask the question, why did it take some of us so long to accept DFT?

As one of those who resisted DFT until a few years ago, I would suggest two reasons:
(i) The overselling of the X˛ method during the 1970s. (ii) Grave reservations concerning
the numerical precision of early density functional computations. I distinctly remember a
discussion with Professor Handy five or six years ago in which we juggled the question, has
any density functional calculation ever given a correct molecular energy to ˙0:01 hartree,
other than fortuitously?
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The first point is certainly valid, as there had been many promises to solve long-
standing problems. It is often overlooked, however, that some of the bizarre results
that were found using the X˛ method (such as linear water or an unbound carbon
dimer) were a consequence of the use of a “muffin tin” potential throughout the
“self-consistent” cycle, not from the use of approximation (1.15). There were very
few people performing DF calculations on molecules in the 1970s, so the second
remark must also apply to our work. Two comments are in order: (a) There is no
reason to think that the LMTO basis functions we were using were inferior in any
way to the very limited bases then favored in the Gaussian world. (b) The variational
principle indicates that wave function-based calculations will indeed give better
total energies than DF theory. However, we focused on energy differences, such
as binding energies, for which there is no variational principle. All calculations of
energy differences rely on cancellation of errors.

1.5 The Beryllium Dimer

The editors have asked that I “present just one case study where the method has
proved to give a substantial leap forward in knowledge.” It would be surprising
if I did not choose this single case study from my own work. I have chosen the
binding energy of the beryllium dimer Be2, and we shall see that its story also says
something about scientists.

1.5.1 The Story to Late 1979

The beryllium dimer (Be2) is my favorite molecule. With two identical atoms and
just four valence electrons (2�2g2�

2
u ) it is not exactly pretty. However, for many years

it resisted discovery, and much theoretical work indicated that this situation would
not change. I was astonished when my DF calculations showed that the binding
energy should be substantially greater than in its group 12 neighbors in the periodic
table (He2, Mg2). Either I had an unexpected prediction that could be checked by
other methods, or I had a case where the DF method led to a qualitatively incorrect
result. An interesting situation, or so it seemed.

My interest in group 12 dimers arose from discussions with a colleague in the
Institut für Chemie in Jülich, Chung Wu. He had used a Knudsen source to evaporate
metals and study the concentration of clusters of different sizes as a function of
temperature. If one makes assumptions about the bond length and the vibration
frequency, it is possible to estimate the dissociation energy of the ground state.
Chung had performed measurements on Mg2 and Ca2, for which other spectroscopic
data were available, but his estimates of the binding energies were significantly
larger than earlier results of infrared spectroscopy. I decided to carry out calculations
on all group 12 dimers.
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The results for Mg2 were consistent with measured values of the bond length,
but the vibration frequency and the well depth were both overestimated, a feature
we now know follows from the local density (LD) approximation used in these
calculations. Absorption spectra had also been measured for the calcium dimer, and
the results of the calculations showed similar parallels. I was confident enough in
the DF description of the binding in these molecules to extend the calculations to
the heavier dimers (Sr2, Ba2, and Ra2), even to the lightest, He2. I did not expect
a good description of the last of these, a prototype van der Waals molecule with
a minimum in the binding energy curve that is so shallow that it does not support
vibrations (this means that the minimum energy associated with vibrations – the
“zero point energy” – is above that of two separated atoms). The DF calculations
led, as expected, to a minimum that was too deep.

There were good reasons why I came last to the beryllium dimer. The opinions of
many eminent theoretical chemists were overwhelmingly against its existence, and
our first applications of the DF formalism to “first-row” molecules [39] omitted Be2
for precisely this reason! Here are quotes from some of the most cited theoretical
chemists of the past decades:

One would expect that two normal beryllium atoms would behave towards each other as
do two normal helium atoms. This expectation is given support by our calculations, which
show that the resulting molecular state is repulsive.

J.H. Bartlett, Jr, W.H. Furry [40]

There is no evidence from this calculation that the ground state of Be–Be is bound ... The
CI results are just as repulsive as the SCF results ....

C.F. Bender, E.R. Davidson [41]

.. the van der Waals bound molecule Be2, which should have a dissociation energy less than
1.2 kcal/mol, the experimental D0 for Mg2 .. To obtain a realistic result, say 0.7 kcal/mol,
for the dissociation energy ...

E. Dykstra, H.F. Schaefer III, W. Meyer [42]

Of course, the ground states of analogous diatomics (Mg2, Hg2, Cd2) are bound due to the
much larger dispersion interaction which occurs in these much more polarizable species. ...
The second order perturbation theory calculations indicate that the ground state 1˙C
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potential curve of Be2 is indeed repulsive.

K.D. Jordan, J. Simons [43]

Because the ground state of Be2 has not been detected experimentally, it appears that the
van der Waals minimum is very shallow (. 1 kcal/mol), it may even be too shallow to
support vibrational levels.

K.D. Jordan, J. Simons [44]

Since a system of two Be atoms, each with closed shell (1s22s2) electronic configurations,
does not show appreciable bonding, substantial changes must occur in the nature of bonding
if beryllium metal is to be formed. ... At the highest level of theory used, RMP4(SDQ)/6-
31G*, the bond length is 3.999 Å and the binding is 0.3 kcal/mol.
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R.A. Whiteside, R. Krishnan, J.A. Pople, M.-B. Krogh-Jespersen, P. von R.
Schleyer, G. Wenke [45]

These articles paint a clear picture: The beryllium dimer has an equal occupancy
of bonding and antibonding orbitals and will be unbound in the absence of
long ranged “van der Waals forces.” These forces are proportional to the atomic
polarizability, which lies in Be between the values of He and Mg. As noted in [45],
this implies that the bonding in larger Be clusters must be substantially different
from that in the dimer, or beryllium metal would not form.

I carried out the calculations in the last quarter of 1978, completing the last (Be2)
in early December. The results were quite disconcerting: Not only should Be2 exist,
but its equilibrium separation (2.57 Å) would be shorter than in Mg2 and about half
of the anticipated minimum of the binding energy curve. Moreover, the binding
energy should be significantly greater than that of Mg2. The results are shown in
Fig. 1.4, where DF calculations of the cohesive energies of the bulk elements and
experimental values are shown where available. The obvious similarities between
the two curves suggest that binding in the diatomic molecules and the bulk has the
same origin. A shorter bond length in Be2 than in Mg2 would be consistent with the
measured lattice constants in the bulk materials.

I planned to submit the results for publication, but I was uncertain enough to
seek the reaction of theoretical chemists before doing so. Just before Christmas
(21 December 1978) I wrote to Prof. Werner Kutzelnigg in Bochum, who headed
one of the leading theoretical groups in Germany. Bochum is just 100 km from
Jülich, and I had given a seminar in this group in February 1978. We arranged

Fig. 1.4 Well depths calculated for 1˙C

g state of group 12 dimers (solid line, left scale [46]) and
cohesive energies of bulk materials (dashed line, right scale [47]). Experimental values (crosses)
are given were known [46]
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a second seminar on 7 February 1979. In the meantime I began analyzing and
writing up the results. I also tried several times to convince Chung Wu to perform
measurements on Be2, but that is another story.

I have vivid memories of my second Bochum seminar. It was obvious that nobody
believed my results, and the discussion after my presentation focused solely on
which mistake I must have made, not on whether or not there was one. I asked what
I had done wrong in Be2 that had apparently been right in Mg2, but there were ready
answers. Herbert Kollmar agreed to perform additional calculations on Be2, and I
returned to Jülich. Prof. Kutzelnigg wrote to me shortly afterwards (19 February
1979) with the results of these calculations for an interatomic separation of 5.0 a.u.
(2.65 Å) (a little longer than the minimum in my binding energy curve), informing
me that2:

The molecule is certainly not bound at this separation, but (by ca. 0.5 kcal/mol) repulsive.
The minimum is then at greater distances and is obviously much weaker than you imagine,
but in agreement with the pseudopotential calculations that Herr Schwartmann has shown
you, where Mg2 has a clearly deeper minimum.

In the following 2 weeks I completed the manuscript. The calculations indicated
that sp-polarization is the origin of binding in these molecules, and I showed
that the spatial overlap between the valence s- and p-orbitals was greatest in
beryllium. I sent the manuscript to the Journal of Chemical Physics at the University
of Chicago on 13 March 1979, and I left for Australia with my family shortly
afterwards. I included several minor improvements suggested by the referee,
and the manuscript was accepted on 2 May 1979 and published on 1 August
1979 [46].

The absence of experimental evidence for the existence of the beryllium dimer
was very frustrating, of course, and I tried again to convince Chung Wu of the
interest that the identification of the molecule would cause. I had no success, and
I understood his reluctance to work with a metal whose vapor is highly toxic.
Shortly afterwards, Olle Gunnarsson returned from the 46th Nobel Symposium in
Aspenäsgården (near Göteborg, Sweden from 11 to 16 June 1979). Rod Bartlett
had told him there that correlated wave function calculations on Be2 by Bowen
Liu (IBM San Jose) had led to a minimum between 4 and 5 a.u. with a binding
energy of several kcal/mol. On 26 June 1979 I sent copies of my manuscript to
Bowen Liu, with a request for more information, and to Walter Balfour (University
of Victoria, BC, Canada), who had observed Mg2 while at the National Research
Council laboratories in Ottawa. I asked whether he could do similar measurements
on Be2.

2W. Kutzelnigg to ROJ (19 February 1979)
“Herr Kollmar hat inzwischen Be2 bei 5 a.u. (2.65 Å) gerechnet. Das Molekül ist bei diesem
Abstand sicher nicht bindend, sondern (mit ca. 0.5 kcal/mol) abstoßend. Das Minimum liegt wohl
bei größeren Abständen und ist offenbar viel schwächer als Sie vermuten, aber in Einklang mit den
Pseudopotentialrechnungen, die Ihnen Herr Schwartmann gezeigt hat, wonach Mg2 ein deutlich
tieferes Minimum hat.”
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Balfour responded on 4 July 1979 with more information on Mg2 and Ca2 and
the news of unsuccessful attempts by Reginald Colin at NRC to find the beryllium
dimer. Colin (who had moved to the Université Libre in Brussels) provided me
subsequently with more details of a difficult experiment (18 July 1979). Bowen Liu
did not answer my letter and he was not particularly forthcoming when I phoned
him, so I wrote on 7 August 1979 to his collaborator Douglas McLean. Doug came
originally from Western Australia, and he had spent a year (1962) in the Chemistry
Department of the University of Western Australia in Perth when I was an Honours
student in Physics there. He responded at length (27 August 1979) with full details
of the calculations and the results. Liu and McLean had found a minimum at 4.75
a.u. and a well depth of 810 cm�1, but the calculation (ICF, interacting correlated
fragments) left several questions open.

I had not received the promised details of Herbert Kollmar’s calculations, and I
wrote to him on 30 July. He responded (1 August) that he found no minimum in
CEPA (coupled electron pair approximation) calculations for a Be–Be separation
near 5 a.u. On 7 August Prof. Kutzelnigg wrote a letter with an unambiguous
message3:

Herr Kollmar has shown me your letter and his response. In order to avoid misunderstand-
ing, I should like to add the following remarks. ( .... ) This indicates that the CEPA-curve
should be very similar to the exact curve - even if you like the IEPA-curve better, because it
is similar to yours. Perhaps you neglect exactly those inter-intra correlation effects that are
ignored by IEPA.

Several weeks later (21 September), however, Herbert Kollmar informed me of a
presentation by Paul Bagus from IBM San Jose at a meeting held in Bad Neuenahr
(18 September), where the results of Liu and McLean were presented (Be2: re D
2:49 Å, De D 814 cm�1, 	1 D 202 cm�1, 	2 D 132 cm�1). He wrote:

The results confirm your calculations; the discrepancy to our calculations is unclear.4

The results of Liu and McLean were submitted to Journal of Chemical Physics as
a Note on 10 December 1979 and published on 1 March 1980 [48]. This article
referred to my JCP publication.

3W. Kutzelnigg to ROJ (7 August 1979)
“Herr Kollmar hat mir Ihren Brief und seine Antwort gezeigt. Damit keine Mißverständnisse
auftreten, möchte ich noch folgende ergänzende Bemerkungen machen. (.....) Dies spricht schon
dafür, dass die CEPA-Kurve der exakten Kurve sehr ähnlich sein muss - auch wenn Ihnen die
IEPA-Kurve sympatischer sein sollte, weil sie Ihrer ähnlich ist. Vielleicht vernachlässigen Sie auch
genau jene inter-intra Korrelationseffekte, die man bei IEPA vernachlässigt.”
4H. Kollmar to ROJ (21 September 1979)
“Die Ergebnisse bestätigen Ihre Rechnungen; unklar ist die Diskrepanz zu unseren Rechnungen.”
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1.5.2 1980–1984

The density functional results for Be2 were so different from all preceding work that
they were greeted with much scepticism. This was also true to some extent for the
work of Liu and McLean. A notable exception was Volker Heine, the adviser of my
Ph.D. work, who told me:

It is perfectly obvious to any solid-state physicist that Be2 must be more strongly bound
than Mg2.

He knew immediately that this was a consequence of the relative compactness of
the 2p-orbitals in the first-row elements, but few other condensed matter physicists
were interested.

It was by no means obvious that the beryllium dimer could be identified using the
mass-spectrometric methods in use at the time. The melting and boiling points of
Be are far higher than Mg, and – even if one could develop an appropriate furnace –
such high temperatures lead to very unstable clusters. Other DF calculations led
to similar results to mine, and Lengsfield et al. [49] extended the correlated wave
function work of Liu and McLean to larger basis sets and more extensive methods
of including correlation effects. The location of the minimum of the Be2 binding
energy curve changed very little (the revised best estimate was re D 4:73 ˙ 0:03
a.u,De D 2:04˙ 0:21 kcal mol�1), and the work was published on 4 May 1983.

I was surprised that this paper did not refer to my JCP article 4 years earlier,
and I thought that a “Comment” to the journal was appropriate. I added some newer
results on Be2, as well as those of Painter and Averill [50]. The Editor sent it to
Bowen Liu, who noted the lack of new results and suggested asking the opinion of
a neutral referee. Liu added, however:

In the event that you decide to publish the comment, we would like an opportunity to reply to
the claim that ‘density functional calculations are simpler to interpret than CI calculations’.

The “neutral” referee wrote:

No new results or analyses are presented here. This contribution is mainly in the nature of
a polemic in favor of more serious consideration of density functional results in studies of
chemical binding. All the data and arguments on this point are already in the literature, and
no useful purpose is served by publishing this discussion.

While I agree that it would have been appropriate for Lengsfield et al. to mention the
density functional results, their omission is not a sufficient reason for the publication of this
comment. In any case, the ab initio calculation is a definitive calculation which establishes a
standard of accuracy. I do not think that any density functional calculation can be regarded
in the same light.

It is interesting to read these remarks over 20 years later, when most theoret-
ical chemists value density functional calculations for opening up the study of
much larger systems than possible with more traditional (wave function based)
methods and the single-particle picture that eases the interpretation of the results.
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Nevertheless, it is not surprising that the Editor, John Light, rejected the article and
equally unsurprising that I responded to these comments.5

I had heard so often about the difficulties facing the experimental identification
of Be2 that it came as a real surprise when it was carried out [51] (published 31
August 1984). Vladimir Bondybey at Bell Laboratories used liquid N2 to cool Be
vapor, after which laser-induced fluorescence from Be2 was measured. The 1˙C
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ground state was found to be characterized by re D 2:45 Å, De D 790˙ 30 cm�1,
!e D 275:8 cm�1. I am sure that Liu and McLean were as pleased with this result
as I was. The minimum in the binding energy curve is much shorter than in all work
prior to 1979, and I had no doubt that my picture of the nature of the bond was right.

1.5.3 After 1984

The experimental confirmation of the DF prediction that the bond is stronger in
Be2 than in Mg2, so that the binding trends were similar to those in the solids,
might have helped the acceptance of density functional methods by chemists. It did
not. I met many who remained convinced by the weight of literature favoring a
very weak bond, and others focused on the overbinding that resulted from our use
of the local density approximation in the DF calculations. A representative view
came from John Light, Editor of the Journal of Chemical Physics and ex officio a
member of the chemical establishment. During the refereeing process of a paper I

5ROJ to J. C. Light, Editor, Journal of Chemical Physics (29 November 1983)
Thank you for the author’s and referee’s response to the above comment. Given the content of
these remarks, I would probably have acted as you did. Nevertheless, it would be surprising if I
had nothing further to say on the matter.

I think that you should make it quite clear in your Announcement that you are less interested
in “discussion and comments” than in controversy. The first draft of my comment would have
been much closer to your requirements, and I shall bear your change of policy in mind for future
occasions.

Over the past few years, I have had numerous opportunities to discuss the density functional
method and its applications with quantum chemists. I have found that most chemists of a particular
generation are incapable of giving the method serious consideration. My visit to San Jose in August
indicated that Dr. Liu is no exception and his letter comes as no surprise. The last sentence of the
referee’s remarks indicates that he, too, subscribes to the prevailing view of the CI fraternity.

For some years, I have been attempting to convince chemists that density functional calculations
are very useful in certain contexts and solid state physicists that the approximations they use in
DF calculations can lead to unreliable results. I have not yet had much success in either direction.
Quantum chemists and solid state physicists can learn a lot from each other, but the communication
is poor and is not helped by editorial decisions to throttle scientific discussion. Given the amount of
rubbish generated by earlier CI calculations on Be2, it would have been interesting to hear Dr. Liu’s
arguments for the relative simplicity of their interpretation. Making such a comparison would also
have provided him and his colleagues with the opportunity to discover what the density functional
formalism is.
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submitted on the carbon trimer C3, I asked him about his view of the DF method
and its appropriateness for his journal. His response is given below.6

I had spent the first 4 months of 1984 at the Max-Planck-Institut für
Festkörperforschung in Stuttgart, after which Olle Gunnarsson and I had a clear
picture of a major source of error in DF calculations using the local density
approximation [33]. There is no doubt that LD calculations for Be2 will lead to
overbinding, and the experimental result for Be2 told us by how much. It comes
as no surprise that other efforts were made to improve on the initial calculations
of Liu and McLean. One of the most extensive was that of Petersson and Shirley
[52], who studied the convergence of wave function-based calculations for Be2.
After extrapolation to the complete basis set and full CI limits, they found good
agreement with measured values. My 1979 paper was not cited.

The DF calculation and the prediction that Be2 should be more stable than
Mg2 were pieces in the mosaic that led to the breakthrough of DF calculations
in chemistry. As noted by Nicholas Handy and coworkers, it was one of the first
successes in DF applications to small molecules [53]:

Jones was indeed the first theoretician to suggest that Be2 has a potential minimum near
2.45 Å, and although his well depth at 8 kcal/mol was too deep, his frequency was good at
300 cm�1. All other ab initio calculations to that date (1979) had predicted a minimum near
4.5 Å, principally because of deficient basis sets. Jones result was one of the first successes
of DFT to the study of small molecules.

I still like my JCP article of 1979, where my tone was appropriately cautious, and I
am pleased that I did not yield to the weight of opinion of the chemical establishment
concerning binding in the beryllium dimer. Chemistry is a conservative field, and I
cannot help but wonder whether established opinion is as wrong in other areas as it
was in this one.

One postscript might also be interesting: I have not been to the Theoretical
Chemistry group in Bochum since 1979. However, my colleague John Harris gave a
seminar at the 29th Symposium for Theoretical Chemistry, held at Oberwiesenthal

6J.C. Light, Editor, Journal of Chemical Physics to ROJ (16 November 1984)
“Thank you for your letter of 2 November 1984 concerning the above manuscript. In order to

try to evaluate the problem better, I have read through your manuscript. The problem, as I see it, is
that despite the large number of manuscripts published in the Journal of Chemical Physics on this
method, many chemists remain to be convinced of its value.

There appear to be two reasons for this. First, the local density approximation introduces an
uncertainty about the reliability of the results which is compounded by the use of muffin-tin
orbitals. Second, many chemists prefer the more rigorous and familiar approaches even if they be
computationally more computer intensive. It is also clear, from looking at some of the published
papers listed, that the approach has continued to evolve (i.e., different parameterizations of Exc).

This leaves me, and probably the reviewer, with an unhappily ambiguous feeling toward this
manuscript. it does not treat the methodology problem (clearly stated in JCP 79, 1874, part
IV. D) but gives only one example where the method apparently works well, whereas for the NH3

inversion barrier it doesn’t.
I’m not sure that I have answered your questions as to criteria, which are probably decided

empirically by averaging over referees.”
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(Erzgebirge) from 27 September to 1 October 1993. In the discussion following
the talk, which considered the role of density functional calculations in chemistry,
Prof. Kutzelnigg said to John that he acknowledged our “triumph.” He had noticed,
after all.

1.6 Concluding Remarks

The personal view I referred to in the title should now be clear; the density
functional approach is the culmination of a sequence of contributions dating back
to the earliest days of quantum mechanics. Thomas and Fermi developed the first
theory where the electron density is the basic variable, and Dirac (1930) not only
incorporated exchange effects into this theory, but made the remarkable observation
that the density determines completely the state of an atom. It is not necessary
to specify the wave function. The self-consistent field of Hartree and the use of
determinantal wave functions by Slater and Fock (the Hartree–Fock method) and by
Bloch (ferromagnetism) were followed by the calculations of Wigner and Seitz, who
showed that the exchange hole in Na metal was localized to a single ion. This picture
was developed by Slater in 1951, and an effective exchange potential of Dirac form
was derived and tested by Gáspár in 1954. The work of Hohenberg and Kohn [28]
and of Kohn and Sham [30] is known to everybody.

Kohn and Sham [30] did not expect the local density approximation for exchange
and correlation to give “an accurate description of chemical binding,” and they
were not alone. Nevertheless, LD (LSD) and Hartree–Fock–Slater calculations on
molecules were carried out by several groups – including our own in Jülich –
from the mid-1970s. In fact, Mel Levy told me in Santa Barbara in August 1983
that one reason for the success of our project was that we had not understood
that such calculations could not possibly work! More than 15 years were to pass
after we began our work before DF methods found widespread acceptance in
chemistry, but it is now known that the LD and LSD approximations and their
many improvements have provided us with a scheme that gives valuable information
about large molecules and extended systems. It does appear to satisfy the 80-year-
old goal of Dirac [1] to find “approximate practical methods of applying quantum
mechanics to [explain] the main features of complex atomic systems without too
much computation.” Those who know how many DF calculations I have done in the
past 30 years know that I did not take the last goal all that seriously.

Those readers working on “strongly correlated systems” know that this is not
the whole story. There are many cases where DF calculations using standard
approximations lead to errors that are quite unacceptable. Striking examples are
found in atoms, where excitation energies between different states are often poor.
The energy to transfer a d - to an f -electron in the rare earth and lanthanide atoms,
for example, differs by around 2 eV from measured values (Fig. 1.5). There are
smaller, but substantial, errors in s–d transfer energies in transition element atoms.
Many such problems can be traced to changes in the nodal structure of the wave
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Fig. 1.5 The df -transfer energies �df ŒE.f
n�3ds2/�E.f n�2s2/� for rare earth and lanthanide

atoms [3] [D. Glötzel, private communication (1980). The solid lines are calculations for
spherically averaged densities]

function of the system, which can lead to large changes in the exchange energy that
are very difficult to describe with local density approximations [33].

I conclude with a word of caution for the “strongly correlated” community. Very
few theoretical chemists thought that DF calculations were relevant to understanding
the electronic structure of molecules, but local density approximations (and their
modifications) have given far better results than anyone expected. It was shown
afterwards (see, e.g., Sect. 1.4.3) why approximations to Exc could give good
results for density distributions far from those where they are obviously valid.
Recent modifications to such approximations are leading to small but significant
improvements in the density functional description of rather complicated systems.
Perhaps DF theory has some real surprises in store for the “strongly correlated”
world.
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Appendix 1: Thomas–Fermi (TF) Equations

The electrons are treated as independent particles, and the electron-electron interac-
tion energy arises solely from the electrostatic energy,

EesŒn� D e2

2

Z
dr
Z

dr 0 n.r/n.r 0/
jr � r 0j : (1.23)

It is also assumed that the kinetic energy is

T Œn� D
Z

dr t Œn.r/�; (1.24)

where t Œn� is the kinetic energy density for a system of noninteracting electrons with
density n. We have

t Œn� D 2 1

.2�/3

Z

jkj�kF

dk
„2k2
2m

; (1.25)

where 2.4�=3/kF
3=.2�/3 D n. This gives

T0Œn� D Ck
Z

dr fn.r/g 53 ; (1.26)

where Ck D 3„2.3�2/
2
3 10m�1:

IfEŒn� is minimized under the constraint that the number of electrons is constant,

Z
dr n.r/ D N: (1.27)

Using the method of Lagrange multipliers, we require that

EŒn�C �N D T Œn�CEesŒn�C
Z

dr n.r/fVext.r/C �g (1.28)

has a minimum. The corresponding Euler equation is the Thomas–Fermi equation,

5

3
Ckn.r/

2
3 C e2

Z
dr 0 n.r 0/
jr � r 0j C Vext.r/C � D 0: (1.29)
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Appendix 2: The Density Functional Formalism

We follow the approach of Levy [29], who provided a simpler and more general
derivation of the DF formalism than that given by Hohenberg and Kohn [28]. The
Hamiltonian for N electrons moving in an external potential Vext.r/ is

H D T C Vee C
NX
iD1

Vext.r i /; (1.30)

where T and Vee are the kinetic and electron-electron interaction operators, respec-
tively. For all “N -representable” densities n.r/, i.e., those obtainable from some
antisymmetric wave function,  .r1; r2; :::; rN /, Levy defined the functional

F Œn� D min
 !n
h jT C Veej i; (1.31)

where the minimum is taken over all  that give the density n. F Œn� refers neither
to a specific system nor to the external potential Vext.r/, so may be viewed as
“universal.” If EGS,  GS, and nGS.r/ are the ground state energy, wave function,
and density, respectively, then the basic theorems of DF theory are

EŒn� 	
Z

dr Vext.r/n.r/C F Œn� 
 EGS (1.32)

for all N -representable n.r/, and

Z
dr Vext.r/nGS.r/C F ŒnGS� D EGS : (1.33)

To prove the variational principle (1.32) we write  nmin.r/ for a wave function
that minimizes (1.31), so that

F Œn� D h nminjT C Veej nmini : (1.34)

Writing V DPi Vext.r i /, we have

Z
dr Vext.r/n.r/C F Œn� D h nminjV C T C Veej nmini 
 EGS; (1.35)

according to the minimum property of the GS. This proves (1.32). A further use of
the minimum property leads to

EGS D h GSjV C T C Veej GSi � h nGS
min jV C T C Veej nGS

min i: (1.36)
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We subtract the interaction with the external potential and obtain

h GSjT C Veej GSi � h nGS
min jT C Veej nGS

min i: (1.37)

On the other hand, the definition of  nGS
min yields the reverse relation between the two

sides of (1.37). This is possible only if

h GSjT C Veej GSi D h nGS
min jT C Veej nGS

min i: (1.38)

Then we have

EGS D
Z

dr Vext.r/nGS.r/C h GSjT C Veej GSi

D
Z

dr Vext.r/nGS.r/C h nGS
min jT C Veej nGS

min i

D
Z

dr Vext.r/nGS.r/C F ŒnGS� : (1.39)

Another result follows from (1.39). If the ground state GS is nondegenerate,
 
nGS
min D  GS. If the ground state is degenerate,  nGS

min is equal to one of the GS wave
functions, and the others can be obtained by symmetry. The GS charge density then
determines the GS wave function(s), from which all GS properties can be calculated.
These properties are therefore functionals of the density. These theorems provide the
formal justification for working with the density instead of the wave function and a
general method for calculating GS properties.
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Chapter 2
Projected Wavefunctions and High Tc
Superconductivity in Doped Mott Insulators

Mohit Randeria, Rajdeep Sensarma, and Nandini Trivedi

Abstract We review the use of projected wavefunctions to gain insight into the
strongly correlated d -wave superconducting state of high Tc cuprates within the
framework of the large U Hubbard model. Using sum rules, we show that doped
Mott insulators exhibit a strong particle-hole asymmetry in their single-particle
spectral function. We calculate the doping dependence of a variety of observables
using a simple approximation scheme, the Gutzwiller approximation, and compare
the results with variational Monte Carlo results and with experimental data on the
cuprates. We gain detailed insights into the superconducting dome, the energy gap,
nodal excitations, their quasiparticle weight and dispersion, momentum distribution,
superfluid stiffness, and optical spectral weight. We show that strong correlations
make the d -wave state robust against disorder-induced pair breaking. Finally, we
discuss the competition between antiferromagnetism and superconductivity, the
difference between hole and electron-doped Mott insulators, and how the range of
hopping enhances superconductivity for hole-doped materials.

2.1 Introduction

In 1986, Bednorz and Müller [1] discovered high-temperature superconductivity
in the cuprates by adding mobile carriers to an antiferromagnetic Mott insulator.
A quarter of a century later, we are still debating the physics of these materials.
The problem has turned out to be nontrivial because the phase diagram of the
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Fig. 2.1 Schematic phase
diagram of the hole-doped
high-temperature
superconductors in the
doping-temperature plane

cuprates, a cartoon of which is shown in Fig. 2.1, represents a challenge for three
of the central paradigms of twentieth century condensed matter physics. First, the
parent (undoped) insulator represents a failure of band theory. Coulomb correlations
give rise to a Mott insulator. Second, the “normal” (i.e., nonsuperconducting)
phase is highly abnormal. Landau’s Fermi liquid theory, the underpinning of our
understanding of conventional metals, fails in the strange metal and pseudogap
regimes of the phase diagram. The electron is not a sharply defined excitation
above Tc. Third, even the superconducting phase, now known to have d -wave
pairing symmetry and supporting well-defined electronic excitations, cannot be
described by BCS theory. Its very short coherence length, a superfluid phase
stiffness much smaller than the energy gap (for low doping), and its insensitivity
to disorder, all make the superconducting state different from a standard BCS
superconductor. To add to all this, there are a plethora of possible competing order
parameters in the vicinity of the Mott insulator and possible quantum critical points.

In a seminal paper written within months of the experimental discovery, Ander-
son [2] proposed that the basic physics of the copper–oxygen planes in the
cuprates could be captured by the single-band Hubbard model on a 2D square
lattice. He further argued that these materials are in the large U limit, where
the on-site Coulomb repulsion is much larger than the kinetic energy, and thus
one is restricted to a projected Hilbert space in which no double occupancy is
allowed. Implementing this projection has turned out to be hard, since perturbative
methods are not applicable. In this review, we describe one approach, that of
projected wavefunctions, and an approximate calculation scheme, the Gutzwiller
approximation, which have turned out to give enormous insight into the strongly
correlated d -wave superconducting state at T D 0, its low-lying excitations and its
response functions.

Quite apart from its usefulness in understanding the physics of high Tc cuprates,
the Hubbard model is the simplest lattice model of interacting fermions, occupying
a place in many-body theory analogous to the Ising model in classical statistical
mechanics. However, not much is known definitively about the Hubbard model
outside of one dimension (where one can use Bethe ansatz and other techniques),
infinite dimensions (where dynamical mean field theory (MFT) becomes exact), and
weak coupling. Thus, nonperturbative progress on this problem is very important,
and comparison with experiments provides a useful check. One must keep in mind
that the Hubbard model is a minimal model for real materials, and it is actually quite
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surprising how much of the phenomenology of the superconducting state of the
cuprates it can capture. Progress on the anomalous normal states has been perhaps
less successful, in part due to a lack of technique. Although new developments like
cluster dynamical MFT are beginning to provide very interesting numerical results.

In the remainder of this section, we briefly describe early work which provided
the foundation for our studies, and then end with an outline of the rest of the review.
Projected states have been associated with the idea of resonating valence bond
(RVB) wavefunctions [2]. Any singlet state can be written as a superposition of
configurations with singlet pairs, or valence bonds, on a lattice. (Note that these
are not, in general, near-neighbor pairs). In the half-filled case, this representation
may be most useful for spin-liquid states that do not break any symmetries, but can
also describe states with long range antiferromagnetic order [3]. Here, our primary
focus is on systems doped away from half-filling, where the wavefunctions for the
projected d -wave superconductor involve both singlet bonds and holes. The valence
bonds are in a sense the “Cooper pairs,” but it is the holes that permit transport and
hence superconductivity of pairs in a doped Mott insulator.

These ideas were first explored in the framework of slave-boson MFT [4, 5],
and implementing the no double-occupancy constraint beyond mean field leads
to gauge theories [6]. A parallel development used variational wavefunctions [7]
and the Gutzwiller approximation [8]. It was realized early on in these strong
coupling approaches [5,7] that d -wave pairing is the most natural symmetry for the
repulsive Hubbard model. This had already been recognized from weak coupling
studies of spin fluctuations in the Hubbard model [9]. From the largeU perspective,
the superexchange J acts as the near-neighbor attraction to bind a pair, while the
Hubbard U suppresses the on-site amplitude, thus leading to d -wave pairing.

The projected wavefunction approach was revived a decade later by Paramekanti
et al. [10, 11] who calculated a variety of experimentally relevant quantities and
made predictions and comparisons with data on high Tc cuprates. These results, and
later developments, which give a remarkably complete description of the strongly
correlated superconducting state will be described in detail below. Related reviews
may be found in [6, 12, 13]. Note that we give references to a very small fraction
of the extensive experimental literature on high Tc cuprates, referring only to those
papers with which we make direct contact.

The rest of the article is organized as follows. In Sect. 2.2, we introduce the
Hubbard model and the idea of projection onto a Hilbert space with no double
occupancy. We also describe a canonical transformation that builds in the effects
of a finite but large local repulsion U and discuss the relation between the large U
Hubbard and tJ models. We focus exclusively on hole-doped systems (except at the
end in Sect. 2.10).

In Sect. 2.3, we derive exact sum rules for the spectral function in projected
systems and show that there is a large particle-hole asymmetry in the tunneling
spectrum that increases with underdoping. The observation of this asymmetry
in scanning tunneling microscopy (STM) experiments on cuprates implies that
Coulomb correlations are very important even in doped materials.
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We introduce the Gutzwiller approximation in Sect. 2.4, which permits us to deal
with the projection in a simple, analytically tractable approach. We show (in later
sections) that the results of this approximation are in good qualitative agreement
with those of a computationally intensive method, variational Monte Carlo (VMC),
that imposes projection exactly.

We focus on the d -wave superconducting state and its properties in Sects. 2.5–
2.9, turning briefly to the competition between superconductivity and antifer-
romagnetism in Sect. 2.10. We begin in Sect. 2.5 with a variational analysis of
the superconducting (SC) ground state. We show that the SC order parameter
naturally exhibits a dome as a function of doping, qualitatively similar to Tc,
while the pairing amplitude follows the antinodal energy gap measured by angle-
resolved photoemission spectroscopy (ARPES) of cuprates. Section 2.6 describes
the momentum distribution and the nodal quasiparticle spectral weight, which
vanishes as one approaches the Mott insulator.

In Sect. 2.7, we describe the electronic excitations above the d -wave SC state,
particularly the nodal quasiparticle dispersion. We also address properties of the
the single-particle spectral function measured in ARPES, including the notion
of an “underlying Fermi surface” in the SC state. In Sect. 2.8, we look at the
response to electromagnetic fields. Using optical conductivity sum-rules, we
bound the superfluid stiffness and we describe how nodal quasiparticles affect its
T -dependence.

The problem of why d -wave SC in the cuprates is so insensitive to disorder is
addressed in Sect. 2.9, where we develop an inhomogeneous generalization of the
Gutzwiller approximation. Our results give new insights into how the low-energy
excitations in strongly correlated SCs are protected against disorder.

Section 2.10 contains a brief discussion of the competition between supercon-
ductivity and antiferromagnetism at very low doping and gives insights into the role
of longer range in-plane hopping in aiding SC, and the differences between electron
and hole doping a Mott insulator. Finally, we conclude with open problems related
to the non-Fermi liquid normal states in Sect. 2.11.

2.2 Hubbard Model and Projected Wavefunctions

The one band Hubbard model is described by the Hamiltonian

H D �
X
hij i

tij c
�
i� cj� C U

X
i

ni"ni#; (2.1)

where c�i� creates an electron of spin � at site i and ni� D c
�
i� ci� is the number

operator. (We assume summation over repeated spin indices.) The first term is the
kinetic energy of electrons hopping between sites i and j of a square lattice with
a hopping matrix element tij that is short ranged, usually connecting nearest and
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next nearest neighbors. There is a local repulsion U which penalizes configurations
with double occupancy, i.e., both " and # electrons on the same site. In the large U
limit (U=jtij j � 1), this model is expected to capture the essential physics of strong
electronic correlations relevant to the high Tc materials.

In the infinite U limit, the low-energy states of the system with density hni � 1
have no double occupancy. These states can be written as

Pj 0i D
Y
i

.1 � ni"ni#/j 0i; (2.2)

where j 0i is any state. P is the Gutzwiller projection operator [14],1 which projects
out configurations with double occupancy in j 0i. The Hilbert space at each site is
thus reduced from four states to three: j "i, j #i, and j0i (or a vacancy), with
P eliminating the doubly occupied state j "#i. The fraction of sites that have a
vacancy is equal to the hole doping x D 1 � hni.

The effects of having a large but finite U are then taken into account through
a canonical transformation on these projected wavefunctions, so that the final
wavefunction can be written as

j i D e�iSP j 0i (2.3)

where the operator S is determined as described below [15, 16]. The expectation
value of any operator A in the states of the form (2.3) can be written as

h jAj i D h 0jP QAP j 0i; QA D eiSAe�iS : (2.4)

Operationally, expectation values of various operators in a state j i are obtained by
evaluating the expectation of the transformed operators QA in projected states P j 0i.

We determine S by demanding that the transformed Hamiltonian does not have
any terms connecting projected states to states with nonzero double occupancy.
This can be achieved order by order in t=U , leading to a series expansion of S
in t=U . There are three types of terms in the kinetic energy. The first, K0 DP

hij i tij .1 � ni� /c�i� cj� .1 � nj� /, does not change the double occupancy of the

state it acts on, the second K1 DP
hij i tij ni� c

�
i�cj� .1 � nj� /, increases the double

occupancy by one, and the third,K�1 DPhij i tij .1� ni� /c�i� cj�nj� , decreases the
double occupancy by one. To second order in t=U , we find iS D .K1 �K�1/ =UC
.ŒK1;K0�C ŒK�1;K0�/ =U

2.
Let us now look at the transformed Hamiltonian, which acts on projected states.

Dropping the “tilde” on H for simplicity, to leading order in t=U , we find that

1Gutzwiller’s original proposal is P˛ D Q
i .1� ˛ni"ni#/, where ˛ < 1 is treated as a variational

parameter. This is often called the partial Gutzwiller projector. The one we use is the full projector
given by ˛ D 1.
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H D
X
hij i

tij hi� c
�
i� cj�hj� C

1

2

X
hij i

Jij

�
S i � S j � 1

4
ninj

�

� 1
U

X
hij ihjlii¤l

tij tjlhi� c
�
i� cj�nj�c

�

j� 0cl� 0hl� 0 : (2.5)

Here, hi� D .1 � ni� /, the spin S i D c
�
i˛� ˛ˇciˇ, and Jij D 4t2ij =U is the

antiferromagnetic superexchange coupling.
The transformed Hamiltonian consists of the three sets of terms depicted in

Fig. 2.2 : (1) Kinetic energy terms of O.t/, where electrons of either spin hop to
a neighboring site as long as a hole is present there. This process can alternatively
be described as the hopping of the holes with a backflow of spins. (2) The spin–spin
interaction, with its associated super-exchange scale J . This is a process where the
electrons hop to a neighboring site, creating a double occupancy and then hop back
to the site they started from, relaxing the double occupancy. Note that this process
does not lead to motion of electrons. (3) Three-site terms, in which the electrons
create a double occupancy by hopping on to a neighboring site and then relax the
double occupancy by hopping on to a second neighboring site which has a hole.
This is alternatively a second order hole hopping process. Now, the two hops in
this process can be made by electrons of the same spin (� D � 0 in the third term),
in which case the spin configuration of the mediating site remains unchanged, or
by electrons of different spin (� 0 D � in the third term), in which case the spin
of the mediating site is flipped. Note that the transformed Hamiltonian connects
projected states to projected states, even though it may involve double-occupancy in
an intermediate state.

Hopping 

Spin Flip 

Three site 
hopping 

Fig. 2.2 The different processes represented by the terms in the canonically transformed Hamil-
tonian of (2.5)



2 Projected Wavefunctions and High Tc Superconductivity in Doped Mott Insulators 35

It is useful to clarify the relation between the large U Hubbard and the tJ
model, widely used in the literature [6]. There are two differences. First, the tJ
Hamiltonian is obtained from the canonically transformed Hubbard Hamiltonian
by simply neglecting the three site-hopping terms. The tJ model thus describes
hopping of projected electrons together with the antiferromagnetic superexchange
interactions. The second difference is that the canonical transformation is used only
to determine the tJ Hamiltonian, but not applied to any other operators when their
expectation values are obtained in the projected states. Thus for operators other than
the Hamiltonian, the tJ model retains terms which are only zeroth order in t=U .

To summarize: The effects of the strong electron–electron interactions have been
taken into account in a nonperturbative way by the use of the Gutzwiller projectorP ,
which imposes the no double occupancy constraint. The effects of a noninfinite U
are then included perturbatively in powers of t=U via the canonical transformation
e�iS . (A different way to incorporate finite U physics is to use a “partial” projection
operator that penalizes, but does not forbid, double-occupancy (See footnote 3). We
will not discuss partial projection because it cannot describe the Mott insulator at
half-filling).

2.3 Particle-hole Asymmetry in Doped Mott Insulators

At half filling (one electron per lattice site) there are no holes, and thus no
conduction in the large U Hubbard model of (2.5) at TD 0. This is the Mott
insulating state whose low-energy physics is described by the antiferromagnetic
S D 1=2 Heisenberg Hamiltonian on a square lattice. It is by now very well
established that the undoped parent compounds of the high Tc superconductors are
antiferromagnetically ordered Mott insulators (actually charge transfer insulators,
but that distinction is not important for our present purposes).

The question then arises: Is the strong Hubbard U that leads to Mott insulating
behavior at half filling also relevant for the doped materials? Or, could the
screening in the doped materials effectively lead to a weakly correlated system?
We show here that the answer is unequivocal: the strong Hubbard U leads to a
characteristic doping-dependent particle-hole asymmetry [17–22] in the tunneling
spectra of the doped Mott insulators. Theoretically, this is a rigorous consequence
of Gutzwiller projection, requiring no assumptions about the nature of the ground
state. Experimentally, this characteristic p–h asymmetry has been observed [23–26]
by STM experiments on several hole-doped cuprates including Bi2212 and oxychlo-
rides. This establishes unambiguously that correlations are important in the doped
materials.

We discuss the asymmetry between the electron and hole density of states (DOS)
in the lightly doped Mott insulators in a very general setting that does not depend on
the details of the Hamiltonian, e.g., presence of disorder, presence of longer range
interaction or longer range hopping etc., as long as the local Hubbard repulsion U
is the largest energy scale in the model. Our results do not make any assumptions



36 M. Randeria et al.

about the broken symmetry (if any) in the projected state and are valid even in the
presence of quenched disorder as we do not assume translational invariance.

We focus, for the sake of simplicity, on the case of T D 0 and small but
finite hole doping x D .1 � n/ � 1. The STM spectrum at a location r and a
bias V is proportional to the local density of states (LDOS) N.r; ! D eV /. (The
question of the STM tunneling matrix element, which can itself be a function of r, is
discussed below.) The LDOS is given by N.r; !/ D A.r; r; !/, where the spectral
function A.r; r0; !/ D �.1=�/ImG.r; r0; ! C i�/ is related to the imaginary part
of the retarded (real space) Green’s function of the electrons. It has the spectral
decomposition

A.r; r0; !/ D
X
m�

h0jc�r0�
jmihmjcr� j0iı.!C Em � E0/

Ch0jcr� jmihmjc�r0� j0iı.! � Em CE0/; (2.6)

where j0i is the ground state with energy E0 and jmi are excited states with energy
Em and an implicit sum over � is assumed. To look at the asymmetry we want to
derive sum rules for the frequency integrals of A.r; r0; !/. The first sum rule is thatR1

�1 d!A.r; r0; !/ D 2ır;r0 , which is just a statement of probability conservation
and the factor of 2 comes from the spin sum. We can also obtain

Z 0

�1
d!N.r; !/ D n.r/ D 1� x.r/; (2.7)

where n.r/ is the local electron density and x.r/ is the corresponding local hole
doping. (At finite temperatures, the integration would be cut off by a Fermi function
in the integrand. In the T D 0 case discussed here, we get a hard cutoff at the
chemical potential ! D 0). This sum rule just implies that the probability of
extracting an electron from the system at point r is proportional to the local density.
The above two sum rules also lead to an obvious third one,

R1
0

d!N.r; !/ D
1 C x.r/. However, a nontrivial and more interesting sum rule is obtained if the
positive frequency integral is cutoff at a scale ˝ , where t; J; : : : � ˝ � U .
Physically, this means that we are restricting attention to the “lower Hubbard band”
in which there is no double occupancy. Thus, the states jmi that contribute to
the sum rule all lie in the projected low-energy subspace, and are of the form
jmi D e�iSP j�mi with j�mi forming a complete basis in the full Hilbert space;
i.e.,

P
m j�mih�mj D 1. Using the form of the low-energy states and the spectral

decomposition of the DOS, we find that

Z ˝

0

d!N.r; !/ D
X
m

h0jP Qcr�P j�mih�mjP Qc�r�P j0i D h0jP Qcr�P Qc�r�P j0i; (2.8)

where Qc� is the canonically transformed form of the creation operator and we have
used the completeness of j�mi to write the final form. We have
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P Qc�r�P D c�r�hr� C .1=U /
X
hrr0i

trr0hr0� 0c
�

r0� 0cr� 0nr�c
�
r� ; (2.9)

where the first term in (2.9) simply ensures that the creation of the electron does
not create a double occupancy, while the second term represents a process where
the double occupancy formed by the creation operator is relaxed through a hopping
process. Using the above form for the creation operator, we finally arrive at the sum
rule for low-energy electron injection:

Z ˝

0

d!N.r; !/ D 2x.r/C 2 hK.r/i
U

: (2.10)

Here, t; J; : : :� ˝ � U and hK.r/i is the local kinetic energy of the electrons at r.
The first term in (2.10) simply says that one can inject an electron into any of the
x empty sites, with two for spin degeneracy. The second term gives an order xt=U
correction since the injected electron can create a temporary double occupancy and
then hop off to a neighboring empty site. Note that while the probability to add a
low-energy electron (2.10) is obtained to order t=U , the corresponding result (2.7)
to extract an electron is exact to all orders in t=U .

Thus, we conclude that the integrated weight for extracting an electron (2.7) is
much larger that the integrated low-energy weight to add an electron (2.10) in a
doped Mott insulator, and this asymmetry increases with underdoping.

The spectral weight asymmetry in doped Mott insulators can be understood
by the following argument [18–20], which also shows why these systems are
completely different from doped band insulators; see Fig. 2.3. Upon doping a band
insulator with a density x of holes, the chemical potential just moves into the
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Fig. 2.3 Schematic figure showing the difference between doped band insulators and doped Mott
insulators, based on [18–20]. Upon doping a band insulator, the chemical potential moves with the
bands remaining “rigid.” However, there is a transfer of spectral weight across the Mott–Hubbard
gap upon doping a Mott insulator, with the creation of new low-energy states
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valence band, with the bands remaining “rigid.” The integrated spectral weight for
electron extraction is then .1 � x/, whereas that for addition at low energies is x.
In marked contrast, the upper and lower Hubbard bands are not “rigid.” While
they each have spectral weight of 1 at half-filling, upon hole doping, there is a
transfer of spectral weight x from the upper to the lower Hubbard band. Thus, in the
doped system the spectral weight for electron extraction is still .1 � x/ ((2.7) with
translation invariance), while that for addition at low energies is now 2x (large-U
limit of (2.10)). This transfer of spectral weight from high energies to the low-energy
subspace with doping is a hallmark of doped Mott insulators [18–20, 27].

As already noted, the p–h asymmetry and its doping dependence are in excellent
qualitative agreement with all available STM data on cuprates [23–26], where the
measured conductance g.rIV / D ŒdI=dV �.r/ shows strong asymmetry between
positive and negative bias V . The conductance is related to the LDOS via g.r; V / D
M.r/N.rI! D eV / where M.r/ is a spatially varying tunneling matrix element. It
was proposed in [21, 22] that local ratios of V > 0 and V < 0 conductances would
lead to a cancellation of the unknown matrix elements. This has certainly proved
very useful in the analysis of STM data [28] and the extracted LDOS ratios are
very similar from one material to another, even though the matrix elements are very
different. However, it has not been possible to quantitatively test the ratio of sum
rules (2.10) to (2.7) and extract the local charge density. The difficulty stems from a
choice of a suitable (negative) lower cutoff in (2.7) for experimental data.

2.4 Gutzwiller Approximation

Having looked at general consequences of projection, we now turn to the calculation
of detailed properties of projected wavefunctions. We should make clear the
distinction between Gutzwiller projection and Gutzwiller approximation. Projection
P j 0i imposes the “no double occupancy” constraint acting on an arbitrary state
j 0i, where P was defined in (2.2). The Gutzwiller approximation, to be described
below, is a simple approximation scheme to estimate expectation values in projected
states.

The key difficulty in analyzing projected wavefunctions is that the projection
operator P of (2.2) is a product of single-site operators in real space, while most
of the interesting wavefunctions j 0i (e.g., a BCS superconducting state) that one
would like to project are naturally written in momentum space. Thus, it is impossible
to analytically calculate even the norm ofP j 0i, let alone expectation values in such
a state. One can, however, use the VMC method [7, 10, 11] to compute properties
of projected wavefunctions without any approximation. Here, one works in real
space and uses Monte Carlo methods to compute the multiple integrals involved in
computing expectation values. We will mention some results of the VMC approach
here but mostly for the sake of comparison.

Our main focus will be on the Gutzwiller approximation (GA) [8, 14, 29], which
permits us to evaluate matrix elements of operators in projected states using a simple
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approximation scheme. The resulting equations have the structure of usual MFT,
but with a renormalization of parameters that impacts the results in important ways.
Hence, the Gutzwiller approximation scheme has also been called “renormalized
MFT” [8]; for recent reviews, see [12, 13]. As a check on its validity, we note
that GA scheme gives results in good qualitative agreement with the exact VMC
results. Further, given the simplicity of the GA/RMFT equations one can use
them to gain analytical insights into important doping dependent trends, and also
generalize them to more complex situations, such as inhomogeneous states [30–36];
see Sect. 2.9. (There have also been attempts to include effects of short range
correlations [37, 38].)

The essential idea of Gutzwiller approximation is to express the expectation value
of an operator A in a projected state as the expectation value in the corresponding
unprojected state times a renormalization factor gA called the Gutzwiller factor for
that operator:

h 0jPAP j 0i
h 0jP j 0i ' gA

h 0jAj 0i
h 0j 0i (2.11)

The approximation provides a prescription for evaluating the Gutzwiller factors
for different operators, which depend only on the average electron density in the
underlying state. (Here, we focus only on the simplest case of homogeneous systems
without spin order.) This seemingly ad-hoc prescription may be rationalized in terms
of combinatorial factors for finding different configurations in the projected and
unprojected states [39].

The easiest way to understand the Gutzwiller approximation is to give some
explicit examples. Here, we will explain in detail the renormalization of the kinetic
energy and superexchange. For a detailed derivation of various other terms, the
reader is referred to [40].

Consider a homogeneous system with density n. In the unprojected states, a
single site can be in one of four configurations: (a) j "i, (b) j #i, each of which
occurs with probability .n=2/.1 � n=2/, (c) doubly occupied with probability n2=4
and (d) empty with probability .1�n=2/2. In the projected states, each site is in one
of three configurations: (a0) j "i, (b0) j #i, each with probability n=2 and (c0) empty
with probability .1 � n/.

Let us consider the hopping term c
�

i"cj", and look at a single hopping event
where an up electron hops from i to j . In the unprojected states, there should
be an " spin on site i and no " spin on site j (Pauli exclusion) for this hop to
occur. After the event one has an " spin on site j and no " spin on site i . The
probability of occurrence of the initial configuration is ni".1 � nj"/ and that of
the final configuration is nj".1 � ni"/. In projected states, the same hopping event
would occur if we have an " spin on site i and a vacancy on site j to begin with
and finally lead to an " spin on site j and a vacancy on site i . The probability of
these configurations are respectively ni".1 � nj / and nj".1 � ni /. The initial and
final configurations for projected and unprojected states are shown in Fig. 2.4. The
Gutzwiller factor for the hopping term is then given by
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Fig. 2.4 The initial and final
configurations for a spin-"
electron to hop from site j to
site i in projected and in
unprojected states. Initially,
site i must be empty for
projected states, but can have
either a hole or a # spin in
unprojected states

Projected 
States 

Unprojected
States 

ij j i

ij j i

gt D


ni".1 � nj /nj".1 � ni /
ni".1 � nj"/nj".1 � ni"/

� 1
2

: (2.12)

We thus have a clear prescription for obtaining the Gutzwiller factors. For a
given operator, first neglect the configurations on sites that are not connected by
the operator, i.e., ignore the effects of longer-range electronic correlations that
would make this probability dependent on the full wavefunction. Then multiply the
probabilities of the configurations before and after the event has occurred and take a
square root, since we need an amplitude. The ratio in the projected and unprojected
states gives the Gutzwiller factor for the corresponding operator. The final answer
depends only on the density. The Gutzwiller factor for hopping is given by

gt D 2.1� n/
2 � n D 2x

1C x ; (2.13)

where x D 1 � n is the hole doping of the system away from half-filling. Thus, the
kinetic energy in projected states is suppressed by a factor of gt , and vanishes � x
as one approaches the Mott insulator at half filling.

Next, consider the spin-flip terms SC
i S

�
j . In both projected and unprojected

states, spin flips require an initial configuration of a single " spin (no double
occupancy) on site j and a single # spin on site i . The final configuration has
the same requirements with spins interchanged. In projected states, the probability
of the initial and final configurations are ni#nj" and ni"nj#, respectively. In the
unprojected states, one has to explicitly take care of the fact that configurations
should avoid double occupancy for the spin flip to occur. The probability of
initial and final configurations are then given by ni#nj".1 � ni"/.1 � nj#/ and
ni"nj#.1�ni#/.1�nj"/ respectively, leading to the Gutzwiller factor for the spin–
spin interactions

gs D 4

.2 � n/2 D
4

.1C x/2 : (2.14)

The x-dependence of gs reflects the increasing importance of spin fluctuations as
one goes toward the Mott insulator within the Gutzwiller approximation.
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Similar considerations can be used to derive the Gutzwiller factors for other
operators and we simply state the results without derivation (see [40]). The
renormalization of the remaining terms in the transformed Hamiltonian (2.5) are
as follows. The ninj term is not renormalized, i.e., it has a Gutzwiller factor of 1.
For the three-site hopping term with spin flip the Gutzwiller factor is

gst D 4x=.1C x/2; (2.15)

while that for three-site term without spin flip is gt . In certain cases, we will need
additional Gutzwiller factors which will be described below as they are needed.

2.5 Superconducting Ground State

In this section, we will focus on the strongly correlated d -wave superconducting
phase that arises upon doping a Mott insulator. We work with the 2D one-band
Hubbard model (2.1) whose parameters are known from a combination of theory
and experiment. The near-neighbor hopping (j D i ˙ Ox. Oy/) is tij D t D 300meV
and the next-near-neighbor hopping (j D i˙ OxC˙ Oy) is tij D t 0 D �t=4, consistent
with electronic structure calculations and ARPES measurements [41, 42]. We will
see below that the t 0 term determines the shape of the Fermi surface (end of Sect. 2.7)
and can be important for superconductivity (Sect. 2.10). The bare dispersion is then
given by

�k D �tk � t 0�k; k 	 2.coskx C cosky/; �k 	 4 coskx cosky: (2.16)

We choose the on-site Hubbard U D 12t , which gives the superexchange scale
J D 4t2=U D 100meV consistent with neutron scattering experiments [43].
Although J (� t � U ) is the smallest energy scale in the large-U Hubbard model,
in reality J ' 100–150meV found in the high Tc cuprates is amongst the largest
superexchange interaction in all known transition metal oxides!

For the superconducting state, we consider a variational wavefunction of the form

j i D e�iSP jdBCSi with jdBCSi D
Y

k

.uk C vkc
�

k"c
�

�k#j0i; (2.17)

where uk and vk are variational parameters with u2kCv2k D 1. The d -wave symmetry
requires that the pairing amplitude ukvk change sign under �=2 rotation. We can
also study states with other broken symmetries such as antiferromagnetism; see
Sect. 2.10.

The variational parameters are determined by minimizing the expectation value
of H � 
N in j i, where 
 is the chemical potential and N the total number
operator. We calculate ground state energy by evaluating the expectation value of
the canonically transformed Hamiltonian (2.5) in projected states using Gutzwiller
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approximation. The expectation value of N is the same as in the unprojected
BCS wavefunction. (This will be seen explicitly when we calculate the momentum
distribution.) One then obtains equations that look like BCS theory albeit with
various Gutzwiller factors renormalizing the different terms in the Hamiltonian [8].

Within this renormalized MFT, one obtains v2k D 1 � u2k D .1=2/.1 � �k=Ek/

and ukvk D �k=.2Ek/, where �k is the renormalized dispersion, �k D �.coskx �
cosky/ is the d -wave pairing function and Ek D

q
�2k C�2

k. The renormalized
dispersion �k has the form

�k D gt�k��k�
; �k D �0C�1kC�2�kC�32k C�4�2kC�5k�k: (2.18)

Here, �k comes from a mean field decomposition of the interaction terms in the
Hamiltonian (2.5); �0 is a Hartree shift and �n’s (for n 
 1) determine the Fock
shift. The chemical potential has an additional renormalization coming from the fact
that the expectation value ofH�
N depends on the density through the Gutzwiller
factors. Following [8], we get 
 D 
 C .1=Ns/@hH i=@x, where the derivative is
taken only with respect to the Gutzwiller factors and Ns is the number of sites.

The variational minimization leads to self-consistent equations for the pairing
amplitude�, the chemical potential 
 and different Fock shift amplitudes. The gap
equation for� and the number equation are given by

1 D g0.x/J

2

X
k

�2k
Ek

and n D
X

k

.1 � �k=Ek/ (2.19)

with �k D coskx � cos ky and g0.x/ D 3gs=4C 1=4�gt =2�gst=2, where we use
the Gutzwiller factors of (2.13), (2.14), and (2.15). These equations look like BCS
theory, but with renormalized coefficients that have profound consequences on the
results.

The self-consistency equations for the Fock shifts �n are omitted for simplicity
and can be found in [40]. We should note that the higher harmonics entering the Fock
shift (see (2.16,2.18)) are necessarily demanded by the form of the self-consistency
equation. In contrast, the gap function has the simple .cos kx�cosky/ form. Higher
harmonics in �k can only arise from higher order terms in t/U, like four-spin terms,
that we have not retained.

2.5.1 Energy Gap

The solution of these equations leads to a�.x/, which is a monotonically decreasing
function of x and goes to zero around x D 0:35. In Fig. 2.5a, we compare the
Gutzwiller approximation �.x/ with that obtained from a VMC calculation that
implements projection exactly. Although the agreement is not quantitative, both
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Fig. 2.5 Left panel (a): The pairing amplitude � in units of J as a function of doping as obtained
from Gutzwiller approximation and variational Monte Carlo [11]. Also plotted is the antinodal
quasiparticle gap obtained from ARPES experiments [44]. Right panel (b): The superconducting
order parameter ˚ as a function of doping from Gutzwiller approximation and variational Monte
Carlo [10]

have the same qualitative behavior. We also emphasize that it is the superexchange
J that sets the scale for superconductivity in the gap equation.

The physical meaning of �.x/ in a projected superconductor is not immediately
clear. We will see that although � is related to the energy gap in the spectrum, it
is not the ODLRO order parameter associated with superconductivity (Fig. 2.5b). In
the next section, we will treat quasiparticle excitations about the correlated super-
conducting state and show that � is the spectral gap of the antinodal quasiparticles.
We also compare in Fig. 2.5(a) the experimentally observed antinodal gap from
ARPES measurements on cuprates [44], with our calculated �.x/. The overall
doping trends are very similar, but quantitatively, the Gutzwiller approximation
overestimates the experimental energy gap by about a factor of two. This is not
unusual for simple variational excited state calculations (e.g., Feynman’s results for
the roton minimum in Helium-4).

2.5.2 Order Parameter

We now show that the results for the doping dependence of the superconducting
order parameter˚ are qualitatively different from simple BCS theory (where˚ and
� are essentially the same). In a projected superconductor, P suppresses number
fluctuations as x ! 0 leading to a strong enhancement in the (conjugate) phase
fluctuations. Thus, local quantum phase fluctuations lead to the destruction of
superconductivity and ˚.x/ vanishes as x ! 0 despite the presence of pairing
�.x/ ¤ 0.



44 M. Randeria et al.

To see this physical picture emerging from our calculations, we examine
off-diagonal long range order (ODLRO) in the two-particle reduced density
matrix. We define the near-neighbor singlet creation operator on a bond B�

r;˛ D
.1=
p
2/.c

�

r"c
�

rC˛;# � c�r#c
�

rC˛;"/, where ˛ D ˙Ox or ˙. Oy/. The two-particle density

matrix is then given by F˛ˇ.r � r0/ D hB�
r˛Br0ˇi. From its long distance limit

Limjr�r0j!1F˛ˇ.r�r0/ D ˙˚2, we obtain the superconducting order parameter˚ .
The˙ sign in the last equation reflects d -wave pairing, and depends on whether the
bonds ˛ and ˇ are parallel or perpendicular (sign change under �=2 rotation).

To zeroth order in t=U , one can set e�iS ' 1 and simply evaluate F˛ˇ in the
projected states. The easiest way to obtain the Gutzwiller factor for this correlator
is to note that F˛ˇ.r � r0/ takes two electrons from neighboring sites near r0 and
places them on neighboring sites around r; i.e., this is equivalent to hopping of
two electrons in the projected states. The simple Gutzwiller approximation neglects
intersite correlation in evaluating Gutzwiller factors. Thus, the Gutzwiller factor for
two independent hops is g2t . Straightforward algebra then leads to

˚.x/ D gt

2

X
k

�kukvk D gt .x/ �.x/

4Jg0.x/
; (2.20)

where �k and g0.x/ were defined just below (2.19).
We see that the superconducting order parameter ˚ vanishes: (a) when �

vanishes (for large hole doping x > 0:35) so that there is no pairing in the system,
and (b) as x ! 0 due to the gt � x factor. In the second case, even though
there is electron pairing (�.x/ ¤ 0), there is no mobility as one approaches
the Mott insulator and, as explained above, local quantum phase fluctuations
destroy superconductivity. We note that it is the large coulomb U that suppresses
superconductivity on the underdoped side and not some competing order parameter,
which can only be associated with a much lower energy scale J .

Thus, ˚.x/ is a nonmonotonic function of hole doping x as shown in Fig. 2.5b.
It mimics the superconducting dome [45] in the phase diagram of high Tc super-
conductors, in contrast to �, which is a monotonically decreasing function of x.
The doping dependence of the order parameter as obtained from Gutzwiller
approximation and Monte Carlo studies is plotted in Fig. 2.5b. The top of the dome
can be identified with optimal doping around x D 0:15.

We note that the projected superconductor naturally leads to a superconducting
dome. Projection leads to a very non-BCS characteristic of the system, i.e., the
superconducting order parameter does not follow the energy gap due to pairing
as a function of doping. On the overdoped side, ˚ follows � as in usual BCS
theory, while on the underdoped side the two quantities show diametrically opposite
behavior as one approaches the Mott insulator.
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2.6 Momentum Distribution

We next describe the calculation of the momentum distribution nk. This gives very
useful insights into the low-energy excitations of the system (nodal quasiparticles),
and also serves to illustrate important technical points in Gutzwiller approximation
calculations. Before plunging into technical details, let us explain how a ground
state correlation function like nk can give information about low-energy excitations.
Recall that nk is the energy integral of the spectral function A.k; !/ over the
occupied states. Thus, gapless quasiparticles at a momentum kF lead to sharp
discontinuities in nk at T D 0. The magnitude of the jump discontinuity is
the quasiparticle spectral weight Z of these low-energy excitations. In a d -wave
superconductor, the superconducting gap vanishes along the zone diagonals in the
Brillouin zone (kx D ˙ky) and leads to four nodes in the excitation spectrum. We
will use the location and magnitude of the singularities in nk to learn about the
doping dependence of the nodal quasiparticle excitations.

Since Gutzwiller projection is defined in real space, we calculate nk by taking the
Fourier transform of the ground state expectation value of the operatorG.r�r0/� D
c
�
r�cr0� . Its canonically transformed form (see (2.4)) can be written as

QG�.r � r0/ D hr�c
�
r�cr0�hr0� C

X
hRri

tRrhR� 0c
�

R� 0cr� 0nr� 0c�r�cr0�hr0� 0=U

C
X
hRr0i

tRr0hr�c
�
r�cr0�nr0�c

�

r0� 0cR� 0hR� 0=U: (2.21)

h QGi can be evaluated in projected states using Gutzwiller factors. After Fourier
transforming, we finally get

nk D n0 C n1k CZkv2k; (2.22)

where n0 is a constant: n0 D .1 � x/2=Œ2.1Cx/�C .gt Cgst /.1�x/Pk0 �k0 v2k0=U

and n1k is a smooth function of k given by n1k D �.1 � gt /.1 � x/2�k=2U �
4g0.x/

P
k0k00 �kCk0�k00 uk0vk0 uk00vk00=U � 4g1.x/

P
k0k00 �kCk0�k00 v2k0v2k00=U . The

term Zkv2k in (2.22) leads to a jump discontinuity in nk along the zone diagonal.
Along this direction the superconducting gap�k vanishes, vk D �.��k/ and hence
the jump discontinuity in nk. The quasiparticle weight of the nodal excitations is
then given by

Zk D gt � 2gst
X

k0

�k0 v2k0=U � gt .1 � x/�k=U: (2.23)

Although the momentum distribution only gives information about the gapless nodal
quasiparticles, an explicit calculation of the coherent spectral function shows thatZk

is the spectral weight of the coherent quasiparticles all over the Brillouin zone. The
nodal quasiparticle weight increases with doping and for very low doping vanishes
like x.
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Fig. 2.6 Left panel (a): Momentum distribution along the zone diagonal for a doping of x D
0:18. The blue circles are the Monte Carlo results [10] while the thick line is the Gutzwiller
approximation result. The jump discontinuity shows the presence of gapless quasiparticles. Right
panel (b): The nodal quasiparticle weight as a function of doping. The blue circles are Monte
Carlo results [10], the thick line is the Gutzwiller approximation results and the red squares are
experimental ARPES results [46]

Figure 2.6a shows a plot of nk along the zone diagonal as calculated from VMC
and Gutzwiller approximation for a doping of x D 0:18, and the two are in very
good agreement. Figure 2.6b shows a plot of the nodal quasiparticle weight ZN .x/
as a function of doping. The Monte Carlo and the Gutzwiller approximation are
both in very good agreement with the doping dependence of the nodal quasiparticle
weight, which is obtained from ARPES experiments [46]. Note that there is no
adjustable parameter in this comparison with experiment.

The suppression of the nodal quasiparticle weight with underdoping is a profound
consequence of projection and proximity to the Mott insulating state. Projection
hinders the coherent propagation of electrons. But, as we shall see in the next
section, a surprise awaits us when we compute the doping dependence of the
effective mass.

2.7 Electronic Excitations and Spectral Properties

We now turn our attention to single particle excitations above the superconducting
ground state. The single particle spectral properties of the high Tc cuprates have
been measured by ARPES [41, 42] and STM [47, 48] and have provided a wealth
of information which has been crucial for understanding these systems. We have
already compared our projected wavefunction results with the experimentally
measured magnitudes and doping dependences of p–h asymmetry (Sect. 2.3), the
antinodal energy gap (Fig. 2.5) and the nodal quasiparticle weight (Fig. 2.6).
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In this section, we consider a variational ansatz for the fermionic excitations of
projected superconductors. Among other things, this will allow us to examine the
nodal quasiparticle dispersion, justify the identification of �.x/ with the antinodal
gap, and discuss the coherent contributions to the single particle spectral function
A.k; !/ and the notion of an “underlying Fermi surface” in the superconducting
state.

We make a variational ansatz for the single-particle excitation

jk; �i D exp.�iS/P�k� jdBCSi; (2.24)

where � is the Bogoliubov quasiparticle creation operator given by �k� D ukc
�
k� �

�vkc�k� . The excitation spectrum is obtained by subtracting the ground state energy
from that of the variational quasiparticle states. Within the renormalized MFT [8],
the spectrum has the usual BCS form

Ek D
q
�2k C�2

k; (2.25)

where the renormalized dispersion �k and the gap function �k were defined in and
above (2.18). It thus follows that the pairing amplitude�, plotted in Fig. 2.5a, is the
antinodal spectral gap.

Linearizing the spectrum near the nodes, the spectrum of nodal quasiparticles is
given by

Ek �
q

vFk
2? C v�k2k; (2.26)

where k? and kk are momenta, perpendicular and parallel to the Fermi surface,
measured from the nodal kF. The nodal Fermi velocity vF and the “gap slope”
v� determine the low-energy quasiparticle DOS N.!/ � j!j=.vFv�/ and, hence,
various low-temperature properties of the system. Within the renormalized mean-
field theory, the nodal kF is weakly dependent on doping and v�.x/ follows the
pairing amplitude�.x/.

2.7.1 Nodal Fermi Velocity

We predicted that vF is essentially independent of doping from VMC calcula-
tions [10] of projected wavefunctions. (This required the use of higher moment
sum rules of the spectral function [10, 11] not discussed here). Our prediction was
confirmed by later ARPES experiments [49] (see Fig. 2.7). Optical measurements
[50] found a mass renormalization of 2 consistent with our results. The Gutzwiller
approximation vF, also shown in Fig. 2.7, is not in quantitative agreement with the
VMC and experimental results, in that it has considerable x-dependence. However,
it does capture an important qualitative aspect of the VMC results in that vF goes to
a constant as x ! 0.
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Fig. 2.7 The nodal Fermi
velocity from Gutzwiller
approximation, variational
Monte Carlo [10] and ARPES
experiments [49]
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We thus find the remarkable result that although the weight Z ! 0 as x ! 0,
the nodal vF, or effective mass m� D kF=vF, remains finite. This is very unusual
and different from well-studied examples such as electron–phonon interactions in
metals and conventional superconductors, or electron–electron interactions in three-
dimensional transition metal oxides or the heavy fermions. In all of these cases, the
electron self-energy has a weak k-dependence and thus a vanishing Z goes hand in
hand with a divergentm�.

Along the nodal direction, where the gap vanishes, one can relate the nodal
quasiparticle weightZ and the nodal Fermi velocity vF to the real part of self-energy
˙ 0 using

Z�1 D 1 � @˙ 0.k; !/=@! and vF D Z
�
v0F C @˙ 0.k; !/=@k

�
; (2.27)

where all derivatives are evaluated at the node .k D kF; ! D 0/ and v0F is the
bare (noninteracting) Fermi velocity. The vanishing of Z � x seen from (2.23)
implies a singularity in @˙.k; !/=@! � 1=x. The only way in which vF can remain
nonzero in this limit is for @˙.k; !/=@k to have a compensating�1=x singularity!
The vanishing of Z upon approaching a Mott insulator implies loss of coherence
due to strong correlations. The finite vF as x ! 0 arises from the fact that the Fock
shift contribution �1 to the renormalized dispersion �k in (2.18) remains finite (of
order J ) as x ! 0; (all other k-dependent contributions to �k vanish in this limit).

2.7.2 Spectral Function

In Sect. 2.3, we discussed sum rules for the single-particle spectral function in a
possibly inhomogeneous doped Mott insulator. Now, we turn to a more detailed
study of A.k; !/ for a (homogeneous) projected superconductor. It has the spectral
decomposition

A�.k; !/ D
X
m

jhmjc�k� j0ij2ı.! � Em C E0/C jhmjck� j0ij2ı.! CEm � E0/:
(2.28)



2 Projected Wavefunctions and High Tc Superconductivity in Doped Mott Insulators 49

In a strongly correlated system, A.k; !/ can be separated into two parts: a
contribution Acoh.k; !/ coming from coherent quasiparticles (poles of the Green
function) and the remaining incoherent part Ainc.k; !/. Only states jmi D jk; �i
with excitation energy Ek contribute to the coherent piece. Using �k� jdBCSi D
.1=uk/c

�
k� jdBCSi, we may write the matrix element required for the first term of

(2.28) as

Mk D 1

uk

X
ij

eik�.ri�rj /hdBCSjci�P Qc�j�P jdBCSi: (2.29)

Here, Qc� is the canonically transformed creation operator (see (2.4)). In addition to
the creation of a particle on a site having a hole, Qc� also contains a term where a
double occupancy is created and then relaxed by hopping onto neighboring sites.

The Gutzwiller factors for the different terms can be calculated as before. Note
that the O.1=Ns/ change in density between the two states is irrelevant in calculating
the Gutzwiller factors. For the first term, the initial configuration in a projected state
is a hole at site i and the final configuration is a spin � . In the unprojected states,
we need an absence of spin � on site i in the initial configuration. Following the
procedure outlined in Sect. 2.5, the Gutzwiller factor for this term is

p
gt . Similar

considerations show that the Gutzwiller factor for the 1=U term where the created
spin hops is also

p
gt , whereas the renormalization for the term in which the

opposite spin hops is
p
gtgs . Using these renormalization factors, we get

Mk D pgtuk �
p
gt .1 � x/
U

�kuk �
p
gtgs

U
uk

X
k0

�k0 v2k0 : (2.30)

After a similar calculation for the second term in (2.28), we find that the coherent
part of the spectral function can be written as

Acoh.k; !/ D ZkŒu
2
kı.! �Ek/C v2kı.! C Ek/�; (2.31)

where Zk is found to be given by the same expression as that shown in (2.23). The
fact that the quasiparticle weight calculated from the excited states exactly matches
that calculated for nodal quasiparticles from nk (which is a ground state property)
serves as a useful consistency check on our results. To summarize: the coherent part
of the spectral function, (2.31) has a BCS-like form, but with a reduced weight Zk.
The remainder of the spectral weight .1 �Zk/ is in the incoherent part.

2.7.3 Sum Rules

We can break up the spectral function sum rules into coherent and incoherent
parts and see how each part contributes to the particle-hole asymmetry discussed
in general in Sect. 2.3. For the occupied part of the spectral function, we have
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R 0
�1 d!A.k; !/ D nk. Separating it into coherent and incoherent parts, we get

Z 0

�1
Acoh.k; !/ D Zkv2k and

Z 0

�1
Ainc.k; !/ D n0 C n1k; (2.32)

where n0 and n1k were defined below (2.22). Note that the coherent contribution
vanishes as x ! 0 and the sum rule is completely dominated by the incoherent
response.

On the unoccupied side, the interesting low-energy sum rule is obtained
by putting an upper cutoff ˝ , where U � ˝ � t; J . This ensures that
only projected states in the “lower Hubbard band” contribute to the sum rule.
Following Sect. 2.3 and using Gutzwiller approximation, we get

R ˝
0
Acoh.k; !/ D

Zku2k and
R ˝
0
Ainc.k; !/ D 2gst

P
k0k00 �kCk0�k00 Œv2k0 u2k00 � uk0 vk0uk00vk00 �=U�

gt .1 � x/Pk0 �k0 v2k0=U . We see that the incoherent contribution to the sum rule
is O.t=U /. Using the nonnegativity of spectral functions, we reach the very
interesting conclusion that Ainc.k; !/ D O.xt=U / for ! > 0. The unoccupied
low-energy sum rule is much smaller than the occupied part, but it is mainly
dominated by the coherent contributions. This also shows that the particle-hole
asymmetry in the spectral weight comes chiefly from the incoherent part of the
spectral function. Figure 2.8 shows the spectral function sum rules for two different
dopings x D 0:15 and xD 0:35 along the zone diagonal. On the occupied side,
the sum rule is dominated by incoherent spectral weight at low doping while the
coherent part starts to dominate at higher doping. For the unoccupied part, the sum
rule is always dominated by the coherent contribution.

2.7.4 Fermi Surface

We conclude this section by mentioning progress on the question [51, 52] of how
one can determine the “underlying” Fermi surface in the superconducting ground
state of strongly correlated Fermi systems. In a metallic state, following Luttinger,
the change in sign of the zero energy Green’s function with G�1.k; 0/ D 0 can be
used to define the Fermi surface. It has been suggested that in a superconductor one
might be able to use the criterion G.k; 0/ D 0. However, this contour (in 2D, or
surface in 3D) does not enclose the Luttinger count of n electrons; in fact, there is
no analog of Luttinger’s theorem in the superconducting state at T D 0 [51].

Nevertheless, one can look at various criteria that give information about where
the low-energy excitations live in k-space and compare them with each other and
with ARPES experiments. These include criteria based on (1) the renormalized
dispersion �k D 0, (2) the “minimum gap” locus fromEk, (3) the momentum distri-
bution nk, and (4) the low-energy spectral function A.k; 0/. All these give similar,
though not identical, results. The Luttinger count is violated in the superconducting
state in an interesting way. Its deviation from the electron density is positive if the
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Fig. 2.8 The integrated spectral weight along the zone diagonal showing coherent and incoherent
contributions on the occupied (electron extraction) and unoccupied (electron injection) sides for
hole doping x D 0:15 and x D 0:35

Fermi surface is hole like and negative if the Fermi surface is electron like with a
sign change when the Fermi surface topology changes. A similar result has been
experimentally seen in cuprates through ARPES measurements [53]. For a detailed
discussion, see [51, 52].

2.8 Superfluid Density

An important defining property of the superconducting state is its superfluid stiffness
Ds (also called the superfluid density �s) that is related to the energy cost of twisting
the phase of the condensate. It is directly related to the measured London penetration
depth �L via ��2

L D 4�e2Ds=.„2c2d/, where c is the speed of light, e the electronic
charge, and d the mean inter layer spacing.

In ordinary BCS superconductors, the energy scale Ds is of order the Fermi
energy, and thus much larger than the pairing gap �. The smaller of the two scales
controls Tc. Loss of superconductivity upon raising the temperature is controlled by
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pair breaking, or thermally excited quasiparticles, resulting in the well-known BCS
relation between Tc and the energy gap, 2� ' 3:5kBTc.

In contrast, the underdoped high Tc superconductors show a completely different
behavior. The antinodal gap increases with underdoping (decreasing x) while the
Tc decreases. In addition, it is well established that the superfluid stiffness Ds

also decreases upon underdoping so that it is much smaller than the gap for small
enough x. The natural conclusion is that fluctuations of the phase of the order
parameter destroy superconductivity on the underdoped side with Tc related to
Ds [54] and not to the gap (The precise form of this relationship is not so important
here, but is now understood in detail [55–58]).

In this section, we will first describe the doping dependence of the superfluid
stiffness within the projected wavefunction framework, which is in good agreement
with experiments. We will then look at the temperature dependence of Ds in a
strongly correlated system and relate it to the current carried by the quasiparticle
states.

2.8.1 Doping Dependence ofDs

For a superconductor, the real part of the frequency dependent conductivity has the
form

�.!/ D �Dsı.!/C �reg.!/; (2.33)

where the superfluid stiffnessDs controls the strength of the delta-function and �reg

is the regular part of the conductivity (in units where „ D c D e D 1). For the
Hubbard model, there is the well-known optical conductivity sum-rule

Z 1

0

d!Re�.!/ D 2�
X

k

m�1
k nk 	 �Dtot=2; (2.34)

wherem�1
k D .@2�k=@k

2
x/ is the noninteracting inverse mass. However, for projected

systems, the more useful sum rule is restricted to the lower Hubbard band:

Z ˝

0

d!Re�.!/ D �Dlow=2; (2.35)

where the cutoff ˝ is chosen so that U � ˝ � t; J . It is evident from (2.33) that
the low-energy integrated optical weight places an upper bound on the superfluid
stiffness [11] so that: Ds � Dlow � Dtot. The low-energy optical weight Dlow is
also called the “Drude weight.”

We next describe how we can calculate Dlow for projected superconductors. We
determine the response of the system to an external vector potential A, which acts
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as a phase twist on the superconducting order parameter. The hopping amplitudes
tij acquire a phase tij ! tij eiAij , where Aij D

R rj
ri
A � dl D A � .ri � rj /. The

canonically transformed Hamiltonian in the presence of the vector potential takes
the form

HA D
X
hij i

tij eAij hi� c
�
i� cj�hj� �

1

U

X
hi lihlj i

ti l tlj eiAij hi� 0c
�

i� 0cl� 0nl�c
�

l� cj�hj� :

(2.36)
We then evaluate Ddia D @2HA=@A

2.A D 0/. Using standard Kubo formula
analysis, we find that hDdiai gives both the diamagnetic response to a static q D 0

vector potential as well as the low-energy optical spectral weight Dlow. Assuming
the vector potential to be along the x axis, one can write DdiaD P

hij i tij .xi � xj /2
hi�c

�
i� cj�hj� � 1

U

P
hi lihlj i ti l tlj .xi � xj /2hi� 0c

�

i� 0cl� 0nl� c
�

l� cj�hj� . Note that Ddia

contains terms which represent hopping of holes (� t) and terms representing
second-order processes where a double occupancy is created by hopping and
then annihilated by a second hop. However, in this second-order process, terms
which return the electrons to the point where they started (i D j in 1=U terms,
corresponding to spin fluctuations) do not contribute due to the .xi � xj /2 factor.

Using Gutzwiller factors to take care of projection effects, we find that the final
result can be written as

hDdiai D Dlow D 2
X

k

Zkm
�1
k v2k C

2gt .1 � x/
U

X
k

�
@�k

@kx

�2
v2k; (2.37)

where Zk is the quasiparticle weight given by (2.23). It is interesting to compare
the low-energy sum rule Dlow with the full sum rule Dtot of (2.34). The same
(bare) inverse mass occurs in both, but the momentum distribution in Dtot has been
replaced in the first term of Dlow by the part of nk coming from the coherent part
of the spectral function. There is an extra term in Dlow which is proportional to the
square of the bare group velocity, but it is also multiplied by a factor of gt .

For low doping Dlow � x and vanishes at half-filling. We thus conclude that
(a) the low-energy charge response is suppressed in the underdoped limit leading to
insulating behavior at x D 0, and (b) the superfluid stiffness, bounded from above
by Dlow, must vanish as x ! 0.

The variation of Dlowwith doping is shown in Fig. 2.9. The Gutzwiller approx-
imation results and the Monte Carlo results closely match each other. The exper-
imental data for optical conductivity is usually presented in terms of the plasma
frequency !2p D 4�DlowKe

2=d , where d is the layer separation of the 2D planes
and K is the number of planes. Using calculated Dlow ' 90meV for x � 0:2

(optimal doping), d D 11:68A and K D 2, the estimated !p D 1:67 eV for
YBCO, while the experimentally measured value is 2:12 eV [59]. We next use
��2
L D 4�e2Ds=.„2c2d/ with the mean inter layer spacing d D 7:5A for BSCCO,
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Fig. 2.9 The variation of the
low energy integrated spectral
weight or Drude weight Dlow

with hole doping. Dlow is an
upper bound for the
superfluid stiffness. The filled
circles are Monte Carlo
results [10] while the thick
line is obtained from the
Gutzwiller approximation
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to get a lower bound on the penetration depth �L 
 1350A at optimality, whereas
the measured value is 2;100A [60]. However, the overestimate of the superfluid
stiffness is to be anticipated as the theory leaves out effects of impurities and of long-
wavelength quantum phase fluctuations [61], both of which degrade the superfluid
stiffness at T D 0.

2.8.2 Temperature Dependence of Ds

At finite temperatures T � Tc, thermally excited nodal quasiparticles lead to a
reduction in the superfluid stiffness. For d -wave superconductors, in the absence of
disorder, the low-energy DOS N.!/ � j!j leads to a linear decrease:

Ds.T / D Ds.0/� CT C : : : (2.38)

Experimentally, the zero temperature value Ds.0/ decreases with underdoping (as
already discussed above), while the slope dDs=dT .0/ shows interesting doping
dependence: it is fairly constant near optimal doping and decreases in the highly
underdoped samples.

We now address the question of the extent to which we can understand the doping
dependence of the slope within the projected wavefunction framework. dDs=dT .0/
can be related to the quasiparticle spectrum through [62]

dDs

dT
.0/ D 2 ln 2

�
˛2

vF

v�
; (2.39)

where vF and v� were defined in (2.26) and ˛e is the effective charge defined by the
current carried by the nodal quasiparticles

jN D ˛evF: (2.40)
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Our goal is to determine the doping dependence of the charge renormalization ˛.x/
arising from many-body backflow corrections [63].

The paramagnetic current operator is given by jx D �e@HA=@Ax jAD0. Using
(2.36), we find

jx D ie
X
hij i

tij hi� c
�
i� cj�hj�.xi � xj /

C ie 1
U

X
hi lihlj i

ti l tlj .xi � xj /hi� 0c
�

i� 0cl� 0nl�c
�

l� cj�hj� : (2.41)

The current has the usual hopping term and a second-order term involving two hops,
with the double occupancy created by one relaxed by the other. We now compute
the expectation value of the current in the variational quasiparticle state jq�i D
exp.�iS/P�q� jdBCSi. This will be called j q and should not be confused with the
Fourier mode of the current.

Using the Gutzwiller approximation, we find j q
x D eZq.u2q � v2q/@�q=@qx . Note

that the current carried by the quasiparticle is proportional to the bare velocity of
the band electrons [62]. The u2q and v2q terms are the hole and particle contributions,
respectively, which enter with opposite signs given their opposite charges. The
overall current is renormalized by the quasiparticle weight Z of the excitations.

Evaluating this result at the node, we find that the current carried by the nodal
quasiparticles is jN D eZN v0F, where v0F is the bare Fermi velocity. Comparing this
with (2.40), we find the charge renormalization

˛ D ZN v0F=vF D
�
1C .1=v0F/@˙

0=@k
��1

; (2.42)

where we have used (2.27). The results for ˛.x/ are plotted in Fig. 2.10.
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Fig. 2.10 Left panel (a): The current carried by the nodal quasiparticles as a function of doping
for Hubbard and tJ models. Right panel (b): The effective charge ˛ of the nodal quasiparticles as
a function of doping for Hubbard and tJ models. Gutzwiller approximation results are compared
with variational Monte Carlo results for the tJ model from [64]
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To see how the Gutzwiller approximation gives semianalytical insights into VMC
results, let us compare with Monte Carlo data on the tJ model [64]. In this case, the
Gutzwiller approximation gives ZN D gt and �k D �.gt t C �1/k, which leads to
v0F=vF D t.gt C �1/. The only numerical result we need is that the self-consistent
solution yields �1 � J=2 � t=6 for small x and the result is very weakly dependent
on x. Thus, we find ˛.x/ ' x=.1:08xC0:08/, which is in excellent agreement with
the VMC data (see Fig. 2.10) and also gives insight into the large slope of ˛.x/ at
small x.

We thus see from (2.39) that although dDs=dT .0/ � ˛2, its x2-behavior is
restricted to a tiny range of doping values, where superconductivity gives way to
other competing orders like antiferromagnetism (see below). Although theoretically
very important, this analysis of dDs=dT .0/ is hard to directly compare with
experiments. In many materials, disorder changes the linear T behavior in Ds.T /

qualitatively, and in some experiments d�L=dT is measured very accurately but not
the absolute value of �L.0/ needed to determine dDs=dT � d��2

L =dT .

2.9 Disorder and Strong Correlations

We have thus far looked at the effects of strong correlations in a clean d -wave
superconductor. In experiments, the process of doping the Mott insulator introduces
intrinsic disorder in the system. Yet, superconductivity in the cuprates seems
surprisingly robust against impurities. This is a remarkable finding in view of the
standard Abrikosov–Gorkov theory [65], which implies that disorder is a pair-
breaking perturbation for d -wave pairing symmetry. It has been confirmed that
unconventional superconductors such as Sr2RuO4 with p-wave triplet pairing are
indeed highly sensitive to disorder [66] as expected from the conventional theory.

The insensitivity of the cuprates to disorder stems in part from the fact that the
dopants are far from the CuO2 planes and also from the short coherence length.
However, we point out here that there is another, more profound reason for the
robustness of the cuprates against disorder. We present below a generalization of
the Gutzwiller approximation to the inhomogeneous system to obtain the combined
effects of strong correlation (projection) and disorder. We find the remarkable result
that correlations play a central role in making the superconducting state and its low-
energy excitations robust against disorder. The nodal quasiparticles, which are the
low-energy electronic excitations, are found to be protected against disorder leading
to characteristic signatures that are confirmed in scanning tunneling spectroscopy
[67–71] and angle-resolved photoemission [41, 42, 72, 73] experiments.

We briefly describe our formalism. For simplicity, we work with the t � t 0 � J
model rather than the large U Hubbard model (see the discussion at the end of
Sect. 2.2). We include a random impurity potential V.r/ that takes on values V0 > 0
at a fraction nimp of the sites and is zero elsewhere. Our Hamiltonian, acting on
projected wavefunctions with no-double occupancy, is
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H D �
X
r;r0;�

trr0.c�r�cr0� C h:c:/

CJ
X
<r;r0>

.Sr : Sr0 � nrnr0=4/C
X

r

.V .r/ � 
/nr: (2.43)

We focus on weak potentials V0 D t (Born scattering) as a simple model of intrinsic
disorder in cuprates.

To clearly see the role of strong correlations, we compare the results of two
different T D 0 calculations. (1) The first is a Bogoliubov deGennes (BdG) MFT
that includes the inhomogeneity from the disorder, but treats interactions only at
the simplest Hartree–Fock level. In other words, we make the gross simplification
of ignoring the no-double occupancy constraint. In fact, most of the theoretical
work [65, 74–76] in the field of disordered high Tc superconductors, barring a
few exceptions [77, 78], uses just such an approximation. In this approach, the
interaction in (2.43) is decomposed into local bond pairing amplitudes �rr0 D
J hcr"cr0# � cr#cr0"i/2, and Fock shifts Wrr0 D J hc�r0�cr� i=2 with the density

n.r/ D hP� c
�
r�cr� i. The effective BdG Hamiltonian is then diagonalized and the

fields defined above calculated self-consistently.
(2) The second calculation [35] includes both strong correlations and disorder,

using a combination of the Gutzwiller approximation and the BdG method. Given
the short coherence length, it is known from both theory and experiments that one
has to deal with a highly inhomogeneous superconducting state. Thus, the treatment
of strong correlations using the Gutzwiller approximation needs to be generalized
[79] to take into account this spatial inhomogeneity. We discussed in Sect. 2.4
the standard Gutzwiller factors for translationally invariant systems and how they
depend upon the hole density x. Those results must now be generalized to keep
track of the local variations in the hole density x.r/ D 1 � n.r/.

Using the absence (or presence) of a subscript 0 to denote expectation values in
projected (or unprojected) states, we obtain the following results. For the kinetic
energy, we find hc�r�cr0� i � gt .r; r0/hc�r�cr0� i0 and for the spin correlation we get
hSr � Sr0i � gs.r; r0/hSr �Sr0i0. The local Gutzwiller factors are given by gt .r; r0/ D
gt .r/gt .r0/ with gt .r/ D Œ2x.r/=.1C x.r//�1=2 and gs.r; r0/ D 4=Œ.1C x.r//.1C
x.r0//�.

We can derive the renormalized BdG equations and solve them numerically
to find the eigenvalues En and the corresponding eigenvectors .un.r/; vn.r//. We
impose the local self-consistency equations for the density n.r/ D 2

P
n jvn.r/j2,

the pairing amplitude �r;r0 D J1.r; r0/
P

nŒun.r
0/v?n.r/ C un.r/v?n.r

0/� and the
Fock shift Wr;r0 D J2.r; r0/

P
n vn.r0/v?n.r/, where the renormalized couplings

J1;2.r; r0/ D J.3gs.r; r0/˙ 1/=4.
In a disordered system, the one-particle spectral function A.r;RI!/ D

�ImG.r1; r2I! C i0C/=� depends on both the center-of-mass R D .r1 C r2/=2
and the relative coordinate r D r1 � r2. Within the Gutzwiller approximation, we
obtainA.r;RI!/ D gt .r1; r2/A0.r;RI!/ with A0 DPn un.r1/u?n.r2/ı.!�En/C
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Fig. 2.11 DOS N.!/ for various impurity concentrations [35]. The results in panel (a) include
both strong correlations using Gutzwiller projection and disorder using BdG. The curves corre-
spond to different values of nimp indicated in (b). Note the robust V-shaped density of states in
(a), which implies that strong correlations protect the nodes. Panel (b) shows the results of a BdG
calculation with disorder (but only a mean field treatment of interactions). Here, the low-energy
DOS fills up with increasing disorder. This is further illustrated in panel (c), which shows the low-
energy DOS integrated over a small window j ! j� 0:02t as a function of nimp. Results with
correlations (open symbols (red)) and plain BdG (closed symbols (blue)). The average electronic
density n D 0:8, impurity potential V0 D 1:0t

vn.r1/v?n.r2/ı.! C En/. The Gutzwiller approximation describes the coherent part
of the spectral function which dominates A for !’s smaller than or comparable to
the gap. We will focus exclusively on these low-energy excitations here. The higher
energy incoherent spectral weight, not accessible to the Gutzwiller approximation,
can be constrained by exact sum rules and leads to p � h asymmetry, as discussed
in earlier sections.

A detailed discussion of the order parameter and density inhomogeneity in the
presence of disorder and its implications for STM and ARPES observables may
be found in [35]. Here, we show only one result: the DOS N.!/ as a function of
impurity concentration in Fig. 2.11. This is calculated from the spectral function by
first defining the LDOS N.R; !/ D A.0;RI!/, and then spatially averaging it over
the disordered system: N.!/ D hN.R; !/iR.

The results of Fig. 2.11 clearly show that there is much less pair breaking in
a strongly correlated superconductor compared with its uncorrelated counterpart,
even if we take into account the short coherence length and inhomogeneity in both
calculations. (We note that a weak coupling d -wave BCS theory [65] would predict
an even larger impurity-induced density of states at low energies than that found in
the plain BdG calculation).

The striking feature of the strongly correlated superconductor in panel (a) is that
the low-energy DOS is highly insensitive to disorder, the only disorder-induced
changes occur near the gap edge. These qualitative features are observed in all the
STM studies of the cuprates [67–71]. Even though there are large inhomogeneous
variations of the superconducting gap on the nanoscale, nevertheless the LDOS



2 Projected Wavefunctions and High Tc Superconductivity in Doped Mott Insulators 59

at low energies is remarkably homogeneous. The “protected” nature of nodal
quasiparticles is also seen in the ARPES spectral functions calculated from inhomo-
geneous Gutzwiller approximation [35] and gives insight into the nodal/antinodal
dichotomy observed in ARPES experiments.

Let us conclude this section with a brief discussion of the reasons why correla-
tions lead to this unusual effect. First, correlations lead to a mass-renormalization
of about 2–3 and the lower vF leads to a shorter healing length. Second, interactions
screen the impurity potential. Finally, as shown in [35], the electron density
decreases near a repulsive impurity potential leading to an increase in the local gt .
The resulting increase in the local hopping helps heal the loss of pairing near the
impurity. The interplay of strong correlations and disorder raises many profound
unsolved questions in condensed matter physics, and this is but one example where
the Gutzwiller method has led to some new insights.

2.10 Competing Orders: Antiferromagnetism

The question of competing orders in lightly doped Mott insulators has received a lot
of attention. The undoped parent compound of the high-Tc cuprates has long range
antiferromagnetic (AF) order in its ground state. Upon doping the AF, TNeel drops
rapidly and d -wave superconductivity (SC) develops around x � 0:05. In addition,
there is evidence for weak incommensurate spin density wave AF and also stripe
order in lightly doped cuprates.

We have thus far discussed only the d -wave superconducting state in the doped
system. We now briefly describe how the Neel AF state, known to be the ground
state of the Heisenberg model at half-filling, competes and coexists with d -wave
SC upon doping. These results are obtained from VMC calculations [80] of the tJ
model with longer range hopping t0 and t00.

We use a projected variational wavefunction that has the possibility of both d -
wave SC and AF order parameters, and minimize its energy to determine the optimal
state. Our approach builds on earlier studies of competition and coexistence of AF
and SC [81–84]. The behavior of the two-order parameters as a function of electron
and hole doping and of the next-neighbor hopping t0 is shown in the “phase diagram”
of Fig. 2.12. As explained in [80], key features of the T D 0 phase diagram, such
as critical doping for SC-AF coexistence and the maximum value of the SC order
parameter, are all determined by a single parameter that characterizes the curvature
and topology of the “Fermi surface” at half filling, defined by the bare tight-binding
parameters.

We emphasize two important conclusions that can be drawn from Fig. 2.12. First,
t0 introduces a striking asymmetry between electron and hole doping [85, 86]. As
a result, AF is the stronger instability on the electron-doped side that dominates
over SC, while just the opposite is true on the hole-doped side. The reasons for
which order dominates are elucidated in [80]. Second, there is a very important
trend on the hole-doped side: the larger the magnitude of t0, the stronger the SC. In
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Fig. 2.12 Phase diagram showing the d -wave superconducting (SC) and antiferromagnetic (AF)
order parameters as a function of doping, based on variational Monte Carlo results of Pathak
et al. [80] for the t-t0-J model with various values of the next-neighbor hopping t0. Note the
asymmetry between hole-doping (with SC dominating) and electron-doping (with AF dominating).
Note also the systematic t0 dependence of SC on the hole-doped side

effect, our analysis constitutes a microscopic derivation of the connection between
the range of hopping and superconductivity, which had been first emphasized by
Pavarini et al. [87] on empirical grounds. For a detailed discussion of these issues,
we refer the reader to [80].

2.11 Conclusion

We have described the insights one can get into the strongly correlated d -wave
superconducting (SC) state in doped Mott insulators using projected wavefunctions.
Of course, one cannot hope to prove using variational methods that the 2D large-U
Hubbard model has a superconducting ground state. However, we can show that
a SC state is energetically favored for a range of densities, and then compare the
predictions of its properties with those observed in the high Tc cuprates. Our main
goal was to calculate experimentally observed quantities and compare our results
with experiments. Three strategies were used for the calculations: exact sum rules
for projected fermions, VMC calculations that impose the no double-occupancy
constraint exactly, and the Gutzwiller approximation – our primary focus – which
gives detailed analytical insights.

To summarize, we have obtained a variety of detailed insights into the d -wave
superconducting state in doped Mott insulators.

1. There is a striking p � h asymmetry in the spectral function of doped Mott
insulators that shows that strong correlations continue to play a crucial role in
the doped systems.

2. The projected wavefunction approach leads naturally to a superconducting dome
with its nonmonotonic dependence on hole density. The suppression of SC on the
underdoped side of the dome is controlled by the high energy scale of U and the
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approach to the Mott insulator, and not by a competing order whose characteristic
scale can only be J .

3. The energy gap and the SC order parameter behave in a qualitatively different
manner as a function of doping.

4. We have elucidated in detail the very interesting evolution of the excitations
(nodal quasiparticles, their spectral weight, and dispersion), Fermi surface and
response functions (optical weight, superfluid density) from the overdoped,
weakly correlated SC with the underdoped, strongly correlated SC in the vicinity
of the Mott insulator.

5. We showed that disorder effects are suppressed in the presence of strong
correlations, thus giving insight into the robustness of d -wave SC in the cuprates
against impurities and the nodal-antinodal dichotomy.

6. Finally, we have elucidated the asymmetry between electron and hole doping a
Mott insulator, and the competition between AF and SC order. We have shown
that longer range in-plane hopping promotes higher Tc on the hole-doped side.

What implications do our SC state results have for the anomalous normal
states? It is clear from the results presented above that the phase transition to
the normal state on the under- and overdoped sides are quite different. On the
overdoped side, the energy gap � is much smaller than the superfluid stiffness
Ds (as in usual BCS superconductors) and SC is destroyed by pair breaking. In
contrast, on the underdoped side of the SC dome, Ds � � and phase fluctuations
destroy SC order [88]. Thus, pairing must survive above Tc [89, 90] on the
underdoped side. There is clear experimental evidence for fluctuation diamagnetism
and fluctuating vortices just above Tc [91, 92], and for spin pairing from NMR
[93] and a k-dependent ARPES gap over a broad range of temperatures extending
up to T � [41, 42]. However, the pseudogap region in underdoped cuprates also
shows evidence for other competing orders, including spin-density wave magnetism,
stripes, and broken time reversal. Competing orders become more prominent in low-
temperature experiments where SC is destroyed by external magnetic fields [94]. A
complete understanding of the strongly fluctuating pseudogap regime close to the
Mott insulator is not available at this time.

The strange metal normal state, above optimal doping, with its characteristic
linear resistivity and marginal Fermi liquid phenomenology [95], also poses a
challenge for theory. It has been interpreted as the quantum critical regime [96, 97]
of a critical point hidden under the dome, but the order parameter for this transition
is not definitively established, nor the unusual scaling in frequency, without any
obvious spatial scaling, persisting up to very high temperatures. An alternative point
of view is that the strange metal is a consequence of strong correlations leading to
non-Fermi liquid behavior [6, 98–100].

In conclusion, while the strongly correlated superconducting state and its low-
energy excitations and response functions are reasonably well understood, there is
much less agreement on the non-Fermi liquid normal state properties of the large U
Hubbard and tJ models.
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Chapter 3
The Pseudoparticle Approach to Strongly
Correlated Electron Systems
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Abstract The most prominent pseudoparticle representations and their applications
to correlated spin and electronic models are reviewed, with approximate solution
schemes ranging from saddle-point approximations with Gaussian fluctuations to
conserving approximations and renormalization group (RG) techniques. Merits and
shortcomings of these methods are described. In particular, the generic feature
of radial slave boson fields to possess a finite expectation value is discussed,
while pure fluctuation fields may best be treated by conserving approximations.
We present applications to the magnetic phases of the Anderson lattice model
and to the Hubbard model. The noncrossing approximation and the conserv-
ing T -matrix approximation are presented and discussed as the most important
conserving approximations. Furthermore RG techniques for pseudoparticle repre-
sentations, including “poor man’s scaling” and functional RG for the Kondo model
in and out of equilibrium, a novel RG approach to the Kondo model for strong
coupling, and the functional RG approach to frustrated Heisenberg models are
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3.1 Introduction

The immense and steadily increasing field of strongly correlated electrons has
emerged as a central theme of many-body physics over the past 3 decades (for
a review see [1]). Of particular interest are the so-called heavy-fermion metallic
compounds [2] and copper-oxide superconductors [3]. While fully accounting for
their properties remains a challenging task, it is believed that their key properties
are embodied in the Anderson or Kondo lattice models in the former case, and
in the Hubbard model and the t–J model in the latter one. The difficulty in
solving these models is rooted in the fact that conventional many-body perturbation
theory (including infinite resummations) does not work in these cases. This
failure is obvious in lattice models with on-site repulsion U exceeding the band
width D.

Take the Hubbard model with a large on-site repulsion U , where each lattice site
can either be empty (state j0i), singly occupied (j"i and j#i) or doubly occupied
(j2i). The dynamics of an electron will be very different according to whether
it resides on a singly or doubly occupied site. For large U the doubly occupied
states will be pushed far up in energy, and will not contribute to the low-energy
physics. This leads effectively to a projection of the Hilbert space onto a subspace
devoid of doubly occupied states. It turns out to be difficult to effect the projection
within conventional many-body theory, as has been realized early on in the context
of the magnetic impurity problem. Indeed, this difficulty is at the heart of the
single impurity Kondo problem, for which a sound physical picture and quantitative
analytical and numerical methods of solution have been developed over a period
of 40 years [4]. Over the past 15 years the Kondo problem has attracted renewed
interest in the context of electron transport through nanostructures, in particular in
situations out of equilibrium. We will discuss impurity models in Sects. 3.5 and 3.6.

A powerful technique for describing the projection in Hilbert space is the method
of auxiliary particles (slave bosons and pseudofermions [5–10]): One assigns an
auxiliary field or particle to each of the four states j0i ; j#i ; j"i and j2i at a
given lattice site (considering one strongly correlated orbital per site). The Fermi
character of the electrons requires that two of the auxiliary particles are fermions,
e.g., the ones representing j#i ; j"i or equally well j0i ; j2i, and the remaining
two are bosons. Introducing new particles for the states j0i and j2i allows us to
express the projection to the Hilbert space of states without double occupancy as
n0Cn"Cn# D 1, where n˛ are the occupation numbers of the states j˛i; i.e., each
lattice site is either empty or singly occupied. There are various ways of defining
auxiliary particles for a given problem. It is wise to choose the one which is best
adapted to the physical properties of the system.

Compared to alternative ways of effecting the projection, the auxiliary particle
method has the advantage of allowing one to use the machinery of quantum
field theory, i.e., Wick’s theorem, diagrammatic perturbation theory and infinite
resummations of diagrams, provided the constraint can be incorporated in a
satisfactory way.
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Historically, auxiliary particle representations have first been introduced in the
context of spin models. Spin operators may be represented by Bose operators
(Holstein–Primakoff [5] and Schwinger [6]) or in the case of spin 1/2 (and with
additional complications for higher spins as well) by Fermi operators (Abrikosov [7]
and Coqblin–Schrieffer [8]). Electron operators necessarily involve a combination
of auxiliary fermion and boson operators. The simplest such representation has been
proposed for the Anderson impurity problem by Barnes [9], and for lattice problems
by Coleman [10]. A more complex representation of electron operators, incorporat-
ing the result of the Gutzwiller approximation [11] on the slave boson mean-field
level has been developed by Kotliar and Ruckenstein [12]. Generalizations of the
latter to manifestly spin rotation invariant form [13] and to particle–hole and spin
rotation invariant form [14] have also been proposed. Generalizations to multiband
Hubbard models have been introduced as well [15, 16].

Quite generally, auxiliary particle theories have to deal with two problems: the
treatment of the constraint and the approximate description of the dynamics. An
accurate control of the constraint alone does not yet make a good theory!

In Sect. 2 we review most of the available pseudoparticle representations for
both spin operators and electron operators. Mean-field approximations of slave
boson operators within several of the most prominent models are considered
in Sect. 3. Section 4 is devoted to Gaussian fluctuation corrections on top of
mean-field theories. Chapter 5 is devoted to a class of time-dependent mean-field
type approximations, the noncrossing approximation (NCA) and the conserving
T -matrix approximation. A powerful nonperturbative method allowing to cap-
ture collective many-body phenomena is the renormalization group method in
its various forms. In Sect. 6 we present several examples of auxiliary particle
representations employed to describe strong coupling problems within a RG
treatment.

3.2 Pseudoparticle Representations of Quantum Operators

3.2.1 Spin Operators

As mentioned in the Introduction, the first auxiliary particle representations of quan-
tum operators proposed and successfully applied are the bosonic representations
of spin operators by Holstein-Primakoff and by Schwinger. Since both are well
documented in the literature, we do not consider them here. Generally speaking,
bosonic representations are useful to describe ordered states and fluctuations of
collective variables. They are less useful if the fermionic character of spin 1/2
particles is of importance. In the following we will concentrate on fermionic
representations.
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3.2.1.1 Fermionic Representations of SD1/2 Spins

The spin 1/2 operator S has a faithful representation in terms of fermion operators
f� (� D";#)

S D1
2

X
�;� 0D";#

f �
� ��� 0f� 0 ; (3.1)

where � is the vector of Pauli matrices. The Hilbert space obtained by the creation
operators f �

� acting on the vacuum state jvaci is spanned by four states. The
two unphysical states, the empty and the doubly occupied one, are eliminated by
requiring that all states considered are eigenstates of the occupation number operator
Q D P

�D";#
f
�
� f� with an eigenvalueQ D 1.

Abrikosov Projection

A first projection scheme involves adding a term �Q to the Hamiltonian, and
taking the limit � ! 1 [7]. In that case double occupancy is forbidden, while
empty states are not involved in expectation values of physical spin operators. The
projection of the pseudofermion Green’s function G<.!/, for example, is effected
by taking the following limit G<.!/ D lim�!1ŒG<

� .!/Z�= hQi��. Here G<
� .!/

is the pseudofermion Green’s function at a finite chemical potential �, Z� is the

partition function and hQi� D
P

�D";#

D
f
�
� f�

E
�

is the total number of pseudofermions

at given �. While taking the limit � ! 1 removes the contribution of doubly
occupied states, the unphysical contribution of the empty level in the partition
function Z� is removed in the limit � ! 1 by replacing Z� by hQi�. In equi-

librium, we may now use that �iG<
� .!/ D f .! C �/A.!/�!1�! e��=T e�!=T A.!/,

where f .!/ is the Fermi function, to express the projected Green’s function as
G<.!/ D ie�!=T A.!/=Œ2

R
d!e�!=T A.!/�. Out of equilibrium the occupation

function f�.!/ has to be calculated from the quantum Boltzmann equation.

The above projection scheme has the disadvantage that particle–hole symmetry
is maximally broken. The spectral functions are, therefore, very unsymmetric under
a sign change of !, causing difficulty in numerical evaluations.

Particle–Hole Symmetric Projection

If one takes � D 0 the pseudofermion spectral function is particle–hole symmetric,
A.�!/ D A.!/, which facilitates calculations considerably. In calculating any
physical quantity, which only involves spin operators, unphysical states only come
in through the partition function, which enters quantities described by diagrams with
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closed pseudofermion loops. In the case of quantum impurity models, diagrams
with more than one pseudofermion loop do not contribute, as each loop introduces
a factor 1=NL with NL the number of lattice sites in the system. The pseudofermion
self-energy is not affected, because its relevant diagrams do not contain loops. By
contrast, the diagrams for response functions like the conductance and the spin
susceptibility necessarily contain one loop. The latter quantities have to be corrected
by a normalization factor, as discussed by Larsen [17]. The correction amounts to
multiplying the pseudofermion occupation factor f�.!/ by a factor

Y D Z=Zp D .Z=Z0/=Œ.Z=Z0/ � 1=2� ; (3.2)

where Z.�/ D TrŒe�.HC�Q/=T �, Z D Z.� D 0/, and Z0 D TrŒe�H0=T � are
the partition functions of the (unprojected) interacting system and noninteracting
system (taking J ! 0 ), respectively, and Zp is the physical (projected) partition
function. We now calculate .Z=Z0/ by using the relationsZ D TrŒe�H=T � D 1

2
Z0C

Zp and Z hQi D 1
2
Z0 C Zp. From these two relations we conclude that hQi D 1

and that Y is indeed given by the above relation. One may calculate .Z=Z0/ by
integrating the total pseudofermion occupation hQi� D Z�1

� TrŒQe�.HC�Q/=T � D
�T d

d� ln TrŒe�.HC�Q/=T � with respect to � from 0 to 1. As the spin levels are not
occupied in the limit � ! 1 the system is, therefore, noninteracting in this limit.
Hence lim�!1Z� D Z0=4 (keeping in mind that the trace over the pseudofermion
states at � D 0 gives a factor of 4), leading to the result

Z=Z0 D 1

4
expŒ

1

T

1R
0

d� hQi�� : (3.3)

In this setup, the total occupation number may be calculated approximately from
1R
0

d� hQi� D 1
T

1R
0

d�2
R

d!f .!C�/A.!/ � 2 R d! ln.1Ce�!=T /A.!/, neglecting

the �-dependence of the spectral function A.!/. In the case of the spin 1=2 Kondo
model the factor Y increases from Y D 1 at low temperatures (T � TK, the Kondo
temperature) to Y D 2 at T � TK.

Popov–Fedotov Projection

A different approach allowing for an exact treatment of the constraint even for lattice
systems has been proposed by Popov and Fedotov [18]. It amounts to applying a
homogeneous, imaginary-valued chemical potential 
ppv D � i�T

2
, where T is the

temperature. Thus, within this scheme, the HamiltonianH is replaced by

H �! H ppv D H � 
ppv
X
i

Qi : (3.4)
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Note that H denotes a given spin 1=2 Hamiltonian using the fermionic representa-
tion of spin operators. Given a physical operator O (i.e., an arbitrary sum or product
of spin operators) it can be shown[19] that the expectation value hOippv, calculated
with H ppv and the entire Hilbert space, is identical to the physical expectation
value hOi, where the average is performed with the original Hamiltonian H . The
projection works by virtue of a mutual cancellation of the unphysical contributions
of the sectors Qi D 0 and Qi D 2, at each site. It should be emphasized that,
although the Hamiltonian H ppv is no longer hermitian, the quantity hOippv comes
out real-valued. If, on the other hand, O is unphysical in the sense that it is nonzero
in the unphysical sector, e.g., the operator O D Qi , the expectation value hQiippv

is meaningless and one has hQii ¤ hQiippv.
This approach is applicable to spin models [19–22], but unfortunately it cannot be

extended to cases away from half-filling. Although 
ppv vanishes in the limit T !
0, in principle the exact projection with 
 D 
ppv and the average projection with

 D 0 are not equivalent at T D 0. This is due to the fact that the computation of an
average h: : : ippv does not necessarily commute with the limit T ! 0. Nevertheless
it can be expected that in usual quantum spin models both projection schemes
are equivalent at T D 0. This can be understood with the following argument:
Starting from the physical (“true”) ground state, a fluctuation of one fermion charge
results in two sites with unphysical occupation numbers, one with no and one with
two fermions. Since these sites carry spin zero the sector of the Hamiltonian with
that occupation is identical to the physical Hamiltonian where the two sites are
effectively missing. Thus, a fluctuation from the ground state into this sector costs
the binding energy of the two sites which is of the order of the exchange coupling,
even in the case of strong frustration. Consequently, at T D 0 charge fluctuations
are not allowed and it is sufficient to use the simpler average projection with 
 D 0.

3.2.2 Electron Operators

The Hilbert space of electrons in a local orbital is spanned by four states: two with
single occupancy (representing a local spin 1=2) and the empty and doubly occupied
states. Obviously, the singly occupied states have fermionic character, while the
remaining two states have bosonic character. One may now envisage to create these
states out of a vacuum state jvaci, which is defined by the absence of any of the
four occupation number states. These four states may then be created by fermionic
or bosonic auxiliary operators. This may be done in a multitude of ways. We will
concentrate here on the representations introduced by Barnes [9] and by Kotliar and
Ruckenstein [12].

3.2.2.1 Barnes’s Representation

The basic idea consists in locally decomposing the electronic excitations into spin
and charge components. This can be achieved in many different ways. A suitable
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Hubbard–Stratonovich decoupling of the interaction term could reach this goal,
but would likely be limited to weak interaction. Instead, in the pioneering Barnes
approach [9] the spin and charge degrees of freedom (DoF) are represented by
fermionic and bosonic operators, respectively. Being more numerous than the
original (physical) operators, the auxiliary operators span a Fock space that is
larger than the physical one. Consequently they need to fulfill an appropriate set of
constraints for such a representation to be faithful. Specifically Barnes considered
the single impurity Anderson model (SIAM):

H D
X
k�

"kc
�
k�ck�C"f

X
�

a��a�CV
X
k�

�
c
�
k�a� C a��ck�

	
CUa�"a"a

�

#a#: (3.5)

Clearly, this problem may not be treated by means of perturbation theory in U ,
especially in the U ! 1 limit. Instead, Barnes introduced the auxiliary fermionic
(f� ) and bosonic (e; d ) operators in terms of which the physical electron operators
a� read

a� D e�f� C �f ���d: (3.6)

The a� -operators obey the ordinary Fermion anticommutation relations. This
property is not automatically preserved when using the representation (3.6), even
when the fermionic and bosonic auxiliary operators obey canonical commutation
relations. In addition the constraint

Q 	 e�e C
X
�

f �
� f� C d�d D 1 (3.7)

must be satisfied. Equation (3.6) together with (3.7) constitutes a faithful represen-
tation of the physical electron operator in the sense that both have the same matrix
elements in the physical Hilbert subspace withQ D 1. The above representation has
been widely used, in particular, in the U ! 1 limit where the operator d (linked
to double occupancy) drops out. The constraint can be implemented by means of a
functional integral representation. For example, for U !1 the partition function,
projected onto the Q D 1 subspace, reads

Z D
Z �=ˇ

��=ˇ
ˇd�

2�
eiˇ�

Z Y
�

DŒf� ; f
�
� �

Z Y
k�

DŒck� ; c
�

k� �

Z
DŒe; e��e� R ˇ

0 d�.Lf .�/CLb.�// (3.8)

with the fermionic and bosonic Lagrangians
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Lf .�/ D
X
k�

c
�

k� .�/.@� C "k�
/ck� .�/C
X
�

f �
� .�/.@� C "c � 
C i�/f� .�/

CV
X
k�

�
c
�
k� .�/f� .�/e

�.�/C h: c:
	

Lb.�/ D e�.�/.@� C i�/e.�/ : (3.9)

Here the � integration enforces the constraint, and the Lagrangian is bilinear in
the fermionic fields. Remarkably, this has been achieved without decoupling the
interaction term. Besides, the correctness of the representation can be verified by
carrying out all integrals in, e.g., the V ! 0 limit. By virtue of the substitution
z D e�iˇ�, ˇd� D idz=z, the � integral in (3.8) is transformed into a contour integral
along the complex unit circle. Observing that this substitution implies exactly a
second-order pole at z D 0 (i.e., at i� ! C1, real), it is seen that the projection
of Z amounts to calculating the grand canonical Q expectation value in the limit
of infinite, real chemical potential, Z D limi�!1hQii� [23], equivalent to the
Abrikosov projection. Equation (3.8) may also be viewed as the projection of the
non-interacting partition function onto the “U D 1”-subspace. Indeed, (3.8) may
be rewritten as

Z D P
Y
�

det ŒS� Œe.�/; ��� (3.10)

with det ŒS� Œe.�/; ��� the fermionic determinant for one spin species involving an
effective time-dependent hybridization (Ve�.�/), and the projection operator

P D
Z �=ˇ

��=ˇ
ˇd�

2�
eiˇ�

Z
DŒe; e��e� R ˇ

0 d�Lb.�/ : (3.11)

Yet, there is an asymmetry in the representation of spin and charge DoF. While the
latter can be expressed in terms of bosons, this is not the case of the former, and
may cause unnecessary errors in any approximate treatment (for details see [14]).

With this motivation Kotliar and Ruckenstein introduced a representation where
spin and charge DoF may be expressed by bosons.

3.2.2.2 Kotliar and Ruckenstein Representation

In the Kotliar and Ruckenstein (KR) representation two additional Bose operators
linked to the spin DoF are introduced, p# and p" [12]. In this approach the physical
electron operators are represented as:

a� D Qz�f� with Qz� D e�p� C p���d; (3.12)
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where the first term corresponds to the transition from the singly occupied state
to the empty one, and the second term to the transition from the doubly occupied
state to the singly occupied one. Again the representation is faithful provided the
auxiliary operators obey canonical commutation relations and satisfy constraints.
They read

e�e C
X
�

p��p� C d�d D 1 (3.13)

p��p� C d�d D f �
� f� � D";# : (3.14)

They may be enforced in a functional integral representation with Lagrange
multipliers in a fashion analogous to the one we encountered with the Barnes rep-
resentation. Besides, the density operator (

P
� p

�
�p� C 2d�d ) and the z-component

of the spin operator ( 1
2

P
�DC

�

�p
�
�p� ) may be expressed in terms of bosons. Spin

and charge DoF may, therefore, be treated on equal footing. This procedure can be
extended to multiband models [15].

3.2.2.3 Spin-Rotation Invariant Representation

Though faithful, the Kotliar and Ruckenstein representation is lacking spin rota-
tional invariance as transverse components of the spin operator may not be simply
represented in terms of auxiliary operators. Indeed, Sx;y is neither related to
1
2

P
�� 0 f

�
� �

x.y/

�� 0 f� 0 nor to 1
2

P
�� 0 p

�
��

x.y/

�� 0 p� 0 . Hence fluctuations associated to the
transverse modes are not treated on the same footing as the ones associated to
the longitudinal mode. With this motivation a manifestly spin-rotation invariant
(SRI) formulation has been introduced [13, 14]. In this setup the doublet p� [12]
is replaced by a scalar (S D 0) field p0 and a vector .S D 1/ field p D .px; py; pz /,
in terms of which the state j�i D a�� j0i may be represented as

j�i D
X
� 0

p
�

�� 0f
�

� 0 jvaci with p
�

�� 0 D 1

2

X

D0;x;y;z

p�
�



�� 0 : (3.15)

The bosonsp
 obey canonical commutation relations, and all the auxiliary operators
annihilate the vacuum (f� jvaci D ejvaci D : : : jvaci D 0). With this at hand the
electron operators may be written as

a� D
X
� 0

f
� 0 Qz� 0�

with Qz
� 0�
D e�p

� 0�
C � 0�p���;�� 0d : (3.16)

Again, the auxiliary operators need to satisfy constraints. They read
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e�e C
X



p�
p
 C d�d D 1 (3.17)

X
�

f �
� f� D

X



p�
p
 C d�d (3.18)

X
�;� 0

f
�

� 0��� 0f� D p�0p C p�p0 � ip� � p : (3.19)

While the density operator (n D P

 p

�

p
 C 2d�d ) and the density of doubly

occupied sites operator (D D d�d ) may be expressed in terms of bosons or
fermions, the spin operator reads

S D
X
�� 0�1

��� 0p���1p�1� 0 : (3.20)

This expression is especially useful in the context of the t–J model, in particular,
because the spin DoF need not be expressed in terms of the original fermions. Using
the above, one can tackle models of correlated electrons such as the SIAM, the
Anderson lattice model, the t–J or the Hubbard model. However, while the spin
and charge DoF have been mapped onto bosons, anomalous propagators necessarily
vanish on a saddle-point level as the Lagrangian is bilinear in the fermionic fields,
independent of the model. Here they are not treated on equal footing with the spin
and charge DoF. This motivated two of us to introduce a manifestly spin- charge-
rotation-invariant (SCRI) formulation [14].

3.2.2.4 Spin- and Charge-Rotation-Invariant Formulation

The SCRI representation is motivated both by the need to be able to account for
anomalous expectation values (such as the ones arising when investigating excitonic
states) and to satisfy the particle–hole rotational symmetry entailed in many models.
The generators of these rotations are given by the components of the operators:

J D 1

2

�
a
�

"; a#
	
�

 
a"
a
�

#

!
; (3.21)

which form a spin algebra with the usual commutation relations. One may then
replace the doublet e, d by a scalar (vector) b0 (b) field (with respect to rotations in
the particle–hole space), all of them satisfying canonical commutation relations. In
terms of them the two local occupation number states j2i 	 jCi and j0i 	 j�i may
be represented as

j�i D
X
�0

b
�

��0 
�

�0 jvaciI � D ˙ (3.22)
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with  �C D f
�

" f
�

# and  �� D 1. When considering the generalized Qz-operator

Qz��;�0� 0 D ��0b���;��0p� 0�
C �� 0p���;�� 0b�0�

(with b�
��0 D 1

2

P

D0;x;y;z b

�

�




��0 ) and
the matrix operators:

A�;� D
 
a" a#
a
�

# �a�"

!
and F�;� D

 
f" f#
f
�

# �f �

"

!
(3.23)

one may write the physical electron operator as

A�� D
X
� 0;�0

Qz��;�0� 0F�0� 0 : (3.24)

The constraints now read

f
�

� 0f� D 2
X
�1

p��1�p� 0�1
C 1

2
ı�;� 0

X

D0;x;y;z

b�
b


X
�

F �
��F�0�

D 2
X
�1

b��1�b�0�1
C 1

2
ı�;�0

X

D0;x;y;z

p�
p
 : (3.25)

In particular, when performing the trace of (3.25), one obtains

X
�

f �
� f� D 1I

X

D0;x;y;z

�
p�
p
 C b�
b


	
D 1 : (3.26)

Therefore, both spin and charge DoF no longer possess a representation in terms of
the auxiliary fermions. Instead, correcting (48) in [14], the density operator reads

n D
X



p�
p
 C 2D (3.27)

with the density of doubly occupied sites

D D 1

2

X


0

b�
b
0Tr
h�
�0 C � z

�
�
�


0

i
: (3.28)

The spin operator is still given by (3.20). The SCRI representation of the Hubbard
model is thus obtained using (3.24) and (3.28), together with the constraints (3.25).

3.2.2.5 Gauge Symmetry and Radial Slave Boson Fields

When representing the electron operators a� as Qz�f� , it is immediately clear that
the latter expression is invariant under the group of transformations:
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f� .�/ �! f� .�/e
i�.�/ and Qz� .�/ �! Qz� .�/e�i�.�/ : (3.29)

This local U.1/ gauge symmetry was first realized by Read and Newns [24–26] in
the context of the U ! 1 Barnes representation for the SIAM (with Qz� D e�). In
that case this can be made use of to gauge away the phase of the slave boson, which
remains as a purely radial field, while the constraint Lagrange parameter is promoted
to a time-dependent field. Yet, standard textbooks do not mention representations of
such radial fields that are set up on a discretized time mesh from the beginning.

A scheme specific to radial slave boson fields has been proposed by one of us
[27]. In this scheme the partition function takes a form analogous to (3.8). However,
the projection operator does not mix the N time steps, and may be written as

P D lim
N!1 lim

W!1

NY
nD1

Pn ; with

Pn D
Z 1

�1
ˇ

N

d�n
2�

Z 1

�1
dxne� ˇ

N
.i�n.xn�1/CWxn.xn�1// : (3.30)

Here the constraint parameter �n is defined for each time step n, i.e., it is a time-
dependent field, and x represents the radial slave boson field. In the discrete time
step form, the fermionic part of the action reads

Sf D
NX
nD1

(X
k�

c
�

k;n;�

�
ck;n;� � e� ˇ

N ."k�
/ck;n�1;�
	

C
X
�

f �
n;�

�
fn;� � e� ˇ

N ."f Ci�n�
/fn�1;�
	

C ˇ
N

X
k�

Vxn

�
c
�
k;n;�fn�1;� C f �

n;� ck;n�1;�
	)

: (3.31)

The integration over the fermionic fields can be carried out, and the partition
function can be obtained by projecting the resulting fermionic determinant:

Z D P
Y
�

det ŒS� Œfxng; f�ng�� (3.32)

with the above projection operator (3.30). The expectation value of the hole density
operator takes the simple form:

hnh.�m/i D hxmi D 1

Z
P

(
xm
Y
�

det ŒS� Œfxng; f�ng��
)
: (3.33)

It is easily seen to be time-independent. In contrast to a Bose condensate hxmi is
generically finite, and may only vanish for zero hole concentration [28]. Another
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specific feature of the radial slave boson field is that, for any power a > 0, one
finds hxami D hxmi, as the corresponding projections of the fermionic determinant
all yield the same value.

The hole autocorrelation function may also be expressed as a projection of the
fermionic determinant. It reads

hnh.�n/nh.�m/i D hxnxmi D 1

Z
P

(
xnxm

Y
�

det ŒS� Œfxng; f�ng��
)
: (3.34)

Regarding the Kotliar and Ruckenstein representation the determination of the
gauge symmetry group has been debated over several years [14, 29–34]. It was
finally agreed that it reads U.1/ � U.1/ � U.1/. By promoting all three constraint
parameters to fields one may gauge away the phase of three bosonic fields, the fourth
one, for example, d , remaining complex. Therefore, in the U !1 limit (d ! 0),
the three remaining bosonic fields are radial slave boson fields. In functional integral
language they may be handled in the same fashion as the above x-field.

3.3 Mean-Field Approximations

An economical and often physically reasonable way to determine observable
quantities in the SB framework is provided by a saddle-point approximation (SPA)
to the functional integral. This is equivalent to allowing for a finite expectation value
of a Bose field amplitude. Strictly speaking, a finite expectation value of a Bose field
operator violates gauge invariance and should not exist. In contrast, a finite saddle-
point amplitude of the radial slave boson fields is compatible with Elitzur’s theorem.

3.3.1 Saddle-Point Approximation to the Barnes Representation

In its simplest form the SPA consists of replacing the boson field operators bi at
each lattice site, or b at the impurity site, by the modulus of its expectation value, in
accordance with the above. The remaining problem is a noninteracting model, which
is easily solved. We will discuss the solution briefly for the Anderson impurity
model and the Anderson lattice model.

3.3.1.1 Kondo Effect in the Anderson Impurity Model

In SPA the Anderson impurity Hamiltonian (3.5) takes the form

H D
X
k�

"kc
�

k�ck� C "f
X
�

f �
� f� C V

X
k�

e0

�
c
�

k�f� C f �
� ck�

	
C �.Q � 1/;

(3.35)
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where the conserved charge isQ DP� f
�
� f� C e20 D 1 and � is the corresponding

Lagrange multiplier. This is nothing but a resonant level model with renormalized
parameters:e"f D "f C � and eV D Ve0. At the stationary point of the free energy
one finds that the level positione"f and the level width e� D e20� D �N0eV 2, where
� D �N0V

2 (N0 D 1=2D is the conduction electron DOS at the Fermi level),
satisfy the equations

e"f D "f � 2�
�

ln

q
e"2f C e�2

D
(3.36)

e� D � � 2�
�

tan�1 e�
e"f : (3.37)

In the limit of � � j"f j the occupation of the local level, nf D 2
�

tan�1 e�e"f ,

approaches unity, which means that a local moment forms at higher temperature.
Below a characteristic temperature, the Kondo temperature TK, the local moment
gets screened by the conduction electron spins, which form a resonance state
with the local moment, located close to the Fermi energy, at e"f ; and of width
e� � TK D D exp

�j"f j
2N0V 2

D D exp �1
2N0J

, where J D V 2

j"f j is the antiferromagnetic
spin exchange coupling constant of the local spin and the local conduction electron
spin density. The low-temperature behavior of Kondo systems is reasonably well
described by slave boson mean-field theory. At higher temperatures one finds in this
approximation a spurious first-order transition to the local moment regime, rather
than a continuous crossover.

3.3.1.2 Heavy Fermions in the Anderson Lattice Model

The SB mean-field approximation to the Anderson lattice model in the limit
U ! 1 [24–26] leads to the following single-particle Hamiltonian of two
hybridized bands

H D
X
k�

"kc
�

k�ck� C "f
X
i;�

f
�
i�fi� C V

X
i;�

e0

�
c
�
i�fi� C f �

i�ci�

	

C
X
i

�i .Qi � 1/: (3.38)

The stationarity condition with respect to the fields �i leads to the condition
hQi i D 1;which for a translation invariant state is independent of the lattice position
Ri . As in the impurity problem the f -level position is shifted by the correlation
effect toe"f D "f C � D "f � 2N0V 2 ln e"

D
and the square of the boson amplitude

is related to the f -level occupation nf

e"f D "f � 2N0V 2 ln
e"f � "F

D
(3.39)
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e20 D 1 � nf D 1 �
2N0V

2e20
e"f : (3.40)

Here we have assumed je"f j � D. We observe that, provided "f is sufficiently
below the Fermi level "F, we have je"f j � j"f j and it follows from (3.39) that

e"f � "F D D exp
�j"f j
2N0V 2

D TK, equal to the single impurity Kondo temperature. In

this limit e20 � je"f j=2N0V 2 � 1 and the hybridization amplitude is substantially
reduced, leading to heavy quasiparticle bands of energy

E˙
k
D 1

2



"k Ce"f ˙

q
."k Ce"f /2 C V 2e20

�
: (3.41)

3.3.2 Saddle-Point Approximation to the KR Representation

It is tempting to extend this approach to the Hubbard Model. Yet, at this stage
of the formulation, the representation suffers from the following drawback: The
noninteracting limit is not properly recovered on the SPA level (see [12] for the
case of the Hubbard model), in contrast to more conventional approaches. This can
be cured by noticing that there is no unique slave boson representation, but rather
infinitely many different ones. They are all equivalent when the functional integral
is exactly evaluated, but differ on saddle-point level. Fortunately enough, there is
one representation of the kinetic energy which allows us to overcome the above
drawback. For the KR representation it consists in replacing the operators Qz� in
(3.12) by

z� D e�L�R�p� C p���L�R�d with (3.42)

L� D
1q

1 � p��p� � d�d
and R� D

1q
1 � p���p�� � e�e

; (3.43)

and to consistently use a� D z�f� in the representation of the kinetic energy
operator. In this form the SPA to the KR representation is equivalent to the
Gutzwiller approximation to the Gutzwiller wavefunction [12]. As the latter two are
equivalent in the large d limit, the SPA to the KR representation turns variationally
controlled in this limit. In addition it turns exact in several large N limits [14], or
for particular toy models [35]. These properties are shared by the SRI formulation
[14]. Indeed, introducing Qp

�� 0 	 �� 0p�� 0;�� the z-operator reads

z D e�L M R p C Qp�L M R d (3.44)
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with

M D
"
1C e�e C

X



p�
p
 C d�d
# 1
2

and (3.45)

L D
h�
1 � d�d � 1 � 2p�p

i� 1
2

and R D
h�
1 � e�e� 1 � 2 Qp� Qp

i� 1
2
:

(3.46)

Equations (3.44) and (3.46) correct (22) in [14] and (3.46) corrects (3) in [36].

3.3.2.1 Mott–Hubbard Metal–Insulator Transition

The KR and SRI representations have been used to characterize a very broad
range of phases of the Hubbard model [37–49]. In addition to the above discussed
motivations, the popularity of the approach is fueled by its ability to describe a
Mott metal-to-insulator transition as it encompasses the Brinkman–Rice mechanism
[50–52] that we describe below. It arises when considering the paramagnetic saddle-
point. In the SRI representation it corresponds to set the bosonic fields pi .�/ and
the constraint fields enforcing (3.19) to zero, and to replace the remaining bosonic
and constraint fields by their mean value. The free energy then reads

F D �T
X
k;�

ln
�
1C e�Ek�

T

	
C Ud2 C ˛ �e2 C p20 C d2 � 1

�� ˇ0
�
p20 C 2d2

�
:

(3.47)
Here the Lagrange multiplier ˛ (ˇ0) enforces the constraint (3.17) and (3.18). The
quasiparticle dispersion relation is given by

Ek� D z20tk C ˇ0 � 
 (3.48)

with

z0 D 1p
2

p0.e C d/q
1 � d2 � 1

2
p20

q
1 � e2 � 1

2
p20

: (3.49)

z20 both plays the role of a mass renormalization factor and of a quasiparticle residue.
Should it vanish in some parameter range, then a Mott insulating state would be
realized. Solving the saddle-point equations at half-filling yields

z20 D 1 �
�
U

U0

�2
(3.50)
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with
U0 D �4

X
k;�

tkfF.Ek;� /: (3.51)

Therefore, the quasiparticle residue continuously varies from 1 down to 0 for
U ! U0. There, the quasiparticle mass diverges, its residue vanishes, and a
Mott gap opens. Indeed, solving the equation for the chemical potential of the
quasiparticles for U > U0 and n! 1 yields


.n/ D U

2

"
1 � 1 � n
j1 � nj

r
1 � U0

U

#
: (3.52)

The discontinuity in 
 across n D 1 indicates a pair of first-order phase transitions
from the metallic phase at n < 1 (with finite z0) to the insulating phase at n D 1

(with a chemical potential 
 D U
2

) and back to the metallic phase at n > 1 (with
finite z0). This discontinuity vanishes for U ! UC

0 , which is, therefore, a critical
point. In the insulating phase the quasiparticle contribution to doubly occupied sites
vanishes. This does not imply that the latter is predicted to be zero, but that it purely
results from fluctuations, that we address in Sect. 3.4.

3.3.2.2 Magnetic Order in the Anderson Lattice Model

The Anderson lattice model is believed to describe the physics of many transition-
metal, rare-earth and actinide compounds, including the so-called heavy fermion
compounds. It is one of the archetypical models of correlated electrons on a lattice,
consisting of a “light” conduction band hybridized with a strongly correlated narrow
f -electron band. Depending on the strength of the on-site Coulomb repulsion on
the f-orbital, the hybridization strength and the band filling, the model describes
either localized moments interacting via spin exchange interaction (e.g., the RKKY
interaction), which usually order at low temperature, or Kondo screened moments
and heavy quasiparticles. The competition between these two ground states gives
rise to a quantum phase transition [53, 54]. A qualitatively correct description
(excluding the critical behavior at the quantum critical point, which requires a
different approach) may be obtained within the SRI slave boson mean-field theory.
The Hamiltonian of the Anderson lattice model reads

H D
X
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"kc
�

k�ck� C "a
X
i;�
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�
i�ai� C V

X
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�
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�
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a
�

i"ai"a
�

i#ai#; (3.53)

where ci� D
P
k eikRi ck� and Ri is the lattice vector at site i . In terms of SRI slave

boson operatorsH may be represented as
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f˛i .Qb � 1/C ˇi0Qf C ˇi �Qsg (3.54)

A mean-field approximation to this Hamiltonian describing spiral magnetic states
has been considered in [55]. There the nonmagnetic boson mean-field amplitudes
e; d; and p0 and Lagrange parameters ˛ and ˇ0 have been assumed to be
spatially uniform, while the magnetic parameters pi and ˇi were taken to have
the spatial dependence of a spiral vector field, pi D p.cos�i ; sin �i ; 0/ and
ˇi D ˇ.cos�i ; sin �i ; 0/ oriented perpendicular to the z-axis in spin space, and
�i D q � Ri . The spatial periodicity characterized by the wave vector q leads to
a coupling of Bloch states at wave vectors k and kC q. The energy matrix of the
hybridized bands then takes the form

�k D

0
BB@

�k � 
 V zC 0 V z�
V zC �a C ˇ0 � 
 V z� ˇ

0 V z� �kCq � 
 V zC
V z� ˇ V zC �a C ˇ0 � 
;

1
CCA (3.55)

where the weight factors zC;� are defined by

z˙ D epC C dp�q
1 � d2 � p2C

p
1 � e2 � p2�

˙ ŒpC , p�� (3.56)

with pC;� D .p0˙p/=
p
2. The mean-field values are determined by requiring that

the free energy

F D �T
X
k�˛

ln Œ1C e
�Ek�˛

T �CNLŒUd2 � ˇ0.p20 C p2 C 2d2/C 2ˇp0p� (3.57)

be stationary. Here Ek�˛ are the eigenvalues of the energy matrix �k:

In Fig. 3.1 the zero-temperature phase diagram is shown in the .t=U / � ı-
plane (t is the nearest-neighbor hopping amplitude ı and filling factor of the
conduction band). In a wide region a spiral magnetic state is found, with wave
vector q approaching the edge of the Brillouin zone at ı D 1 (antiferromagnetic
order). Approaching the limit ı D 0 one finds a ferromagnetic region, followed
by another antiferromagnetic state very close to ı D 0. These findings have been
confirmed by quantum Monte Carlo simulations [56]. One should keep in mind that
the spatial dimension enters only through the energy dispersion of the conduction
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Fig. 3.1 Phase diagram in the 2t=U vs. ı plane at T D 0. Spiral (S), ferromagnetic (F), and
antiferromagnetic (A) regions are indicated. The inset shows the behavior near ı D 0

electrons. These results are, therefore, applicable in three or higher dimensions,
where fluctuation effects are expected to be small.

3.4 Fluctuation Corrections to the Saddle-Point
Approximation: SRI Representation
of the Hubbard Model

Having mapped all DoF onto bosons allows us to directly evaluate the spin
and charge response functions. Indeed, the spin and density fluctuations may be
expressed as

X
�

�ın� D ı.p�0p3 C p�3p0/ 	 ıS
X
�

ın� D ı.d�d � e�e/ 	 ıN ; (3.58)

in the SRI representation. The spin and charge autocorrelation functions can be
written in terms of the slave boson correlation functions as

�s.k/ D
X

�;�
0

��
0 hın�.�k/ın� 0 .k/i D hıS.�k/ıS.k/i

�c.k/ D
X

��
0

hın�.�k/ın� 0 .k/i D hıN.�k/ıN.k/i: (3.59)

Performing the calculation to one-loop order, one can make use of the propagators
given in the Appendix of [36] to obtain:
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�s.k/ D 2p20S
�1
77 .k/

�c.k/ D 2e2S11S
�1.k/� 4edS�1

12 .k/C 2d2S�1
22 .k/ : (3.60)

As emphasized and analyzed by several authors, see for example, [57, 58], a Fermi
liquid behavior is obtained when considering the above �s.k/ and �c.k/ in the long
wavelength and low-frequency limit. However, in contrast to the conventional RPA
results, the obtained Landau parameters involve effective interactions, which differ
in the spin channel and in the charge channel. Performing the algebra at half-filling
yields

F a
0 D �1C

1

.1C U=U0/2

F s
0 D

U.2U0 � U /
.U0 � U /2 (3.61)

fulfilling the property F s
0 .U /DF a

0 .�U / that can be derived on a more general
ground [51, 52]. As can be seen in (3.61) F a

0 remains finite when reaching the Mott
transition, while F s

0 diverges (for a recent manifestation of a related behavior see
[59]).

Ferromagnetic instabilities and ferromagnetic phases have been investigated,
too. In particular, in the limit U ! 1, it could be shown analytically that the
fully polarized ferromagnetic ground state and the paramagnetic ground state are
degenerate at density n D 2=3, for any bipartite lattice [37]. For lower densities the
ground state is paramagnetic.

Yet, in such an analysis, focus is put on a ferromagnetic instability only, while
other commensurate or even incommensurate instabilities should be considered as
well. This analysis has been carried out by two of us for the Hubbard model on
the square lattice [60]. Off half-filling it turned out that the leading instabilities
are systematically towards incommensurate states characterized by a wavevector
.Qx; �/ for U < 57t with Qx smoothly varying from � for U D 0C down to 0 for
U D 57t . For larger U the wavevector characterizing the instability is rather of the
form .0;Qy/, with Qy ' � .

Charge instabilities have been looked for as well, in particular through the
computation of the charge structure factor [36], though with a negative result even
for the t–t 0–U repulsive Hubbard model [61]. Instead, the charge structure factor
quite systematically consists of one broad peak centered at .�; �/. As an example
we compare in Fig. 3.2 the slave boson result with quantum Monte Carlo simulations
by Dzierzawa [62], for U D 4t and ı D 0:275 at a temperature T D t=6. The
agreement between both approaches is excellent, as the difference does not exceed
a few percent.

3.4.1 Magnetic and Stripe Phases

Having established that the leading instabilities of the paramagnetic phase are
generically towards incommensurate phases, spiral and stripe phases have been
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Fig. 3.2 Comparison of the quantum Monte Carlo (triangles) and slave boson (full line) charge
structure factors for U D 4t , ı D 0:275, and ˇ D 6

thoroughly investigated [37–43, 49]. Comparison of ground state energies in spi-
ral phases with numerical simulations showed a very good agreement [38, 40].
Regarding the pure Hubbard model it has been obtained that magnetic stripe
phases are generically more stable than spiral phases. However, for the t–t 0–U
repulsive Hubbard model, the situation is more intricate. As shown in Fig. 3.3 for
an intermediate value of t 0, a large number of phases compete. While the vertical
site-centered stripe phases are generically lower in energy than the vertical bond-
centered stripe phases at a low doping x, the opposite result is found at a larger x.
For instance, for U D 12t , the transition occurs at x ' 0:16 for t 0 D �0:15t , and
at x ' 0:18 for t 0 D �0:3t . Yet, in the latter case, the diagonal spiral phase is lower
in energy for x 
 0:09, in contrast to the former case [43].

3.5 Conserving Self-Consistent Approximations

3.5.1 General Properties

The KR representation and its SRI and spin–charge symmetric extensions have
been remarkably successful in identifying and describing zero-temperature phases
of correlated electron models within saddle-point and Gaussian approximations.
However, in order to describe dynamical properties, like spectra or nonequilibrium
transport, a more accurate treatment of the excitations is needed. This is especially
important for understanding Fermi liquid or non-Fermi liquid signatures in these
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Fig. 3.3 Free energy gain ıF per site with respect to the AF phase as a function of doping x,
obtained for the t–t 0–U Hubbard model with U D 12t and t 0 D �0:3t for: (a) vertical site-
centered stripe phases and (b) vertical bond-centered stripe phases. Domain walls are separated by
d D 3; : : : ; 11 lattice constants. Circles and squares show the corresponding data for vertical and
diagonal spiral order, respectively

quantities. It requires, in particular, avoiding the spurious condensation transition
of the auxiliary boson fields at a finite temperature or energy. That is, the auxiliary
fields must be treated as pure fluctuation fields, preserving the local U.1/ gauge
symmetries associated with the conservation of the local constraint charges, (3.7),
(3.13), (3.14), or (3.17)–(3.19) for the Barnes, the KR, and the SRI representation,
respectively. Gauge symmetric theories may be systematically constructed by means
of conserving approximations [63,64], where all irreducible n-point vertex functions
are derived from a generating functional ˚ by means of appropriate functional
derivatives. This implies that these quantities are calculated self-consistently, i.e.,
as functionals of the fully renormalized auxiliary particle propagators. Physical
expectation values, calculated at first in the grand canonical ensemble of the
auxiliary particle occupation numbers utilizing Wick’s theorem, are projected onto
the physical sector of Fock space at the end of the calculation, using the techniques
described in Sect. 3.2.2. In order to capture the correct low-energy properties of a
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given correlated electron model, the approximation for the generating functional
must still be chosen appropriately. The conserving scheme has been extensively
pursued within the Barnes representation, in order to keep the number of fluctuating
auxiliary fields minimal.

3.5.2 Exact Infrared Properties of Pseudoparticle Propagators

The Fermi or non-Fermi liquid behavior is governed by the infrared asymptotics of
the slave boson and pseudofermion propagators, Ge.!/, Gd .!/, and Gf� .!/. By
definition, the field operators appearing in these propagators create an impurity
site which is initially empty, doubly occupied or singly occupied with spin
� D ˙1=2, respectively, and which evolves in time to a final occupation number
na D P

� na� . This process constitutes an orthogonality catastrophy [65] with
characteristic infrared powerlaw singularities of the auxiliary particle spectral
functions. In the case of a Fermi liquid, the infrared powerlaw exponents of the
pseudofermion, empty and doubly occupied slave boson spectral functions, ˛f , ˛e ,
and ˛d , respectively, are determined by the single-particle scattering phase shifts at
the Fermi level, which may in turn be expressed in terms of the impurity occupation
number na via the Friedel sum rule. The dependence of the infrared exponents on
na is, therefore, an indicator of Fermi liquid or non-Fermi liquid behavior in a given
system. For the single-channel Anderson model, (3.5), which has a Fermi liquid
strong-coupling fixed point, one obtains in the absence of a magnetic field [66–68],

˛f� D na � n2a=2 (3.62)

˛e D 1� n2a=2 (3.63)

˛d D �1C 2na � n2a=2 : (3.64)

These expressions have been confirmed by direct numerical renormalization group
calculations [69] and should be recovered by any approximation that is to describe
a Fermi liquid fixed point.

3.5.3 Fock Space Projection in Saddle-Point Approximation

While the projection onto the physical Fock space with local charge Q D 1 (3.8)
may easily be performed exactly for a single correlated site, it becomes cumbersome
already for two sites, let alone for a lattice of correlated electrons. This is because
by the exact projection the partition function, for instance, is transformed into the
expectation value of the product of all the local chargesQj on the correlated lattice
sites j (compare the discussion after (3.9)), i.e., it becomes an NL-point correlation
function, where NL is the number of correlated sites.

However, gauge symmetric, conserving approximations, which avoid any spuri-
ous condensate amplitudes and, hence, preserve the infrared properties, can still be
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constructed when the Fock space projection is done in an approximate way. In this
approach, first proposed in [23], the �-integration of (3.8) is done in SPA, while
all auxiliary particle Green’s functions are derived as pure fluctuation propagators
from a generating Luttinger–Ward functional. The � saddle point can be shown
to be equivalent to fixing i� as a real chemical potential for the thermodynamic
average of the local charge, hQi. Spurious slave boson condensation is avoided by
the fact that the fluctuation part of the Bose propagator acquires finite, negative
spectral weight Ae;d .!/ � 0 for negative frequencies, ! < 0, such that the
occupation number density, b.!/ Ae;d .!/, remains nonnegative for all ! [23], with
b.!/ D 1=.eˇ! � 1/ the Bose–Einstein distribution. The structure of the self-
consistent integral equations for the pseudoparticle propagators is not altered by
this approximation. In fact, it may be shown explicitly and in a straightforward way
along the lines of [70, 71] that the � saddle-point projection preserves the infrared
exponents on the level of the simplest conserving approximation, the NCA (to be
discussed in the next section). It may be conjectured that this remains true also for
more sophisticated conserving approximations. Since the � SPA involves only the
thermal average hQi, it is straightforwardly generalized to lattice problems, with a
spatially homogeneous chemical potential i� 2 R. The method has been applied to
the Heisenberg lattice in pseudofermion representation in [72].

3.5.4 Noncrossing Approximation (NCA)

The rest of this chapter is concentrated on the Anderson impurity model.

3.5.4.1 Anderson Impurity Model for U ! 1: NCA

The simplest conserving approximation in the limitU !1 is obtained by choosing
the generating functional to lowest, i.e., second order in the hybridization V , as
shown as the first diagram of Fig. 3.4. Since the self-energies generated in this
approximation do not contain any crossings of lines, it has been termed NCA.
The NCA has been pioneered by Keiter and Kimball using the resolvent operator
formalism [73, 74] and by Kuramoto, who first recognized the conserving nature of
the NCA [75]. First numerical evaluations were performed by Kojima et al. [76–78]
and by Bickers et al. [79, 80]. For an efficient and numerically stable algorithm for
solving pseudoparticle integral equations, like the NCA and its extensions, see [81].

For U !1 the NCA captures correctly the Kondo energy scale, and it provides
a qualitative description of the formation of the Kondo resonance. It happens to
describe also correctly the powerlaw dependence of physical properties at the non-
Fermi liquid fixed point of the two-channel Anderson or Kondo impurity model
[82]. For these reasons and for its technical simplicity the NCA has been applied to
a wide variety of problems, including, as an impurity solver for dynamical mean-
field theory (DMFT), to the t–J model [83,84] and the non-Fermi liquid two-channel
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Fig. 3.4 Diagrammatic representation of the Luttinger–Ward functional generating the CTMA
for U ! 1. The first diagram constitutes the NCA. The two-loop diagram is excluded, since
it is not a skeleton. Solid, dashed, and wiggly lines represent conduction electron, renormalized
pseudofermion and auxiliary boson propagators, respectively. The terms with the conduction
electron lines running clockwise generate the conduction electron-pseudofermion ladder vertex
T .cf / with bosons as rungs (spin fluctuations), while the terms with the conduction electron lines
running counter-clockwise generate the conduction electron-empty orbital ladder vertex T .ce/ with
pseudofermions as rungs (charge fluctuations)

Anderson lattice model [85, 86] as well as to phase transitions in dilute, magnetic
semiconductors at not too low temperature [87]. The NCA has also been generalized
to the case of multiple local orbitals, as in rare earth and transition metal ions,
where the NCA correctly produces a distinct Kondo resonance for each crystal-field
or spin-orbit split local orbital, each with a characteristic, logarithmic temperature
dependence [88, 89].

However, in NCA the infrared exponents of the auxiliary particle propagators
come out independent of na, ˛NCA

f D 1=.N C 1/, ˛NCA
e D N=.N C 1/ [70, 71, 81],

with N the spin degeneracy, in contrast to the Fermi liquid values, (3.62)–(3.64).
As a consequence, the NCA fails to describe Fermi liquid behavior at temperatures
T � TK, with spurious infrared singularities appearing in physical quantities at
energies or temperatures T � TK [70,71,79–81]. Since the NCA becomes formally
exact for SU(N ) symmetric models in the limit N !1, with deviations appearing
in O. 1

N2 / [79, 80, 90], this low-T failure is less pronounced for N � 1. Note,
however, that the deviation of the NCA infrared exponents ˛f and ˛e is of order
1=N , not 1=N 2 as one may have expected. In a magnetic field the NCA also fails
even in the high-temperature regime, T > TK, producing a spurious resonance in
the impurity spectrum at ! D 0 in addition to the two Zeeman-split Kondo peaks.
The low-T failure of the NCA can be traced back to its insufficient inclusion of
coherent multiple spin–flip processes which are responsible for the formation of
the Kondo singlet state. The origin of the failure in a magnetic field, on the other
hand, lies in the fact that NCA neglects the exchange diagram to the conduction
electron-impurity spin vertex at second order in the spin coupling J [68, 91]. As
a consequence, logarithmic contributions in the potential scattering channel do not
cancel even in leading logarithmic order, producing a spurious resonance which
does not Zeeman-split in a magnetic field.
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3.5.4.2 Anderson Impurity Model with Finite U : SUNCA

At finite Coulomb interaction U , the spin exchange interaction J acquires contribu-
tions from both, virtual excitations to the empty and to the doubly occupied impurity
states via a Schrieffer–Wolff transformation [92],

J D jV j
2

j�f j C
jV j2
j�f C U j : (3.65)

Neglecting either one of these contributions would lead to an exponentially wrong
Kondo scale TK, because of the exponential dependence of TK on J . A simple
generalization of NCA to this case, i.e., adding the second order self-consistent per-
turbation theory for the two processes, fails to capture the simultaneous contribution
of both channels in each order of bare perturbation theory. For a correct treatment
of both terms, there must be included, for each diagram with an empty boson line
Ge, the corresponding diagram with Ge replaced by a doubly occupied boson line
Gd (which amounts to the exchange diagram of the former), and vice versa, on
the level of bare perturbation theory [93, 94]. The corresponding vertex corrections
have first been evaluated in leading self-consistent order by Sakai et al. [95] and
by Pruschke and Grewe [96]. The first conserving approximation for finite U , fully
symmetric with respect to the empty and double occupied fluctuation channels, was
formulated and evaluated by Haule et al. [93] and termed as the symmetrized finite-
U NCA (SUNCA). On the level of renormalized perturbation theory (generating
functionals), it means that for each dressed b-line there must be included a ladder
vertex function with a-lines as rungs, and vice versa. The SUNCA is tractable with
relatively moderate numerical effort, since it can be formulated in terms of no higher
than three-point vertex functions. The results of a fully self-consistent evaluation
of the impurity electron spectral function within SUNCA are shown in Fig. 3.51

in comparison with NRG results. It is seen that the correct Kondo scale (width of
the Kondo peak) is reproduced. However, like the NCA, the SUNCA solution still
develops a spurious low-T singularity.

There is evidence that both failures of NCA, at low temperature and in a magnetic
field, can be cured by a systematic resummation of coherent spin–flip terms to
infinite order, which will be discussed in the next section.

3.5.5 Conserving T -Matrix Approximation (CTMA)

3.5.5.1 Construction of the CTMA

As a minimal precondition to obtain a gauge symmetric description of the
Fermi liquid fixed point, a conserving approximation must reproduce the correct

1We are grateful to T.A. Costi for providing the NRG data.
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Fig. 3.5 Physical impurity electron spectral function of the Anderson impurity model for U D
�2�f . Solid lines: SUNCA results [93] and dashed lines: NRG results

pseudoparticle infrared exponents, (3.62)–(3.64), whose dependence on na is
characteristic for a Fermi liquid ground state. It is easily seen by power counting
arguments that any summation of a finite number of skeleton self-energy diagrams
merely reproduces the incorrect NCA exponents [90], like, e.g., the post-NCA
considered by Anders and Grewe [97] (diagrams up to O(� 4) in Fig. 3.4). Hence,
the generating functional must be comprised of an infinite class of skeleton diagrams
in order to describe Fermi liquid behavior. Since the latter is a consequence of the
singlet state formed at low T between the impurity and the conduction electron
spins, one may expect that higher than two-particle correlation functions need not
be considered in the single-channel case. The approximations to the total vertex
functions between conduction electrons (c) and impurity DoF (pseudofermions f ,
slave bosons e) are then two-particle T -matrices, T .cf / and T .ce/. As the irreducible
parts of these T -matrices we select the single (renormalized) e or f particle lines,
since (1) in the Kondo regime these terms are the leading contributions in the small
parameter VN0 and (2) in the spirit of principal diagrams, this choice gives rise to
the maximum number of spin and charge fluctuation processes, respectively, in the
T -matrices at any given order of (renormalized) perturbation theory. The Luttinger–
Ward functional generating these ladder vertex terms (and others) for U ! 1
is shown in Fig. 3.4. It is comprised of all closed pseudoparticle rings (skeletons)
with each conduction electron line spanning at most two hybridization vertices and
has been termed the conserving T -matrix approximation (CTMA) [67, 98]. Via the
self-consistent inclusion of the self-energies, the vertex equations for T cf and T ce

have parquet character. The CTMA integral equations, the analytical expressions for
the self-energies,˙f� and˙e , and the impurity electron Green’s function,Ga� , are
given explicitly in [98, 99]. Keiter and co-workers [100, 101] efficient decoupling
scheme for the CTMA integral equations greatly facilitates the evaluation, and
preserves the Fermi liquid values of the auxiliary particle infrared exponents.
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3.5.5.2 Principal Results

Pseudoparticle Spectral Functions As a first indication for description of Fermi
liquid behavior within CTMA it has been checked if the CTMA reproduces
the correct Fermi liquid values of the pseudoparticle threshold exponents [67].
The exponents of the CTMA solution are displayed in Fig. 3.6 (left panel) and
show, within the error bars, good agreement with the exact values, especially the
dependence on the impurity occupation number nd , characteristic for the Fermi
liquid fixed point.

The static spin susceptibility of the impurity was calculated from the spin-
dependent occupation numbers na� in a small magnetic field B as

�i .T / D dM

dB

ˇ̌
ˇ̌
BD0

; (3.66)

whereM D g
B
P

� �na� is the impurity magnetization and

na� D lim
�!1

R
d!e�ˇ! ImGf� .! � i0/R

d!e�ˇ! ImŒ
P

� Gf� .! � i0/CGe.! � i0/�
: (3.67)

�i .T / is shown in Fig. 3.6 (left panel). It exhibits T -independent Pauli behavior for
T

<� 0:5TK with no singular behavior appearing down to the lowest T considered
[99], indicative of the Fermi liquid ground state with a completely screened local
moment. As expected, �i .T / obeys scaling for at least a range of TK within a factor
10 [102], when plotted as a function of T=TK. For details of the comparison with
the Bethe ansatz results in Fig. 3.6 (left panel) see [99].

Fermi liquid behavior of the impurity electron Green’s function

NCA

NCA
f

b
b

b
f

f,

1.0

0.8

0.6

0.4

1.0

0.2

0.0

nd

0.0 0.20 0.40 0.60 0.80

Fig. 3.6 Left panel: CTMA results (symbols with error bars) for the threshold exponents ˛f and
˛e for U ! 1, B D 0. Solid lines: Exact values, (3.62) and (3.63), dashed lines: NCA results.
Right panel: Static spin susceptibility as a function of temperature; Bethe ansatz, CTMA and NCA
results (see text). Model parameters used: �d =D D �0:81 and � =D D 0:2
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Ga�.!/ D Œ! � �f � i� �˙a� .!/�
�1 ; (3.68)

and the impurity electron interaction self-energy ˙d� .!/ is of prime interest
especially for applications within DMFT. ˙a� exhibits many features of Fermi
liquid behavior [99]. It has quadratic dependence on both, ! and T , at low !

and T , with no sign of a spurious low-energy singularity down to the lowest T
considered (T ' 0:01 TK). As discussed in detail in [99], the curvature of the
quadratic behavior in ! and T is found to be in good agreement with the exact
Fermi liquid result, ˙a� .!/ D aŒ!2 C .�T /2�=T 2K, where a is an exactly known
prefactor. However, the position !0 of the minimum of Im˙a� .!/ is incorrectly
shifted to !0 � �TK, and Im˙a� .! � i0/ acquires negative values, thus violating
the Friedel sum rule. When searching for the origin of this shortcoming, one must
keep in mind that ˙a�.! � 0/ is determined via (3.68) by both ImGa�.!/ and
ReGa� .!/, and thus, via the Kramers–Kronig relation, by high-energy (potential
scattering) contributions to Ga� .!/. Hence, the erroneous shift !0 may result from
an unprecise calculation of Ga�.!/ at high energies, either numerically or due to
neglect of high-order potential scattering terms.2 To correct this shortcoming, it has
been suggested to add an appropriate, phenomenological real constant to ˙a� .!/.
Through self-consistent it acts like a chemical potential and shifts the minimum
of Im˙a�.!/ to ! D 0. By inclusion of that single, real parameter, motivated
by potential scattering contributions, the full Fermi liquid behavior of ˙a�.!/ is
recovered, and Ga.!/ obeys the unitarity sum rule with good precision [99].

3.6 Renormalization Group Approaches

The renormalization group method is a powerful tool to calculate properties of
interacting many-body systems. In the context of strongly correlated electron
systems a first and seminal application of the method to the Kondo problem has
been proposed by Anderson [103], who coined the term “poor man’s scaling” for
his method. While Anderson’s treatment is perturbative in the exchange coupling
constant of the Kondo model, and is, therefore, valid only at not too low energies,
Wilson devised a numerical RG method for the Kondo model which he successfully
implemented to cover the complete range of energies [104]. While these early RG
formulations were phrased in terms of successive mappings of the Hamiltonian
with continuously decreasing band width compensated by correspondingly adjusted
coupling constants, the later functional renormalization group (FRG) schemes make
use of a mapping of the complete set of Green’s functions under a continuous change
of an infrared cutoff. For the Kondo model, this is most conveniently formulated
using the pseudofermion representation of the local spin 1/2. The “poor man’s
scaling” approach to the equilibrium Kondo model is essentially a simplified FRG
formulation, in which the RG flow of the pseudofermion self-energy and the energy

2Note, however, that CTMA includes all potential scattering terms up to O.� 4/.
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dependence of the exchange coupling function, as well as all higher-order couplings
are neglected. It may be generalized to out of equilibrium situations, if the self-
energy (the imaginary part of which describes the relaxation rate of the local spin)
and the energy dependence of the coupling are kept. It is actually even possible to
extend the RG approach into the strong coupling regime, provided the effect of the
self-energy in controlling the flow of the coupling is treated correctly. Finally, the
FRG has been successfully used to treat another strong coupling problem, that of
frustrated quantum spin systems on a lattice in pseudofermion representation.

3.6.1 “Poor Man’S Scaling” in the Equilibrium Kondo Model

The interaction of a Fermi sea with a quantum impurity, e.g., a local spin exchange
coupled to the local spin density of the Fermi system, gives rise to the Kondo effect.
Initially introduced to describe magnetic impurities in metals, the Kondo problem is
by now a ubiquitous phenomenon. The corresponding s–d exchange Hamiltonian,
or Kondo Hamiltonian for short, reads

H D
X
k�

"kc
�

k�ck� C J
X

kk0�� 0

1

2
c
�

k���� 0c
k0� 0
� S ; (3.69)

where S D is the local spin 1/2 operator in pseudofermion representation, (3.1),
J is the exchange coupling constant and ��� 0 is the vector of Pauli matrices. We
take a flat conduction electron DOS, N.!/ D 1

2D
�.D0 � j!j/. If we now transform

this Hamiltonian to an equivalent one with reduced band width D D D0 � dD,
the physical properties of the system remain unchanged, provided the exchange
coupling is changed correspondingly. In order to calculate the required adjusted
value of J at the scale D; denoted J.D/, one may determine the effective coupling
in perturbation theory in J . The lowest (second order in J ) correction terms ıJ are
shown in Fig. 3.7, where the dashed (solid) lines depict bare retarded pseudofermion
(local Keldysh conduction electron) Green’s functions. Differentiating ıJ with
respect to the running band width D one finds that in lowest order in the
dimensionless coupling constant g0 D N.0/J the renormalized coupling g.D/
obeys the RG equation [103]

dg.D/

d lnD
D �2g2CO.g3/ (3.70)

with the solution

g.D/ D 1

2 ln.D=TK/
; (3.71)

where TK D D0 exp.�1=2g0/ is the Kondo temperature. One observes that g.D/
diverges at D D TK. The divergence is removed by taking the pseudofermion self-
energy into account, the imaginary part of which describes the relaxation rate for
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+

Fig. 3.7 Diagrammatic representation of the RG vertex in second order of J . The strokes indicate
differentials with respect to the band cutoff D. Dashed and solid lines depict bare retarded
pseudofermion and local Keldysh conduction electron Green’s functions, respectively

spin–flip processes (see below). The above perturbative RG result provides a valid
description as long as the running coupling is small, g.D/ << 1. In the perturbative
regime the Kondo effect, i.e., the screening of the local spin by the conduction
electron spins, begins to build up. The screening is completed at the energy or
temperature scale T << TK, i.e., in the strong coupling regime, not accessible by
perturbative methods.

3.6.2 Functional RG for the Kondo Model Out of Equilibrium

The Kondo problem experienced a revival in the mid 1990s, when it was found
that charge transport through nano-structures may be dominated by the Kondo
effect, in the sense that the Kondo resonance at a quantum dot may lead to perfect
conductance through the dot, although it is only weakly coupled to the leads
[105,106]. The corresponding Kondo Hamiltonian of a local spin exchange coupled
to the conduction electron spin densities in the two leads at the dot and the transfer
operator through the dot reads

H D
X
k�˛

."k � 
˛/c�k�˛ck�˛ C
X

kk0�� 0

J˛˛0

1

2
c
�
k�˛��� 0c

k0� 0˛0
� S ; (3.72)

where ˛ D L;R labels the leads and 
˛ D ˙ eV=2 denotes the chemical potential
shifts in the leads induced by an applied d.c. bias voltage V . In the following the
matrix of exchange couplings is assumed isotropic (J˛˛0 D J ).

As first proposed in [107–110], and later derived within a full functional
RG treatment [111], the “poor man’s scaling” approach may be generalized
to nonequilibrium by keeping the energy dependence of the coupling function
g.!/ D J.!/N.0/ and by observing that the RG flow is cutoff at the scale of
the spin relaxation rate � . The role of � in suppressing the Kondo effect has
been demonstrated within NCA in [112]. The generalized RG equation may be
formulated as

dg.DI!/
d lnD

D �
X
˛D˙

g2.DI˛eV=2/�.D �
p
.! C ˛ eV=2/2 C � 2/: (3.73)
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This equation must be solved simultaneously with the relaxation rate at scale D

� D �
X
˛DL;R

Z
d!g2.DI!/f .! � 
˛/Œ1 � f .! � 
˛0/�; (3.74)

where f .!/ is the Fermi function of the conduction electrons. The charge current is
given by the expression

I D e 3�
4

Z
d!g2.DI!/ff .! � 
L/Œ1 � f .! � 
R/� � .L, R/g (3.75)

Excellent agreement of the above theory with experimental data is found provided
the bias voltage, the applied magnetic field (Zeeman splitting B) or temperature is
sufficiently high, eV; B; T >> TK so that the perturbative expression of the RG
ˇ-function is applicable [107, 108, 113–118].

3.6.3 RG Approach to the Kondo Model at Strong Coupling

Motivated by the success of the generalized RG in nonequilibrium and the insights
gained from there, one may ask whether that formulation may be extended to the
strong coupling domain. This has been attempted back in the 1970s by Larsen and
Mattuck (LM) [119, 120], who discovered that the weak coupling RG equation,
combined with the cutoff � provided by the relaxation rate, shifts the singularity
in g.D/ from D D TK down to D D 0. In the limit T ! 0 the relaxation
rate � was found to approach the value TK, the exchange coupling developed the
singular behavior g.T / / 1=T and the conductance assumed the exact unitarity
limit. It is worth noting that LM employed the pseudofermion representation with
particle–hole symmetric projection. The flaw in LM’s derivation was that the leading
low-temperature corrections turned out to be linear in T instead of quadratic, as
required by Fermi liquid theory. This difficulty has been recently resolved by
using the correct form of the RG ˇ-function in the strong coupling regime [121].
In addition, it may be shown that while LM considered only the lowest (single
particle–hole excitation) contribution to � , all the higher-order contributions may
be subsummed to give the same structure, but with modified numerical coefficients.
As shown in [121] the ˇ-function in the strong coupling regime grows as g3, and,
therefore, faster than in the weak coupling limit. A useful interpolation expression is

dg.D/

d lnD
D � Œg.2C g/�

2

2C 2g �.D � � /: (3.76)

This equation may be solved analytically to give

g.D/ D
q
1C 1= ln.

p
D2 C � 2=TK/� 1; (3.77)
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where TK has been defined above. Here the relaxation rate is given by the self-
consistent equation

� .T / D 3g2.T /
Z

d!d!0f .!0/f .! � !0/f .�!/ �

!2 C � 2
; (3.78)

where f .!/ denotes the Fermi functions of both, conduction electrons and pseud-
ofermions. At temperatures T � � the integral may be evaluated to give � 2.T / D
c˙g

2.T /T 2 (c˙ D 3�2=4), which when combined with (3.69) results in a finite
value of the relaxation rate, � D TKC c� T 2=TKCO.T 3/ (c� D c˙ � 1=2 ) and a
diverging coupling g.T / D cg=T . The conductance G through a Kondo dot in the
linear response regime is given by

G

G0
D 3g2Y

Z
d!d!0f .!0/f .! � !0/f .�!/ �

!2 C � 2

�

.!0/2 C � 2
; (3.79)

where G0 is the conductance quantum and Y is the correction factor introduced in
the section on particle–hole symmetric projection above (Y ! 1 as T ! 0). One
observes that G=G0 ! 1 as T ! 0 (unitarity).

3.6.4 Functional RG Approach to Frustrated Heisenberg Models

The pseudofermion representation of spin operators may also be used in lattice
models. Here again the p–h symmetric projection is useful, particularly when one
is interested in the low-temperature behavior (T � J ). The more conventional
approximation schemes (random phase approximation and FLEX approximation)
when applied to the Heisenberg model on the square lattice have been shown to
provide good results [72]. The effect of the exact projection via Popov–Fedotov has
been found to be only important at higher temperatures, as expected [19]. Systems
of recent interest are frustrated Heisenberg models, with competing interactions.
Any approximate treatment should be carefully balanced as to not prefer one type
of correlations over another one. A systematic treatment of all interaction channels
may be achieved by employing the functional RG method [122–124]. A first study
of a frustrated Heisenberg model at T D 0 using the pseudofermion representation
and the FRG method provided excellent results on the phase diagram of the J1�J2-
model [22]. Similar to the treatment of the Kondo model by FRG mentioned above,
one keeps only the two first RG-equations out of the infinite hierarchy of equations.
It is necessary to keep the full energy dependence of self-energy and two-particle
vertex functions. In addition, it turns out to be important to keep a three-particle
correlation contribution in the form of self-energy insertions in the ˇ-function of
the RG equation for the couplings [125]. In this way the Ward identities may be
approximately satisfied. While this method cannot yet be used to calculate properties
of the ordered state, it allows us to identify phases without long-range order by
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studying whether the RG flow runs smoothly all the way to � D 0 (� is the
infrared cutoff parameter of FRG), which indicates a phase without LRO, or whether
the flow becomes unstable at some finite � , pointing to the existence of LRO.
A recent application to the J1 � J2 � J3 model yielded again excellent agreement
with complementary methods [126].

3.7 Conclusion

We have reviewed the most prominent auxiliary particle techniques and their appli-
cations to strongly correlated electron systems, using a variety of approximation
schemes, ranging from SPA, possibly with Gaussian fluctuations, to conserving
approximations to renormalization group methods. It was seen that the Kotliar–
Ruckenstein representation, especially in its spin rotation invariant and spin–charge
symmetric formulation, is particularly useful for identifying complex spin and/or
charge ordered groundstates in mean-field like approximations, since it treats all
spin and charge states on a lattice site on the same footing. Regarding the Hubbard
model on the square lattice, unrestricted Hartree–Fock calculations point towards a
huge number of solutions. An indication that this is also realized using slave bosons
on the saddle-point level is provided by Fig. 3.3, but identifying the numerous
competing phases remains a challenge. Conserving approximations provide a
versatile tool for implementing the constraint on the auxiliary particle number and,
hence, for a thorough treatment of fluctuations without resorting to a mean-field
as a starting point. This appears necessary, in particular, for quantum impurity
systems, where magnetic ordering does not occur. The NCA and the CTMA have
been discussed as the most prominent examples of this approach. Finally, Larsen’s
particle–hole symmetric projection technique may provide a promising tool for
describing the complete RG flow from the weak coupling regime to the strong
coupling fixed point within a diagrammatic RG.
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19. J. Brinckmann, P. Wölfle, Physica B 359–361, 798 (2005)
20. M.N. Kiselev, R. Oppermann, JETP Lett. 71, 250 (2000)
21. R. Dillenschneider, J. Richert, Phys. Rev. B 73, 024409 (2006)
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Chapter 4
The Composite Operator Method (COM)

Adolfo Avella and Ferdinando Mancini

Abstract The composite operator method (COM) is formulated, its internals illus-
trated in detail and some of its most successful applications reported. COM endorses
the emergence, in strongly correlated systems (SCS), of composite operators,
optimally deals with their unusual features and implements algebra constraints,
and other relevant symmetries, in order to properly compute the unconventional
properties of SCS.

4.1 Strong Correlations and Composite Operators

In the last decades, a large part of the research activity in solid state and condensed
matter physics has been devoted to the study of electronic systems with very
unconventional properties (i.e., with properties not consistent with the Fermi liquid
theory). It is commonly believed that the origin of such anomalous behaviors
should be traced back to the presence of strong electronic correlations in such
systems.
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Unità CNISM di Salerno, Università degli Studi di Salerno, 84084 Fisciano (SA), Italy
e-mail: avella@physics.unisa.it

F. Mancini
Dipartimento di Fisica “E.R. Caianiello,” Università degli Studi di Salerno, 84084 Fisciano (SA),
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Weakly correlated systems are described by Hamiltonians where the multibody
terms, and the interactions they describe, feature so little coupling constants with
respect to the average energies of the one-body terms (e.g., wide-band s and
p metals) that we can successfully resort to perturbation theories. In particular, in
such cases, mean-field-like approximations allow us to diagonalize the Hamiltonian
in terms of new independent particles, described by canonical operators, that is,
operators bounded to satisfy canonical commutation relations. On the contrary, in
strongly correlated systems (e.g., narrow-band d and f metals) [1,2], the interactions
are sufficiently intense to make completely useless any perturbation scheme that
will be just bound to fail. In some relevant cases, even more than the strength of the
interactions, it is their true nature, that is, their actual operatorial form, to bring all
troubles (e.g., Kondo model [3]).

In order to tackle this problem, we need to change perspective and relax some
of the constraints implied by the quest for new independent particles. In particular,
we should not expect to be able to correctly describe strongly correlated systems
only by means of canonical operators. Strong interactions modify dramatically
the properties of the original particles. What are observed are new particles with
new peculiar properties entirely determined by the dynamics and by the boundary
conditions (i.e., all elements characterizing the physical situation under study).
These new objects appear as the final result of the modifications imposed by the
interactions on the original particles and embed, since the very beginning, the effects
of correlations. Thus, the choice of new fundamental operators, whose properties
will be self-consistently determined by dynamics, symmetries and boundary condi-
tions, becomes relevant.

Let us consider a very simple, but very pedagogical, system in order to concretely
illustrate this occurrence. A lattice of ions sited sufficiently far apart to avoid
hopping of the electrons among the sites. For the sake of simplicity, we can
also imagine that only one s-like orbital is active per ion and that the Coulomb
repulsion is sufficiently intense only between same-site, that is, same-orbital,
electrons:

H D �

X

i�

c�� .i/c� .i/C U
X

i

n".i/n#.i/; (4.1)

where 
 is the chemical potential, i is a vector of the lattice, c� .i/ is the destruction
operator in the Heisenberg picture (i D .i; t/) of an electron of spin � in a Wannier
state centered at the site i, U is the strength of the on-site Coulomb repulsion and
n�.i/ D c�� .i/c� .i/ is the electronic number operator.

Although the Hamiltonian (4.1) looks very simple, there is neither known
canonical transformation capable to diagonalize this Hamiltonian nor perturbation
scheme, at any order, getting any closer to the exact solution or even just grasping
its main features. This is simply due to the impossibility to describe this system in
terms of independent particles represented by canonical operators.
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If we analyze the equation of motion of the electronic operator c� .i/

i
@

@t
c� .i/ D Œc� .i/;H� D �
c� .i/C Un N� .i/c� .i/; (4.2)

we encounter a fermionic operator, that is, an operator constituted by an odd number
of electronic operators, describing an electron of spin � dressed by the charge
fluctuations of the electrons of opposite spin ( N�). Let us name this new operator
��.i/ D n N� .i/c� .i/. The equation of motion of � reads

i
@

@t
�� .i/ D Œ�� .i/;H� D .U � 
/�� .i/: (4.3)

It is immediate to see that there exists a companion of �, which we named �� .i/ D
c� .i/� ��.i/, whose equation of motion reads

i
@

@t
�� .i/ D Œ�� .i/;H� D �
�� .i/: (4.4)

Equations (4.3) and (4.4) resemble that of independent particles as the current (i.e.,
the r.h.s of the equation of motion) is directly proportional to the operator itself.
We define, as eigenoperator of a given Hamiltonian, an operator whose current is
just proportional to the operator itself. We will call eigenenergy the proportionality
constant between the eigenoperator and its current (e.g., .U � 
/ for �).
�, together with �, constitutes a fermionic closed basis for this system. In our

definition, a closed basis is the smallest set of operators necessary to build up the
original operators as a linear combination (e.g., c D � C �) and which closes the
equations of motion. That is, a set of operators .O1;O2; : : : ; On/ constitutes a closed
basis for a system described by the HamiltonianH and constituted, for instance, by
c electrons iff i @

@t
Op D ŒOp;H� DPq apqOq and c DPp bpOp.

Often, by means of a fermionic closed basis, it is possible to diagonalize the
related Hamiltonian, that is, to rewrite the Hamiltonian only in terms of number-
like operators of elements of the operatorial basis. For instance, the Hamiltonian
(4.1) can be rewritten as

H D �

X

i�

��� .i/�� .i/C
�
1

2
U � 


�X
i�

��� .i/�� .i/: (4.5)

This diagonalization, although exact, is formal as � and � are not canonical operators
and they close commutation relations with their number-like operators ��� and ���
very different from that closed by the electronic operator c with n D c�c (see
Table 4.1; site indexes have been neglected: they would simply lead to Kronecker
deltas).

Equation (4.5) shows that, owing to the presence of the interactions, the original
electrons c are no more observable and new stable elementary excitations, described
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Table 4.1 Anticommutation relations for � and �

f��� ; �� 0g D ı�� 0 .1� c
�

N�cN� /C ı� N� 0c
�
�cN� Œ�

�
� �� ; �� 0 � D �ı�� 0 ��

f��� ; �� 0 g D ı�� 0c
�

N�cN� � ı� N� 0c
�
�cN� Œ�

�
� �� ; �� 0 � D ı� N� 0�N�

f�� ; �� 0g D ı� N� 0c�cN� Œ�
�
��� ; �� 0 � D ��� 0

f�� ; �� 0g D f�� ; �� 0 g D f��� ; �� 0 g D 0 Œ�
�
��� ; �� 0 � D 0

by the operators � and �, appear. The electronic bare energy level E D �
 splits
into two levels (E1 D �
 and E2 D U � 
) and the original electrons turn
out to be exactly the worst place to start: no perturbation scheme leads to the
level splitting, which is the main and only feature of this very simple system. On
the basis of this evidence, one is induced to move the attention from the original
electronic operators to the new operators generated by the interaction. Such new
operators can be written in terms of the original ones and are known as composite
operators. A formulation which would treat composite operators as fundamental
objects, instead of the original electronic operators, would be very promising. As a
matter of fact, such a formulation would allow us to set up approximation schemes
where some amount of the interaction is already exactly taken into account through
the chosen operatorial basis, and would permit us to overcome the hoary problem
of finding an appropriate expansion parameter.

However, one price must be paid. In general, composite operators are neither
Fermi nor Bose operators, since they do not satisfy canonical (anti)commutation
relations (see, for instance, Table 4.1). This very simple fact makes a tremendous
difference with respect to the case in which one deals with the original electronic
operators, which satisfy a canonical algebra. In developing perturbation schemes
where the building blocks are propagators of composite operators, one cannot use
the consolidated scheme any more: diagrammatic expansions, Wick’s theorem and
many other standard tools are no more valid or applicable. The formulation of the
whole Green’s function method must be revisited [4, 5] and new frameworks of
calculations have to be formulated. In the following section, we will formulate
the composite operator method (COM) [5] and illustrate its internals; COM
systematically endorses the emergence, in strongly correlated systems, of composite
operators and optimally deals with their unusual features.

4.2 The Composite Operator Method (COM)

4.2.1 Basis  

Given a Hamiltonian H describing a solid state system, first we have to choose
a basis  constituted of a finite number of composite operators, either fermionic
or bosonic. A fermionic basis will be used if the original interacting particles are
electrons and we want to analyze thermodynamic and single-particle properties of
the system. A bosonic basis can be either the natural basis for systems constituted
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by bosons (e.g., spins, phonons, etc.) or a set of bosonic operators, constituted
by an even number of electronic operators, representing the electronic number
operator (charge), the electronic spin operator, . . . and necessary to study the charge,
spin, . . . response of the system. In this latter case, the dynamics described by the
bosonic basis is strongly coupled to that described by the related fermionic basis and
vice versa. As a matter of fact, this is the case even if we do not explicitly open the
bosonic sector as the self-consistent parameters appearing in the fermionic sector
are just thermal averages of the related bosonic operators. A fully simultaneous
self-consistent solution of both sectors is usually required. This consequence of the
non-canonical algebra satisfied by composite operators is a manifestation of the
relevance (actually, the dominance) of spin, charge, . . . correlations in all properties
exhibited by strongly correlated systems.

Obviously, a closed basis is the best basis one can adopt. It is possible to obtain
a closed basis by just crossing the entire hierarchy of the equations of motion of the
relevant canonical operator (e.g., the electronic operator, its number or spin operator,
etc.). Namely, one has to: (a) compute high-order time derivatives of the relevant
canonical operator by repeatedly commuting it with the Hamiltonian; (b) acquire
in the basis all distinct composite operators appearing in the high-order currents;
(c) terminate as soon as no new composite operator appears. This well-defined
procedure, being equivalent to compute all spectral moments (i.e., the moments of
the relevant canonical operator Green’s function) [6–8], catches, in principle, all
scales of energy featured by the system under analysis.

Following this procedure, one can see that there is a large class of systems (finite
systems [4, 9], bulk systems with interacting localized electrons [10–12], Ising-like
systems [13–16], etc.) where it is possible to obtain a closed basis with a finite
number of elements and one can aim at the exact solution. In all other bulk systems,
this procedure will lead to a closed basis with an infinite number of components. In
such cases, one can: rewriteH asH D H0CHI , whereH0 is the most relevant part
whose finite closed basis is known; adopt the closed basis ofH0 as a truncated basis
forH ; and treatHI as a perturbation toH0. If the system under study features only
analytical scales of energy (i.e., scales of energy whose mathematical expressions
are expandable in power series of Hamiltonian model parameters), or if the range
of temperatures/frequencies of interest does not involve not-analytical scales of
energy, the adoption of a truncated basis can lead to an accurate description of the
system under analysis. Such a description can be systematically improved adding
to the truncated basis more and more elements according to the above described
procedure. For instance, in the Hubbard model, we need at least a two-element basis
to correctly describe the Hubbard on-site Coulomb repulsion U and at least a four-
element basis to correctly describe the virtual exchange energy J D 4t2=U [9, 17].

Not-analytical scales of energy can be present in some models. For example, in
the single-impurity Anderson model [3], the emergence of a not-analytical Kondo
energy scale is directly connected to the virtual exchange processes triggered by
the hybridization between conduction and impurity electrons and dominated by
on-site Coulomb repulsion at the impurity site. This occurrence forces us to explore
different routes to construct a proper operatorial basis. In fact, in such cases, the



108 A. Avella and F. Mancini

adoption of any truncated basis would lead to a description of the system under
analysis completely lacking any reference to not-analytical scales of energy. Such
a description would turn out really poor at low enough temperatures/frequencies
where neglected energy scales usually manifest themselves triggering quite uncon-
ventional behaviors (impurity spin screening, superconductivity, etc.). Actually, in
such cases, one has to properly tweak the equations of motion of specific composite
operators and smartly exploit self-consistency in order to get sensible results by
means of a basis with a finite number of elements [18, 19].

Summarizing, many recipes can assure a correct and controlled description of
relevant aspects of the dynamics. One can put in the basis:

• The higher-order composite operators emerging from the hierarchy of the
equations of motion: The conservation of a definite number of spectral moments
is guaranteed; polynomial and analytical scales of energy can be resolved with
desired accuracy [5, 8].

• The eigenoperators of Hamiltonian terms describing specific interactions or
virtual processes: the latter are correctly taken into account [9, 20].

• The eigenoperators of the problem reduced to a small cluster: all polynomial and
analytical energy scales and their competitions/interplays are just exactly taken
into account at short distances/large momenta [9, 21–23].

• The composite operator describing the Kondo-like singlet [18, 19, 24, 25].

4.2.2 Equations of Motion of  

Once the basis  .i/, constituted of n composite operators, has been chosen, we
adopt a matricial notation and write

 .i/ D

0
B@
 1.i/
:::

 n.i/

1
CA ; (4.6)

where we have not specified the nature, fermionic or bosonic, of the basis. In the
case of fermionic operators, it is understood that we use the spinorial representation

 m.i/ D
�
 m".i/
 m#.i/

�
: (4.7)

The current J of  can be exactly rewritten as

J.i/ D i
@

@t
 .i/ D Œ .i/;H� D

X
j

".i; j/ .j; t/C ıJ.i/; (4.8)
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where the matrix " is known as the energy matrix. ıJ is named residual current and
describes the component of the current J orthogonal to the basis  

D�
ıJ.i; t/;  �.j; t/

�
�

E
D 0) ".i; j/ D

X
l

m.i; l/I�1.l; j/: (4.9)

It is absolutely worth noticing that iff  is a closed basis, ıJ is identically zero.

m.i; j/ D
D�
J.i; t/;  �.j; t/

�
�

E
is simply named m matrix and I.i; j/ DD�

 .i; t/;  �.j; t/
�
�

E
is known as the normalization matrix. The matrix I is hermi-

tian by definition, while the matrixm is hermitian because of the time independence
of the matrix I : 0 D i @

@t
I D m � m�. h� � � i stands for the quantum mechanical

average in the (grand-)canonical ensemble. � D 1;�1 marks anticommutators f; g
and commutators Œ; �, respectively. For fermionic (bosonic) composite operators, the
choice � D 1 (� D �1) is much more convenient (i.e., it makes the calculations
much simpler), although the opposite choice is also possible.

Once a basis has been chosen, either closed or truncated, we need to calculate
the normalization I and the m matrices in order to construct the energy matrix ",
which will soon turn out to be a fundamental quantity. The calculation of the
relevant (anti)commutators is straightforward, but it can be lengthy and cumbersome
if the basis contains many elements. The thermal averaging procedure is instead
much less mechanical as it involves choosing the various phases to be studied. All
correlation functions present in the normalization I and in the energy " matrices
need to be computed self-consistently and form a first block of unknowns in the
theory.

4.2.2.1 Weight and Orthogonality of Composite Operators

The entries of the normalization matrix I give a measure of both the weight of
a composite operator (diagonal entries) and the degree of orthogonality between
two of them (off-diagonal entries). These two concepts (weight and orthogonality)
have obvious meanings for canonical electronic operators whose anticommutation
relations are just C-numbers (fcl� ; c�l 0� 0g D ı�� 0ıl l 0): an electronic operator always
weights just 1 and is orthogonal by definition to any other electronic operator,
clearly describing a single-particle state with different quantum numbers (l , �).
As for composite operators, owing to the non-canonical commutation relations
they obey, these concepts become more relevant and less obvious: both properties
strongly depend on the actual operatorial form of the composite operators as well
as, through the thermal averaging, on the Hamiltonian describing the system under
analysis and the boundary conditions. Such a dependence manifests itself through
the emergence, in the I matrix entries, of thermal averages of bosonic composite
operators, whose determination is not always straightforward. Actually, it is just the
presence of these parameters in the I matrix, to leave sometimes a problem unsolved
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although a closed basis has been individuated. If the basis is not closed (ıJ ¤ 0),
the same kind of averages appears in the " matrix too.

These features of composite operators (non-trivial weights and imperfect orthog-
onality) are distinctive landmarks of strong correlations. They are fundamental to
the occurrence of well-known effects such as the transfer of spectral weight (directly
connected to composite operator weights) between (sub-)bands on changing model
or external (temperature, filling, pressure, external fields, etc.) parameters, and the
interplay among scales of energies (connected to the overlapping of composite
operators).

For instance, if we choose  D .�; �/ as (closed) fermionic basis for the toy
model (4.1), we would find the following I and " matrices:

I�� 0.i; j/ D ıij



ı�� 0

�
1 � hn N� .i/i 0

0 hn N� .i/i
�
C ı� N� 0hc�� .i/c N� .i/i

�
1 0

0 �1
��

"�� 0.i; j/ D ıijı�� 0

��
 0

0 U � 

�
: (4.10)

As the chosen basis is closed, the energy matrix is free of unknown parameters,
while the normalization matrix contains anyway some of them to be computed self-
consistently according to the chosen phases to be investigated (e.g., paramagnetic,
ferromagnetic, Neél, CDW, SDW, etc.).

4.2.3 Dyson Equation for G

We can now define a generalized matricial Green’s function G for the basis  

GQ.i; j / D ˝QŒ .i/ �.j /��
˛ D

8̂
<̂
ˆ̂:

�.ti � tj /
˝
Œ .i/;  �.j /��

˛
for Q D R

��.tj � ti /
˝
Œ .i/;  �.j /��

˛
for Q D A

�.ti � tj /
˝
 .i/ �.j /

˛
���.tj � ti /

˝
 �.j / .i/

˛ for Q D C
;

(4.11)

where R, A and C stand for the usual retarded, advanced and causal operators,
respectively.

For the sake of simplicity, we pick up a phase with spatial homogeneity and move
to momentum and frequency spaces through Fourier transform. Then, according to
(4.8),G satisfies the following equation of motion

GQ.k; !/ D GQ
0 .k; !/CGQ

0 .k; !/T
Q.k; !/GQ

0 .k; !/; (4.12)
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where GQ
0 .k; !/, determined by the equation

Œ! � ".k/�GQ
0 .k; !/ D I.k/; (4.13)

will play the role of fundamental building block and the scattering matrix TQ.k; !/
is defined as

TQ.k; !/ D I�1.k/BQ.k; !/I�1.k/; (4.14)

with BQ.i; j / D ˝QŒıJ.i/ıJ �.j /��
˛
.

Now, we can introduce the irreducible self-energy ˙Q.k; !/, defined through
the relation TQ.k; !/GQ

0 .k; !/ D I�1.k/˙Q.k; !/GQ.k; !/, and get

GQ.k; !/ D 1

! � ".k/�˙Q.k; !/
I.k/ D 1

ŒGQ
0 .k; !/�

�1 � I�1.k/˙Q.k; !/
:

(4.15)

Equation (4.15) generalizes the well-known Dyson equation to the case of
Green’s functions of composite operators [4, 5]. Together with the apparent simi-
larities, it is absolutely worth noting the striking differences:

• All ingredients are matrices either n � n (bosonic) or 2n � 2n (fermionic).
• The equivalent of the usual non-interacting Green’s function,G0, is, instead, fully

interacting and, in principle, exact (if the basis  is closed then we have ıJ D 0,
consequently˙ D 0, and finally G D G0).

• The normalization matrix I evidently assumes the role of overall weight of the
matricial Green’s function G (I is its 0th moment: lim!!1G  I=!).

• The eigenvalues of the energy matrix " clearly play the fundamental role of poles,
which will be more or less severely modified by the self-energy˙ .

• The self-energy ˙ describes both the dynamics orthogonal to that described by
the chosen basis  and the residual interactions among the elements of the latter.
Smarter is the choice of  , up to a closed basis, less relevant is the knowledge
of ˙ to fully understand the system under study. Hence, we decided to rename
the generalized irreducible self-energy ˙ as residual self-energy: it is just the
irreducible propagator of the residual current ıJ .

4.2.4 Propagator G0

Let us take a step back, the propagatorG0 satisfies the following equation

Œ! � ".k/�GQ
0 .k; !/ D I.k/; (4.16)
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whose most general solution is [4, 5]

GQ
0 .k; !/ D

nX
lD1

�
P


�.l/.k/
! � !l.k/

�
� i�ı Œ! � !l.k/� g.l/Q.k/


: (4.17)

�.l/.k/ are the spectral density functions in matrix form, fully determined by the
energy matrix " and the normalization matrix I as

�
.l/

ab .k/ D ˝al.k/
X
c

˝�1
lc .k/Icb.k/; (4.18)

where˝.k/ is the matrix whose columns are the eigenvectors of the energy matrix ".
!l.k/ are the eigenvalues of this latter. g.l/Q.k/ are unknown momentum functions,
in matrix form, not fixed by the equations of motion (i.e., they correspond to
constants in time), to be determined taking into account the boundary conditions
specific of the type of propagator under study (retarded, advanced, or causal).

For both fermionic (� D 1) and bosonic (� D �1) basis, the boundary conditions
turn out to be sufficient to fully determine g.l/R;A.k/ and we obtain a Lindhard-like
representation for GR;A

0 .k; !/

GR;A
0 .k; !/ D

nX
lD1

�.l/.k/
! � !l.k/˙ iı

: (4.19)

Contrarily, g.l/C.k/ and, consequently, the causal Green’s function, GC
0 .k; !/,

can be fully determined by the boundary conditions only for the fermionic basis

GC
0 .k; !/ D

nX
lD1

�.l/.k/



1 � fF.!/

! � !l.k/C iı
C fF.!/

! � !l.k/� iı

�
; (4.20)

where fF.!/ is the Fermi distribution function.
We conclude the discussion about fermionic basis reporting the expression for

the correlation function C.i; j / D ˝ .i/ �.j /˛

C.k; !/ D 2�
nX
lD1

Œ1 � fF.!l.k//� �.l/.k/ı Œ! � !l.k/�: (4.21)

It is necessary noticing that the correlation function C can be computed by means
of (4.21) only if the basis  is closed or if we neglect the residual self-energy.
Otherwise, we should use the more general expression

C.k; !/ D �2 Œ1 � fF.!/�=
�
GR;A.k; !/

�
: (4.22)



4 The Composite Operator Method (COM) 113

For bosonic basis, instead, g.l/C.k/ cannot be fully determined by the boundary
conditions, but we can still obtain a modified Lindhard-like representation for
GC
0 .k; !/ [4, 5]

GC
0 .k; !/ D �2�i� .k/ı.!/C

nX
lD1

�.l/.k/



1C fB.!/

! � !l.k/C iı
� fB.!/

! � !l.k/ � iı

�
;

(4.23)
where fB.!/ is the Bose distribution function, provided that we explicitly keep
in the final expression an unknown zero frequency momentum function in matrix
form � .k/.

The actual value of � .k/ is directly related to the degree of ergodicity of the
dynamics of the basis  driven by the HamiltonianH

� .i � j/ D lim
T!1

1

T

Z T

0

dt
˝
 .i; 0/ �.j; t/

˛
: (4.24)

If we would know, by any source of information, that the dynamics of  driven by
H is fully ergodic, the last equation would simply give

� .i � j/ D h .i/i ˝ �.j/˛ ; (4.25)

leading to an effective removal of the unknown � function from the theory. Unfor-
tunately, although many people just overlook this deliberately, there is absolutely no
way to asses ergodicity in advance and� .k/ forms another block of unknowns in the
theory. In particular, ergodicity cannot be supposed a priori for finite systems treated
in statistical ensembles different from the microcanonical one and for bosonic
operators commuting with the Hamiltonian (i.e., for constants of motion).
� .k/ also appears in the expression for the correlation function C.i; j / D˝

 .i/ �.j /
˛

C.k; !/ D 2�� .k/ı.!/C 2�
nX
lD1

Œ1C fB.!l .k//� �.l/.k/ı Œ! � !l.k/� ;

(4.26)

but this is absolutely not the only issue with the above expression (4.26).
If �.l/.k/ is not identically zero for all values of k where !l.k/ vanishes, the

correlation function C.k; !/ diverges as 1=ˇ!l.k/ for the same values of k in
the limit ! ! 0 (i.e., at all times). Such a behavior of C.k; !/ usually manifests
the establishing of long-range spatial correlations in the system, but it is admissible
iff the corresponding correlation function in real space C.r; t/ stays always finite.
Accordingly, the divergence should be integrable; this immediately excludes the
possibility to have long-range order in finite systems and, at finite temperatures, in
infinite systems (i.e., in the thermodynamic limit) with too low spatial dimension.
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Actually, the lowest spatial dimension allowed to host long-range order will simply
depend on the actual functional form of the vanishing !l.k/ (e.g., if !l.k/ / jkj˛,
then the spatial dimension has to be strictly larger than ˛). No restriction applies
to infinite systems of any dimension at zero temperature. This is just the content of
Mermin–Wagner theorem [26].

For bosonic basis too, it is necessary noticing that the correlation function
C can be computed by means of (4.26) only if the basis  is closed or if
we neglect the residual self-energy. Otherwise, we should use the more general
expression

C.k; !/ D �2 1C fB.!/

1C 2fB.!/
= �GC.k; !/

�
: (4.27)

The use of the casual Green’s function, for a bosonic basis, is strictly necessary in
order to properly take into account the ergodicity issue that does not manifest in
neither the advanced nor the retarded propagators, but only in the causal propagator
and in the correlation function.

4.2.5 Residual Self-Energy˙

Obviously, we do not need to compute the residual self-energy at all (it is just
identically zero) if we choose a closed basis; this is one of the main reasons why a
closed basis is the best one we can choose. Accordingly, as much as a truncated
basis is large enough less relevant will be the contribution of the residual self-
energy to the description of the system under analysis. It is worth noticing that
even if we would completely neglect the residual self-energy, the Green’s function
of the original interacting particles constituting the system, expressed in terms of
the relevant entries of the propagator G0, will anyway feature a fully momentum
and frequency dependent irreducible self-energy with a .n � 1/-polar structure, but
sufficient to describe all scales of energy caught by the chosen basis.

Nevertheless, one cannot neglect the residual self-energy without being aware
of the main drawback: one is actually promoting to the rank of true particle (i.e.,
with an infinite life-time) objects that, being still subject to all virtual processes not
properly taken into account by a truncated basis, have finite life-times (i.e., they are
quasiparticle) roughly inversely proportional to the largest neglected energy scale
involving them (i.e., the transition described by a composite operator can or cannot
be one of those necessary to construct the relevant virtual process). Clearly, this can
be systematically controlled by enlarging the basis, although only on a quantitative
level. Again, not-analytical energy scales can change so dramatically the properties
of particles and quasiparticles to require a qualitative change of perspective also
regarding the residual self-energy determination and role, as described in the
Sect. 4.2.1.



4 The Composite Operator Method (COM) 115

As a matter of fact, it is sometimes convenient keeping the operatorial basis
somewhat simpler than what is actually handleable in order to get simpler expres-
sions for the residual currents too and effectively compute, starting from the latter,
the residual self-energy. Such a procedure can lead to a description of the system
under analysis featuring both some of the relevant energy scales and the decay
effects inherent to the quasiparticle nature of composite operators belonging to a
truncated basis.

In these years, we have been developing and testing different ways to compute
residual self-energy; among others: the two-site resolvent approach [27,28] and the
non-crossing approximation (NCA) [29–36]. Any of them has its pros and cons and
specific problems can be better tackled by one or the other (see Sect. 4.3).

4.2.6 Self-Consistency

The intrinsic complexity of the operatorial algebra obeyed by composite operators
(for instance, see Table 4.1) hides a noteworthy possible exploitation of the same
algebra. Composite operators, whose lattice sites overlap (any composite operator
may span a certain number of lattice sites), obey algebra constraints directly coming
from the Pauli exclusion principle. For instance, � and � satisfy the following exact
relation: �� .i/�

�

� 0.i/ D 0 that can be easily traced back to c� .i/c� .i/ D 0.
The relevance of such algebra constraints resides, on one side, in their capability

to enforce the Pauli principle and its derivatives, and, on the other side, in the not-
so-trivial request that they should be obeyed at the level of thermal averages too. In
fact, the related thermal averages (e.g., h�� .i/��� 0.i/i D 0), through the well-known
relation existing between correlation functions and Green’s functions (fluctuaction–
dissipation theorem; see Sect. 4.2.4), depend on all unknown parameters appearing
in the relevant Green’s function (in I , ", and˙ plus � .k/ for bosonic basis) and, in
turn, can be used to fix them:

h .i/ �.j/i D C.i� j; t D 0/: (4.28)

The l.h.s of (4.28), for i and j such that elements of the basis  span on, at least,
one common site, would be fixed by the algebra, which imposes contractions (e.g.,
�� .i/�

�

� 0.i/ D 0, n.i/n.i/ D n.i/C 2��".i/�".i/). The r.h.s. of (4.28) is given by the
actual expression of the Green’s function and contains all unknowns of the theory
(for bosonic basis, it also contains � .i � j/).

This deceptively simple conclusion has enormous implications on both the
capability to solve, either exact or approximately, strongly correlated systems, and
the quality of the solution. Not only algebra constraints allow us to find a solution,
but they make this solution as closer as possible to the exact one because they
embody the primary cause of electronic correlations: the Pauli principle.
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It is also worth noticing that the symmetries enjoined by the Hamiltonian imply
the existence of constants of motion and the possibility to formulate relations
among matrix elements of the relevant Green’s functions known as Ward–Takahashi
identities [37,38]. These identities can/should also be used to fix the unknowns and
to constrain the theory.

4.2.7 Summary

Summarizing, COM framework envisages four main steps:

1. Choose a composite operator basis according to the system under analysis and
all information we can gather from relevant numerical and exact solutions (see
Sect. 4.2.1)

2. Compute I and m matrices and obtain " matrix and propagator G0 in terms of
unknown correlators and unknown � function (see Sect. 4.2.1 and 4.2.4).

3. Choose a recipe to compute˙ or just neglect it (see Sect. 4.2.5).
4. Self-consistently compute the unknowns through algebra constraints and Ward–

Takahashi identities (see Sect. 4.2.6).

In the last 15 years, COM has been applied to several models and materials:
Hubbard [4, 5, 9, 17, 28, 32, 36, 39–42], p–d [43–45], t–J [9, 27], t–t 0–U [46–48],
extended Hubbard (t–U –V ) [49,50], Double-exchange [22], Kondo [18], Anderson
[19], Kondo–Heisenberg [51], two-orbital Hubbard [52], Kondo lattice [53], Ising
[10–14, 16], BEG [54], Heisenberg [55], Hubbard–Kondo [56], singlet-hole [57],
cuprates [31, 58–60]. A comparison with the results of numerical simulations has
been systematically carried on. The interested reader may refer to the works cited in
[5] and, for the last years, at the web page: http://scs.physics.unisa.it.

In the second part of this chapter, as relevant application of the formalism, we
will consider the Hubbard model and we will go through the different approximation
schemes illustrated in the previous sections in a systematic way. A comprehensive
comparison with the results of numerical simulations and with the experimental data
for high-Tc cuprates will be also reported.

4.3 Case Study: The Hubbard Model

4.3.1 The Hamiltonian

The Hubbard model reads

H D
X

ij

��
ıij � 2dt˛ij
�
c�.i/c.j /C U

X
i

n".i/n#.i/: (4.29)

http://scs.physics.unisa.it.


4 The Composite Operator Method (COM) 117

The notation is the same as used in Sect. 4.1 with the following additions: t
is the hopping and the energy unit; d is the dimensionality of the system; ˛ij

is the projector on the nearest-neighbor sites, whose Fourier transform, for a d -
dimensional cubic lattice with lattice constant a, is ˛.k/ D 1

d

Pd
nD1 cos.kna/.

The electronic operators c.i/ and c�.i/, as well as all other fermionic operators,

are expressed in the spinorial notation [e.g., c�.i/ D
�
c
�

".i/ c
�

#.i/
	

. A detailed

and comprehensive summary of the properties of Hamiltonian (4.29) are given in
Sect. 1 of [5]. We here report a study of this model by means of the COM as
formulated in Sect. 4.2. In order to proceed in a pedagogical way, we will go through
different stages. In Sect. 4.3.1.1, we consider a truncated fermionic basis (two-pole
approximation) given by the two Hubbard operators �.i/ and �.i/. In Sect. 4.3.1.2,
we complement the analysis considering the related bosonic sector (charge and
spin). In Sect. 4.3.2, we implement the study by considering the contribution of
the residual self-energy. In Sect. 4.3.3, we enlarge the truncated basis by including
higher-order composite fields (four-pole approximation). At all these stages, we
will present COM results and compare them with experimental and/or simulation
data. Due to the pedagogical nature of this manuscript, we will restrict the analysis
to the paramagnetic state. Ordered phases (ferro and antiferromagnetic phases)
have been also analyzed and the related results can be found in [5]. Finally,
in Sect. 4.3.4, we will discuss the superconducting solution of the model in the
d -wave channel and compare COM results with high-Tc cuprates experimental
data.

4.3.1.1 Two-Pole Solution: Fermionic Sector

On the basis of the discussions reported in Sects. 4.1 and 4.2.1, we will adopt as
fermionic basis

 .i/ D
�
�.i/

�.i/

�
; (4.30)

where �.i/ and �.i/ are the Hubbard operators defined in Sect. 4.1. This field
satisfies the equation of motion

i
@

@t
 .i/ D J.i/ D

��
�.i/ � 2dtc˛.i/� 2dt�.i/
.U � 
/�.i/C 2dt�.i/

�
; (4.31)

with n
.i/ D c�.i/�
c.i/ and �.i/ D 1
2
�
n
.i/c

˛.i/ C c.i/c�˛.i/c.i/. �
 D
.�1; � / and �
 D .1; � /, where � are the Pauli matrices. Hereafter, given a generic
operator ˚.i/, we will use the notation ˚˛.i/ D P

j ˛ij˚.j; t/. The current J.i/
is projected on the basis (4.30) and the residual current ıJ.i/ is neglected. The
normalization and energy matrices have the expressions
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I.k/ D
�
I11 0

0 I22

�
D
�
1 � n=2 0

0 n=2

�
".k/ D

�
m11.k/I�1

11 m12.k/I�1
22

m12.k/I�1
11 m22.k/I�1

22

�
;

(4.32)

where the entries of them matrix are given by

m11.k/ D �
I11 � 2dt Œ�C ˛.k/.1 � nC p/� (4.33)

m12.k/ D 2dt Œ�C ˛.k/.p � I22/� (4.34)

m22.k/ D .U � 
/I22 � 2dt Œ�C ˛.k/p� ; (4.35)

n D 1=N
P

ihn.i/i is the particle number per site; the parameters� and p cause a
constant shift of the bands and a bandwidth renormalization, respectively, and are
defined as

� D h�˛.i/��.i/i � h�˛.i/��.i/i (4.36)

p D 1

4
hn˛
.i/n
.i/i � h

�
c".i/c#.i/

�˛
c
�

#.i/c
�

".i/i: (4.37)

� is the difference between upper and lower intra-subband contributions to kinetic
energy, while p is a combination of the nearest-neighbor charge–charge, spin–spin
and pair–pair correlation functions.

The retarded GR.i; j / D ˝
R
�
 .i/ �.j /

�˛
and the correlation C.i; j / D˝

 .i/ �.j /
˛

functions are given by

GR.k; !/ D
2X

nD1

�.n/.k/
! � En.k/C iı

(4.38)

C.k; !/ D
2X

nD1
Œ1 � fF.!/� �

.n/.k/ıŒ! � En.k/�: (4.39)

The energy spectra En.k/ read

E1.k/ D R.k/CQ.k/ E2.k/ D R.k/ �Q.k/; (4.40)

where

R.k/ D 1

2
ŒU � 2
� 4dt˛.k/� � m12.k/

2I11I22
Q.k/ D 1

2

s
g2.k/C 4m2

12.k/
I11I22

;

(4.41)
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with g.k/ D �U C 1�n
I11I22

m12.k/. The spectral functions �.n/.k/ have the following
expressions

�
.1/
11 .k/ D

I11

2



1C g.k/

2Q.k/

�

�
.1/
12 .k/ D

m12.k/
2Q.k/

�
.1/
22 .k/ D

I22

2



1 � g.k/

2Q.k/

�

�
.2/
11 .k/ D

I11

2



1 � g.k/

2Q.k/

�

�
.2/
12 .k/ D �

m12.k/
2Q.k/

�
.2/
22 .k/ D

I22

2



1C g.k/

2Q.k/

�
: (4.42)

The determination of GR.k; !/ and C.k; !/ requires the knowledge of the
chemical potential and of the two bosonic thermal averages � and p, a fermionic
correlator and a bosonic one, respectively. These quantities are self-consistently
determined by means of the following set of coupled equations

n D 2.1� C11 � C22/ (4.43)

� D C˛
11 � C˛

22 (4.44)

C12 D h�.i/��.i/i D 0; (4.45)

where Cab D h a.i/ �b .i/i and C˛
ab D h ˛a .i/ �b .i/i. The first equation fixes the

chemical potential in terms of all other parameters; the second comes from the
definition of� [cf. (4.37)]; the third comes from the constraint (4.28). Once this set
of coupled self-consistent equations has been solved, we can calculate all relevant
single-particle and thermodynamical properties of the model. The double occupancy
per site:D D 1=N P

ihn".i/n#.i/i D I22�C22; the energy bandsEn.k/; the Fermi
surface by means of the equation En.k/ D 0; the momentum distribution function
n.k/ and the density of states N.!/:

n.k/ D 2
Z C1

�1
d!fF.!/



� 1
�
=ŒGR

cc .k; !/�
�

(4.46)

N.!/ D ad

.2�/d

Z

˝B

ddk



� 1
�
=ŒGR

cc .k; !/�
�
; (4.47)

where˝B is the volume of the first Brillouin zone,GR
cc .k; !/ D

P2
a;bD1 GR

ab.k; !/;
the internal energy E D hH i D 4dt

P2
a;bD1 C ˛

ab C UD; the specific heat C D
dE=dT ; the free energy F.n; T / D R n

0

.n0; T /dn0; the entropy S D .E � F /=T .

Once the fermionic propagator is known, there are several ways to compute
response functions (i.e., the retarded propagators of the two-particle excitations:
charge, spin, pair, . . . ). These techniques are usually based on diagrammatic expan-
sions of the two-particle propagators in terms of the single-particle one. However,
when operators with non-canonical commutations are involved, the complicated
algebra invalidates the Wick theorem and, consequently, does not allow any simple
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extension of decoupling schemes and more involved diagrammatic approximations
[61, 62] are needed. Another technique [5, 63], the one-loop approximation for
composite operators, has been developed by means of the equations of motion
approach. By using this technique it is possible to calculate the causal function
hT Œn
.i/n
.j /�i and then the charge and spin susceptibilities. We do not report
the details of the calculations, which can be found in [5], and summarize the results.
For the causal propagators we have

hT Œn.i/n.j /�i D n2 � n.2 � n/
n � 2D

2X
a;b;cD1

I�1
aa Q

C
abac.i; j / (4.48)

hT Œn3.i/n3.j /�i D � n.2 � n/
nC 2D � n2

2X
a;b;cD1

I�1
aa Q

C
abac.i; j /; (4.49)

whereQC
abcd .i; j / D GC

ab.i; j /G
C
cd .j; i/ is the fermionic loop constructed from the

propagator GC
ab.i; j / D hT Œ a.i/ �b .j /�i. For the charge and spin susceptibilities,

we have

�c.k; !/ D n.2 � n/
n � 2D

2X
a;b;cD1

I�1
aa Q

R
abac.k; !/ (4.50)

�s.k; !/ D n.2 � n/
nC 2D � n2

2X
a;b;cD1

I�1
aa Q

R
abac.k; !/; (4.51)

whereQR
abcd .k; !/ is the retarded part ofQC

abcd .k; !/ and has the expression

QR
abcd .k; !/

D ad

.2�/d

2X
n;mD1

Z
ddp
ffFŒEm.p/� � fFŒEn.kC p/�g�.n/ab .kC p/�.m/cd .p/

! CEn.kC p/ �Em.p/C iı

(4.52)

Results and Comparisons

Algebra Constraints

The violation of the algebra constraints in the Roth and Hubbard I approximations
is analyzed in Fig. 4.1 (left panel), where the normalized Pauli amplitude Ap D
C12=C22, which is identically zero in COM (as it should be due to the Pauli
principle), is reported versus n at T D 0 for various values of U . We see that in
the Roth [65, 66] and Hubbard I [1] schemes the Pauli principle is satisfied only in
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Fig. 4.1 (Left) Pauli amplitude Ap D C12=C22 vs. filling n at T D 0 for several values of U .
(Right) Double occupancy D vs. filling n for T D 1=6 and U D 2. The solid, dotted and dashed
lines stand for COM, Hubbard I and Roth, respectively. qMC data refer to a 12 � 12 cluster [64]

the cases n D 0 and n D 1. The deviation increases by decreasing U , reaching
its maximum value in the non-interacting limit (i.e., U D 0). On the contrary, the
Pauli principle is recovered in the limit U ! 1 for any value of n. At any rate,
the Hubbard I solution violates several other sum rules [67]. As a consequence of
the fact that the Pauli principle is not satisfied, the particle–hole symmetry enjoined
by the Hubbard Hamiltonian is also violated [5, 68]. In order to give a measure of
how relevant is fulfilling algebra constraints, and in particular those directly coming
from Pauli principle, in the right panel of the same Fig. 4.1, we show COM results
for the double occupancy in comparison with the Roth and Hubbard I ones, and the
data obtained on finite size clusters by quantum Monte Carlo method [64].

Chemical Potential

In Fig. 4.2 (left panel), we show the particle density versus chemical potential 
 for
various temperatures. COM results are compared with the Bethe ansatz (BA) ones
[69]. The agreement is very good at low temperatures for densities smaller than 0:55.
In the half-filled chain, T � t is a relevant temperature as it signs the border between
T -regions dominated by either spin or charge correlations [71, 72]. The agreement
between COM and BA at T 
 t is very good for the whole range of filling. Of
course, at high temperatures, COM result reaches an excellent agreement with BA
since the effect of correlations is completely suppressed. In Fig. 4.2 (right panel),
we show COM results for the chemical potential as a function of the temperature
T and of the filling for U D 4 in comparison with numerical results obtained by
means of the Lanczos technique on a 4 � 4 cluster [70]. The agreement is rather
good in particular for low filling and high temperatures where the numerical results
are more reliable and the finite size of the cluster is less relevant.
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Double Occupancy

The double occupancy for the one-dimensional case is shown in Fig. 4.3 (left panel),
where COM is plotted versus Coulomb interaction U at T D 0 and for n D 1.
The results are compared with the exact ones by Bethe ansatz. The agreement with
BA is excellent. Such a good agreement is not reached by any other analytical
approach, neither by the Gutzwiller or the ladder and the self-consistent ladder
approximations (SCLA) [74–76]. In particular, these approaches fail to reproduce
the correct asymptotic behavior. As shown in Fig. 4.3 (left panel), the double
occupancy goes to zero as U !1: the electrons localize only at infinite U , where
the half-filled Hubbard chain is equivalent to the spin-1=2AF Heisenberg chain. The
double occupancy for the two-dimensional case is shown in Fig. 4.3 (right panel),
where COM solution is plotted versus Coulomb interaction U at T D 1=6 and for
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n D 1. The results are compared with the data of numerical simulation by qMC [73].
The agreement is excellent.

Internal energy

The internal energy at n D 1 and T D 0 is shown as a function of U in
Fig. 4.4 (left panel). The results obtained by means of the BA [77] and other
analytical approaches [74–76] are also reported. The agreement between COM
and BA is excellent. The SCLA [75] shows also a very good agreement for all
values of the coupling, but it does not have the correct behavior for an infinite
value of the Coulomb interaction. Moreover, both the Ladder (LA) [75] and the
Gutzwiller (GWA and GWF) [74] approximations go to zero at finite U , whereas
the renormalization group (RG) [76] has the right asymptotic behavior for U !1,
but it does not reproduce the non-interacting limit. The doping dependence of the
internal energy is shown in Fig. 4.4 (right panel) for U D 4. For comparison,
we also report the BA results [77] and LA and SCLA approaches [75, 76]. COM
agrees reasonably with the BA, reaching the best agreement at half-filling. The
ladder approximation [75] deviates more and more from the BA as approaching half-
filling; the SCLA [75] probes excellently at any doping. In Fig. 4.5 (left panel) we
present the internal energy versus temperature in the range 0 � T � 5 and U D 4

for several values of the filling. The results are compared with finite-temperature
Lanczos method (FTLM) data [70]. The agreement is quite remarkable in the entire
range of temperature and for all studied dopant concentrations. In Fig. 4.5 (right
panel), we report the energy per site as a function of the particle density for different
values of T and U and compare COM results with Lanczos data on a 4 � 4
lattice [70]. The agreement is very good on the whole range of filling and for all
values of temperature. It is worth noticing that at T D 0:1 the numerical data report
a strange kind of oscillation, not present in our results, that will be probably absent
in the bulk system. It is worth noticing that many more comparisons, all showing
a very good agreement, between COM results and numerical simulation data have
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been presented in [78, 79]. The overall picture emerging from such comparisons is
that COM generally gives a very accurate description of the behavior of the internal
energy as a function of the external parameters (T ,U , and n) over a very wide range
of their values.

Specific Heat

In Fig. 4.6 (left panel), we report the specific heat in 2D as a function of the
temperature for n D 0:5 and U D 4. The agreement with FTLM data [P. Prelovšek,
Private communication] is excellent in the whole range of temperatures. The
presence of two peaks in the specific heat has been attributed to the spin and charge
excitations. Our results show a double peak structure too. When U is weak the
two peaks overlap and there is no resolution. By increasing U the position of the
charge peak moves to higher temperatures and we distinguish the two contributions
as shown in Fig. 4.6 (right panel), whereC is plotted as a function of T at half-filling
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for several values of U . A peak appears at low temperatures when U is rather large
(U 
 8). This behavior qualitatively reproduces the qMC results [80]. It is also
relevant to observe the presence of a crossing point at a definite temperature. Such
crossing points have been experimentally observed in several materials and obtained
by means of analytical and numerical studies (see Sect. 3.4.2 of [5] for references
and a detailed discussion).

Entropy

In Fig. 4.7 (left panel), the entropy S is reported as a function of the filling at U D 4
and various values of temperature T . The numerical data are taken from [70]. The
agreement between COM and numerical results is rather good except for T D 0:2

at which quite anomalous oscillations appear in the Lanczos data. In Fig. 4.7 (right
panel), we report the behavior of the entropy as a function of the temperature in
comparison with some Lanczos data [70]. The agreement is very good over the
whole range of temperature and for any reported value of the filling, except for low
temperatures and low doping. The discrepancy can be related to the capability of
our data to describe the effects related to the exchange interaction which is more
and more important as low are the temperature and the doping.

4.3.1.2 Two-Pole Solution: Bosonic Sector

There is one more way to tackle the problem of computing the response functions:
the two-particle excitations can be considered as a new sector in the dynamics of the
system and we can choose also for them a suitable basis alike it has been done for
fermions. This approach will be described in this section. We take as bosonic basis
the following one [5, 42, 81]
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c˛.i/� c˛�.i/�
c.i/ : (4.53)

This basis is directly generated by the hierarchy of the equations of motion; this
will assure that the first four bosonic spectral moments have the correct functional
form [5, 8]. The field N.
/.i/ obeys the equation of motion

i
@

@t
N .
/.i/ D J .
/.i/ D

� �2dt�
.i/
�2dt l
.i/C U�
.i/

�
; (4.54)

where the higher-order bosonic operators are defined as �
.i/ D c�.i/�
�
˛.i/

� ��.i/�
c
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ijc.j; t/ D

P
jl ˛il˛ljc.j; t/. The current J .
/.i/ is projected on the

basis (4.53) and the residual current ıJ .
/ is neglected (truncated basis). The
normalization and energy matrices have the expressions
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where I .
/12 .k/ D 4Œ1 � ˛.k/�C ˛ and m
.
/
22 .k/ D �2dtIl
�
.k/ C UI�
�
.k/.

The parameter C˛ is the electronic correlation function C˛ D hc˛.i/c�.i/i. The
quantities Il
�
.k/ and I�
�
.k/ are defined as Il
�
.k/ D FhŒl
.i; t/; ��
.j; t/�i
and I�
�
.k/ D FhŒ�
.i; t/; ��
.j; t/�i. F stands for the Fourier transform operator.
Because of the non-locality of the bosonic composite field (4.53), the analytical form
of these quantities depends on the dimensionality of the system and it is necessary
to separately discuss the different cases [5].

The causal GC.
/.i; j / D hT ŒN .
/.i/N .
/�.j /�i and the correlation
C .
/.i; j / D hN.
/.i/N .
/�.j /i functions are given by
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/.k/ (4.56)
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The energy spectra !.
/n .k/ are given by !.
/n .k/ D .�/n
q
"
.
/
12 .k/"

.
/
21 .k/ and the

spectral functions �.n;
/.k/ have the following expression
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The determination of GC.
/.k; !/ and C .
/.k; !/ requires the knowledge of a
set of parameters: correlation functions of fermionic and bosonic operators and the
unknown � function. According to the self-consistent scheme given in Sect. 4.2.6,
these parameters are fixed by means of the following constraints: (1) all fermionic
correlators are calculated within the fermionic sector (see previous subsection); (2)
the conservation of the current; (3) the condition that the spin susceptibility be a
single value finite function; (4) the local algebra constraint hn
.i/n
.i/i D n C
2.2ı
;0 � 1/D, where D is the double occupancy. The unknown � .
/.k/ function

can be calculated either by assuming the ergodicity of the system (e.g., � .
/
11 .k/ D

ı
;0.2�=a/
d ı.d/.k/n2) or by opening a new bosonic sector (the pair sector) [see

[82]]. Once the self-consistent equations in the fermionic and in the bosonic sectors
have been solved, we can calculate the Green’s function and the charge and spin
susceptibilities �
.k; !/ D �FhRŒn
.i/n
.j /�i as well as the spin correlation
functions S.k/ D Fhn3.i; t/n3.j; t/i:
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Results and Comparisons

Spin Correlation Function

The behavior of S.k/, as a function of the momentum, is reported in Fig. 4.8 in
comparison with some numerical data [83] for different values of filling, Coulomb
repulsion, and temperature. We have a very good agreement with the numerical
results for sufficiently high values of the doping for all shown values of the Coulomb
repulsion. In the proximity of half-filling, the numerical data suffer from a saturation
of the antiferromagnetic correlation length [73] that becomes comparable with the
size of the cluster. For U D 4 and n D 0:8 (see Fig. 4.8 (left)), the correlation length
is slightly smaller than the size of the cluster: our solution results are capable to
describe this situation fairly well (the height of the peak at Q is exactly reproduced
and the momentum dependence is qualitatively correct, again practically exact along
the diagonal) except for the exact value of the numerical data along the main axes.
This is probably due again to an overestimation of the correlations by the numerical
analysis owing to the finite size of the cluster. For U D 8 and n D 1 (see Fig. 4.8
(right)), in order to reproduce the numerical data we need to increase the temperature
so as to decrease our value of the correlation length and match that of the numerical
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analysis, which is stuck at the saturation value due to the finiteness of the clusters.
The results of such a procedure are astonishing, we manage to exactly reproduce
the numerical data for any value of the momentum, and not only at Q, revealing the
correctness and power of our approach and the limitations of the numerical analysis.

Charge Correlation Function

N.k/ is reported in Fig. 4.9, as a function of the momentum, for various fillings
and temperatures and U D 8. We have again a very good agreement with quantum
Monte Carlo results [84] for all shown values of the external parameters and of the
momentum. The enhancement at k D Q D M for n D 0:5 can be interpreted as the
manifestation of a rather weak ordering of the charge with a checkerboard pattern.



4 The Composite Operator Method (COM) 129

0

100

200

300

400

500

COM
Exp

k

(k)

(3 /2, /2) ( , ) ( ,0)( ,0) (0,0)
0

5

10

15

20

25

30

COM
Exp

k

S(k)

(3 /2, /2) ( , ) ( ,0) (0,0) ( ,0)

Fig. 4.10 (Left) Spin spectrum !.k/ along the PD for n D 1, T D 10K � 0:003t and U D 8:8t

(t � 0:3 eV). (Right) The spin-wave intensity along the PD for n D 1, T D 295K � 0:08t and
U D 8:8t (t � 0:3 eV). Experimental data are taken from [85]

COM results manage to reproduce such double peak structure showing a capability
to quantitatively describe, also in a translational invariant phase, rather strong charge
correlations.

Comparison with the Experimental Data for La2CuO4

In Fig. 4.10 (left), we report the energy spectrum of the spin–spin propagator along
the principal directions and compare with the experimental data of [85] obtained
for La2CuO4 by means of inelastic magnetic neutron scattering. We have fixed the
temperature at T D 10K according to the experimental value; the value of the
transfer integral (t D 0:3 eV) and of the Coulomb repulsion (U D 8:8t) have
been chosen in order to fit the experimental points and they are within the ranges
(t D 0:3 ˙ 0:02 eV; U D 2:2 ˙ 0:4 eV) suggested in [85]. The agreement with
the experimental data is very good all over the momentum space except around
.�; �/. As a matter of fact, the experimental data refer to the antiferromagnetic
phase of the material [the experimental spectrum gets completely soft at .�; �/]
and our paramagnetic solution obviously cannot fully describe such behavior.
However, it is worth noting that the Hubbard model at half-filling presents so
strong antiferromagnetic correlations that they also show in the paramagnetic phase
through a quite deep minimum. The spin-wave intensity is reported in Fig. 4.10
(right) and again compared with the experimental data. The agreement is again
very good over all the momentum space and shows once more the capability of
the Hubbard model within our formulation to catch the physics of such a strongly
correlated system.

Incommensurability

In Fig. 4.11, we present the static spin susceptibility �s.k/ for various temperatures.
The choice for the parameters is U D 4, t 0 D �0:1 and the particle filling has
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been fixed as n D 0:97. t 0 is the next-nearest-hopping integral and the related COM
formulation (i.e., for the t–t 0–U Hubbard model) in the 2-pole approximation can
be found in [40, 46–48, 86–88, 100]. In (left) and (right), �s.k/ is reported along
the lines k D .�; k/ and k D .k; k/, respectively. In both cases by increasing the
temperature the incommensurate double-peak structure becomes a broad maximum
centered at .�; �/. The intensity over the whole Brillouin zone can be clearly
observed in Fig. 4.12. The important features of the data are: the overall square
symmetry of the scattering with the sides of the square parallel to the .k; k/ and
to the .k;�k/ lines and the accumulation of intensity near the corners of the
square. These features reproduce the experimental situation for La2�x(Ba,Sr)xCuO4

[89–95, 101]. In Fig. 4.13 (left panel), the incommensurability amplitude ı.x/ is
shown as a function of doping. For comparison we report the experimental data of
[92, 93, 95, 101]. The linear behavior of ı.x/, observed in the low-doping region,
agrees exceptionally well with the experimental data. One of the most striking
features of the results presented in Fig. 4.13 (left panel) is the resemblance between
the incommensurability amplitude ı.x/ and the critical temperature Tc. ı.x/ is
maximum in the region of optimal doping where Tc is maximum. It has already been
experimentally observed in [95] that there is a linear relation between ı.x/ and Tc up
to the optimal doping level x � 0:15. Our theoretical results confirm this behavior
and show that a close similarity between ı.x/ and Tc exists in the entire region
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Fig. 4.13 (Left) Incommensurability amplitude ı.x/ vs. doping x. COM results (solid line) refer
to U D 4 and T D 0:01. (Right) Experimental values of critical temperature Tc.x/ for
La2�xSrxCuO4, taken from Yamada et al. [95], Loram et al. [96], van Dover et al. [97], Shafer
et al. [98], and Torrance et al. [99], vs. calculated incommensurability amplitude ı.x/. The solid
line is a guide to the eyes

of doping. This can be seen in Fig. 4.13 (right panel) where experimental values
for Tc, taken from [95–99], are reported versus our calculated incommensurability
amplitude ı.x/.

4.3.2 The Residual Self-Energy ˙.k; !/

We now come to the problem of taking into account the residual self-energy˙.k; !/
appearing in the full propagator G.k; !/ once the truncated basis (4.30) has been
adopted. In particular, we have computed [29–36] ˙.k; !/ in the NCA by noting
that it was possible to exactly rewrite the residual current ıJ.i/ as the sums of
products of a bosonic operator, embodying either charge n.i/, spin n.i/ or pair
p.i/ D c".i/c#.i/ operator, and of a fermionic operator, which turned to be
either �.i/ or �.i/. Then, following the prescription of NCA, we expressed the
residual self-energy˙.k; !/ as sums of products of the charge-charge and spin-spin
propagators (we neglected pair-pair propagator) and of the fermionic propagator.
The bosonic propagators have been computed in the two-pole approximation as
described in the previous section.

The whole framework closes the self-consistency cycle reported in Fig. 4.14,
where G0 and B0 are the fermionic and bosonic (charge and spin) propagators
in the two-pole approximation (in parentheses are the unknown parameters they
depend on),˙n is the residual self-energy at the nth step (it depends on Gn and Bn,
which are equal to G0 and B0 at the startup), Gn is the full fermionic propagator
(it depends on the unknowns in round parentheses and on ˙n�1) and, finally, Bn is
the bosonic (charge and spin) propagators in the two-pole approximation at the nth
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Fig. 4.14 Self-consistency scheme to compute the fermionic full propagator G in terms of
the charge–charge and spin–spin two-pole propagator B and the residual self-energy ˙ in the
COM(2pCNCA(2p))

step (it depends on Gn, besides unknown parameters). The self-consistency cycle
terminates when the fermionic parameters 
, �, and p do not change; to get a six-
digit precision for the latter fermionic parameters, we usually need about ten cycles
(it varies very much with doping, temperature, and interaction strength) on a 3D
grid of 128 � 128 points in momentum space and 4096Matsubara frequencies.

In Fig. 4.15 (top panel), the spectral function A.k; !/ along the principal
directions (� D .0; 0/ ! S D .�=2; �=2/ ! M D .�; �/ ! X D .�; 0/ !
S D .�=2; �=2/! Y D .0; �/! � D .0; 0/) is reported for Coulomb repulsion
U D 8, filling n D 0:92, and temperature T D 0:02 in the frequency range
in the proximity of the chemical potential (! D 0). We can clearly see many
unconventional features: kinks in the dispersion along the main diagonal (� !M )
and the side of the Brillouin zone (M ! X; Y ) at energies comparable with
the effective exchange energy in the system (J D 4t2=U ); extended regions
in momentum where the imaginary part of the self-energy is strong enough to
selectively suppress the spectral weight; almost doubling of the Brillouin zone
according to the rather high intensity of the not-so-short-range antiferromagnetic
correlations; formation of a hole pocket centred along the main diagonal (� !
M ); formation of almost-closed electron pockets centred at X D .�; 0/ and
Y D .0; �/; high-intensity of the spectral weight at X D .�; 0/ and Y D
.0; �/ (van Hove points) although well below the Fermi surface; no-flat dispersion
along the antidiagonal (X ! Y ) generated dynamically (t 0 is not present in the
original Hamiltonian); strong suppression of the spectral weight in the proximity
of M D .�; �/ (again, due to the rather high intensity of the not-so-short-range
antiferromagnetic correlations) which will lead to the appearance of a pseudogap.
This scenario is just the one claimed for high-Tc cuprates in the underdoped region
by ARPES and many other experimental techniques.
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Fig. 4.15 U D 8, n D 0:92, and T D 0:02. (Top) Spectral function A.k; !/ along the
principal directions. (Bottom left) Spectral function at the chemical potential A.k; ! D 0/ as a
function of momentum k. (Bottom right) Imaginary part of the self-energy at the chemical potential
˙ 00.k; ! D 0/ as a function of temperature squared T 2 at two momenta: S D .�=2; �=2/ and S ,
where the main diagonal of Brillouin zone touches the phantom portion of the hole pocket

In Fig. 4.15 (bottom left panel), the spectral function at the chemical potential
A.k; ! D 0/ as a function of momentum k is reported for Coulomb repulsion
U D 8, filling n D 0:92, and temperature T D 0:02. The hole pocket and the
electron quasipocket are now clearly visible. The Fermi surface is deconstructed:
there is coexistence of a small Fermi surface (the hole pocket) and of a large one
partially solving the hoary dichotomy signalled by main experimental techniques;
the actual Fermi surface, the locus formed by the momenta where the spectral
weight reaches the highest intensity (this is also the only Fermi surface detectable
by ARPES), is open (it is just an arc – half of the hole pocket) in contrast to what
Fermi liquid picture would require; it is just the imaginary part of the residual self-
energy to eat up a portion of the hole pocket and make this latter just a phantom arc.
The residual self-energy results stronger and stronger close to M D .�; �/ as one
should expect for high-intensity not-so-short-range antiferromagnetic correlations.

In Fig. 4.15 (bottom right panel), the imaginary part of the self-energy at the
chemical potential ˙ 00.k; ! D 0/ as a function of the temperature squared T 2 at
two momenta: S D .�=2; �=2/ and S . The latter corresponds to the point where
the main diagonal (� ! M ) touches the phantom arc of the hole pocket; it is
clearly visible in Fig. 4.15 both (top panel) and (bottom left panel). It is striking
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the qualitative difference in the dependence of the imaginary part of the residual
self-energy on T 2 in the two points: S lives in an ordinary Fermi liquid, where
the dependence on temperature is exactly quadratic; S belongs to a portion of the
system interested to a non-Fermi liquid description according to its dependence
far from quadratic. Also the dependence of frequency (not shown) turns out to
be almost perfectly quadratic in S and with strong linear components in S . This
unconventional behavior can be at the basis of the anomalous features shown by
resistivity in these materials.

4.3.3 Four-Pole Solution

In the previous section, we have shown how the two-pole solution can be improved
by taking into account residual dynamical corrections. However, as discussed in
Sect. 4.2.5, the two-pole solution can be also improved by enlarging the basis
through the addition of higher-order composite operators. This aspect is illustrated
in this section.

As shown in Sect. 4.3.1.1, the higher order field �.i/ appears in the equations
of motion of �.i/ and �.i/. The effect of this field was approximately taken into
account by projecting it on the basis (4.30). Here we promote this field to the rank of
new composite operator. Actually, we divide �.i/ into two operators�.i/ D �s.i/C
�s.i/, similarly to what we have done for the electronic field [c.i/ D �.i/C �.i/],
defined as

�s.i/ D 1

2
�
n
.i/�

˛.i/C ��˛.i/c.i/c.i/

�s.i/ D 1

2
�
n
.i/�

˛.i/C ��˛.i/c.i/c.i/ (4.62)

and take as a new basis

 .i/ D

0
BB@

�.i/

�.i/

�s.i/

�s.i/

1
CCA : (4.63)

The reason for such a choice is that this basis is the fermionic closed basis for the
Hubbard model on two sites [9]. In such a case, �s.i/ and �s.i/ are eigenoperators
of the Hamiltonian with eigenenergies given by E3.k/ D �
 C t˛.k/ � JU and
E4.k/ D �
 C t˛.k/ C U C JU . It is worth noting that the energy term JU D
Œ
p
U 2 C 16t2 � U �=2 returns, in the limit U=t � 1, the virtual exchange energy

J D 4t2=U .
COM, as formulated in Sect. 4.2, requires as a first step the calculation of the

normalization I and energy " matrices (4 � 4 matrices). The detailed expression
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of the matrix I is reported in [17]. In order to effectively perform calculations, the
elements of I which contain three-site correlation functions of the form

hA˛.i/B˛.i/C.i/D.i/i D 1

4
h.A.i/B.i//˛C.i/D.i/i

C
X
j¤k

˛ij˛ikhA.j/B.k/C.i/D.i/i (4.64)

have been computed through the following decoupling procedure: (1) the first term
is reducible into two-site correlation functions, which can be directly evaluated in
terms of the propagators under analysis; (2) the second one has been decoupled in
terms of two-site correlation functions. This procedure preserves the particle–hole
symmetry enjoined by the Hamiltonian.

The energy matrix can be straightforwardly calculated by means of the anticom-
muting algebra given in Table 4.1. However, due to the complexity of the equations
of motion of the fields �s.i/ and �s.i/, a direct calculation will lead to the appearance
of an enormous number of unknown correlation functions. In order to determine all
correlation functions, we would then be forced to use some uncontrolled decoupling
procedure and we would completely lose every control over the approximation
procedure. Hence, we have opted for a controlled approximation at the level
of equations of motion by neglecting irreducible three-site operators and paying
attention to evaluating exactly all one- and two-site components. By means of this
approximation procedure, the matrix " can be easily computed. Then, we have all
ingredients, following the procedure reported in Sects. 4.2.6 and 4.3.1, to calculate
all single-particle and thermodynamic properties.

Results and Comparisons

In Fig. 4.16, we provide a detailed comparison of the band structure obtained by
the present formulation with QMC results [102]. As can be easily seen, we have a
good agreement with the QMC data, especially for the low-energy band around
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Fig. 4.16 The dispersion relation at U=t D 8, T=t D 0:5 and (left) n D 0:75 and (right) 0:94.
The two-pole solution (dashed line) and QMC data (circle) of [102] are also reported
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Fig. 4.17 Internal energyE and specific heatC per site atU=t D 8 and (left) n D 0:75 and (right)
0:90. Data from finite-temperature Lanczos [70] and QMC [80, 103] are provided for comparison

the Fermi level. Internal energy E and specific heat C per site at U=t D 8

and n D 0:75 and 0:90 are reported in Fig. 4.17. Data from finite-temperature
Lanczos [70] and QMC [80, 103] are provided for comparison. As regards the
internal energy, the agreement with the Lanczos data is excellent except for the
low temperature region. As regards the specific heat, we observe a sharp peak
around T=t D 0:3 and a fairly broad peak in the higher temperature region
T=t D 1. The two-peak structure is more pronounced for U=t D 8, but not so
much for U=t D 4 (not shown). This tendency is also observed in several numerical
simulations [70, 80, 103, 104]. Usually, the sharp peak at lower temperatures and
the broad peak at higher temperatures are interpreted as consequences of spin and
charge fluctuations related to the energy scales of J and U , respectively. The main
difference between our results and numerical ones regards the height of the peak in
the specific heat around T=t D 0:3 that comes from the decrease in the internal
energy. This is an indication of well-established spin ordering which cannot be
correctly evaluated on a small cluster. Numerical simulation cannot describe spin
and charge ordering in the case that the correlation lengths exceed the cluster size.
On the other hand, in our formulation, there is a tendency to have too pronounced
spin and charge correlations.

4.3.4 Superconducting Solution

The various solutions of the Hubbard model presented up to now refer to a
paramagnetic homogeneous state. However, the same formulation can be easily
applied to states with completely different symmetry properties. Ferromagnetic,
antiferromagnetic, and superconducting solutions of the model have been reported
in [5]. As an example, we here summarize the superconducting solution of the model
in the d -wave channel.

We consider the Nambu representation and introduce the four-vector composite
field [5, 105, 106]
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 .i/ D

0
BBB@

�".i/
�".i/
�
�

#.i/
�
�

#.i/

1
CCCA : (4.65)

At a first level of approximation, the current of this operator is projected
on the basis and the residual current is neglected. The effects of the residual
current have also been analyzed, but they will not be presented here. Although
the model admits various superconducting phases with different symmetries of
the order parameter (see [5]), on the basis of experimental evidence for high Tc

superconductors, we restrict the analysis to singlet pairing and d -wave symmetry for
a two-dimensional lattice. Then, we impose as boundary conditions h ".i/ #.i/i D
0 and h ".i/ ˛#.i/i D 0. Furthermore, we assume translational and spin rotational
invariance. Accordingly, the normalization and m matrices have the expressions

I.k/ D

0
BB@

I11 0 0 0

0 I22 0 0

0 0 I11 0

0 0 0 I22

1
CCA

I11 D 1 � n
2

I22 D n
2

(4.66)

m D
�
m1 m2

m2 �m1

�
m1 D

�
m11 m12

m12 m22

�
m2 D m13

�
1 �1
�1 1

�
; (4.67)

with

m11.k/ D �
I11 � 4t�� 4t˛.k/.1 � nC p/ (4.68)

m12.k/ D 4t�C 4t˛.k/.p � I22/ (4.69)

m13.k/ D 4t.k/f (4.70)

m22.k/ D .U � 
/I22 � 4t� � 4t˛.k/p (4.71)

and .k/ D Œcos.kxa/ � cos.kya/�=2. The parameters � and p have been defined
in Sect. 4.3.1.1, the parameter f plays the role of order parameter and is defined
as f D hc�#.i/c#.i/Œc#.i/c".i/� i C hŒc�".i/c".i/� c#.i/c".i/i. The retarded and
correlation functions, which are now 4 � 4 matrices containing the anomalous
components, are then known functions of the internal parameters 
, �, p, and f .
The self-consistent determination of these parameters is performed by means of the
equations given in Sect. 4.3.1.1 and by using the equations of motion for the latter.

Results and Comparisons

In Fig. 4.18, we report the critical temperature Tc as a function of the doping ı
for U D 4t and t � 0:17 eV. The experimental data for La2�ıSrıCuO4 are taken
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Fig. 4.18 Critical temperature Tc as a function of the doping ı for U D 4t and t � 0:17 eV.
Experimental data for La2�ıSrıCuO4 from Yamada et al. [95], Loram et al. [96], van Dover et al.
[97], Shafer et al. [98] and Torrance et al. [99]. Phenomenological curve from Presland et al. [107]

from Yamada et al. [95], Loram et al. [96], van Dover et al. [97], Shafer et al.
[98] and Torrance et al. [99]. The phenomenological curve suggested by Presland
et al. [107] is also reported. The agreement is really very good: the position and
presence of endpoints (critical fillings at zero temperature), the position of the peak
(critical filling at highest temperature) and the overall shape. This clearly shows that,
together with the very remarkable capability to describe the very unconventional
physics of the underdoped region (see Sect. 4.3.2), COM manages to catch many
relevant aspects of cuprate physics.

4.4 Conclusions and Outlook

In the last decades, the discovery of many families of materials with unconven-
tional properties and anomalous behaviors has been calling for the developing of
new theoretical methods to properly take into account electronic correlations in
many-body systems. Understanding and describing such systems, featuring both
competition and interplay among all degrees of freedom involved (orbital, spin,
lattice, etc.), is one of the most challenging open issues in modern condensed
matter theory. Among the various methods reported in this volume, the COM,
described in detail in this chapter, has the peculiar characteristic to endorse,
since its foundations, the systematic emergence, in any strongly correlated system,
of composite operators obeying non-canonical algebras. COM is designed to
optimally deal with the unusual features of composite operators and to exploit
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algebra constraints and other relevant symmetries in order to properly compute the
unconventional properties of the system under analysis. The formalism, presented
in a systematic way together with its internals in Sect. 4.2, is based on two main
concepts: the use of the propagators of the emerging composite operators as proper
building blocks of a more efficient perturbation scheme and the use of the constraints
dictated by the non-canonical algebra closed by the emerging composite operators
to fix the representation of the Green’s functions and keep the algebraic and
symmetry properties of the Hamiltonian under study. Although the method has
been used to study a great variety of models, we have preferred just to present
its application to the Hubbard model. The formulation is illustrated in detail in
Sect. 4.3 by systematically going through a well-defined chain of increasing levels
of approximations, and reporting, at each stage, comparisons with the results of
exact treatments and numerical techniques. Comparisons with experimental data
from high-Tc cuprates have been also reported. It clearly emerges that the COM is a
quite powerful and general theoretical tool to study any kind of strongly correlated
Hamiltonian system (lattice, impurity, spin, ...) and the actual materials described
by them.

COM has already been applied to a variety of Hamiltonian models (see
Sect. 4.2.7 for an exhaustive list). However, many interesting problems are still
on the carpet, and many other still to come, and much work remains to be done.
What are the advantages of COM? For the study of strongly correlated systems,
it allows us to exploit all information, clues and hints one has about the specific
targeted system, still retaining a clear-cut path of increasing levels of complexity and
deepness, an intrinsic high tunability and relatively simple internals. For mechanical
statistical problems, where exact solutions can be addressed, the use of COM is
very promising, especially for dimensions higher than one, where transfer matrix
methods are not easily applicable. Accordingly, we think that COM should be
considered as a first attempt to construct a modern theory of strongly correlated
systems, not heavily relying on numerics (as DMFT and SFA and derivatives are),
beyond both traditional Fermi liquid theory and electronic perturbation schemes.
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Chapter 5
LDA+GTB Method for Band Structure
Calculations in the Strongly Correlated
Materials

Sergey G. Ovchinnikov, Vladimir A. Gavrichkov, Maxim M. Korshunov,
and Elena I. Shneyder

Abstract We present the multielectron LDA+GTB (local density approximation
plus generalized tight-binding) approach to the electronic structure calculations for
the Mott insulators. This method is a straightforward generalization of the Hubbard
perturbation theory which starts from the atomic limit. All local interactions within
the unit cell are treated by the exact diagonalization of the multiband p � d
Hamiltonian with the parameters calculated within LDA. Intercell Hoppings and
interactions between the unit cells are considered as perturbation within the Hubbard
X -operators representation. We also discuss the application of the LDA+GTB
method to cuprates, manganites, and cobaltites.
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5.1 Introduction

One of the most attractive feature of the condensed matter physics is the ability
to explain and even predict properties of the materials which comprise our world.
Significant leap in this direction was made in mid 1960 when Hohenberg et al.
[1, 2] formulated a density functional theory (DFT). Because its starting point
is the Shrödinger equation for the particular atomic arrangement and orbital and
spin configurations, this theory is often referred to as the “first principles” or the
ab initio calculations. Augmented with the local density approximation (LDA) or
the generalized gradient approximation (GGA) for the initially unknown quantity,
exchange-correlation energy, DFT provides quantitative description of the ground
state energy and the band structure of various atoms, molecules, and crystalline
solids (see e.g., [3]).

Despite its success for s and p atoms in solids, LDA failed to describe transition
metal oxides with partially filled 3d -orbitals. The most pronounced failure is that
LDA predicts La2CuO4 to be a metal whereas experimentally it is an insulator.
The root of the problem is the unscreened on-site Coulomb interaction (Hubbard
repulsion) [4]. In a single-band system on the mean-field level if Hubbard repulsion
U is larger than the bandwidth W , it splits the band into two Hubbard subbands
with a gap / U . The spectral weight of a quasiparticle is redistributed between
these subbands. At a half-filling the Fermi level is inside the gap and the system is
an insulator. In a multiorbital system, along with the Hubbard repulsion other local
interactions like the Hund’s exchange JH and the interorbital Hubbard repulsion U 0
are present and provide a rich set of physical properties. The opening of the Hubbard
gap and moreover the major role played by the local interactions near the half-filling
are beyond the scope of LDA and GGA.

There are several extensions to LDA which includes or simulates the effects
of the on-site interactions. One of them is LDA+U [5] and another one is
SIC–LSDA (self-interaction–corrected local spin density approximation) [6]. Both
methods consider local interactions in the Hartree–Fock sense and result in the
antiferromagnetic insulator as the ground state for La2CuO4 contrary to LDA, but
the origin of the insulating gap is incorrect. In both LDA+U and SIC–LSDA, it is
formed by the local single-electron states splitted by the spin or orbital polarization.
Therefore, the paramagnetic phase above the Néel temperature TN of the undoped
La2CuO4 will be metallic in spite of strong correlation regime U � W . There
is one more significant drawback in these approximations, namely, they disregard
the redistribution of the spectral weight between the Hubbard subbands. The latter
effect is incorporated in a different approach to ab initio calculations for strongly
correlated systems – LDA+DMFT (LDA+dynamical mean-field theory) [7–10]. The
method is based on the self-consistent procedure where the LDA band structure is
used to calculate the electron self-energy in DMFT. DMFT utilizes the fact that
in the infinite dimensional limit of the Hubbard model, D ! 1, the self-energy
is momentum independent, ˙.k; !/ ! ˙.!/ [11–13]. The remaining frequency
dependence is exact in D ! 1 limit and carries very important information
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about dynamical correlations and Mott–Hubbard transition. On the other hand, the
spatial correlations become crucial in low-dimensional systems like layered high-
Tc cuprates. That is why the correct band dispersion and spectral intensities for
these systems cannot be obtained within LDA+DMFT. The natural extension of
this method, LDA+cluster or cellular DMFT [14–17], and SDFT (spectral density
functional theory) [18–22] provides momentum dependent self-energy and thus
allow for the nonlocal correlations.

The LDA+GTB method is not just “another one” approach to study the Hubbard
model. From the very beginning, the generalized tight-binding (GTB) method has
been suggested to extend the microscopic band structure calculations to take the
strong electronic correlations (SECs) into account in the Mott–Hubbard insulators
like the transition metal oxides [23]. Similar to conventional tight-binding (TB)
approach we start with a particular local electron states (with all multiorbital effects,
symmetry, and chemistry) and then by a Fourier transform move to the momentum
space and obtain a band structure. Because of SEC we cannot use free electron
local states, our local fermion in a d -orbital system is a quasiparticle given by the
excitations between multielectron dn and dn˙1 terms contrary to the conventional
TB. In other words, GTB is the strongly correlated version of the TB method. The
first computer codes and successful application of GTB have been developed for
cuprates [24]. That version used the multiband p � d model for La2CuO4 [25] with
a lot of empirical parameters in the Hamiltonian. To create the ab initio approach,
the hybrid LDA+GTB method has been developed in a combined effort of teams
from Krasnoyarsk and Yekaterinburg [26]. Afterward, similar ideas have been used
to study the GTB band structure of manganites La1�xCaxMnO3 [27] and cobaltites
LaCoO3 [28].

The LDA+GTB may be considered as the straightforward development of the
Hubbard atomic representation approach [4] to real materials like 3d metal oxides.
Indeed, the GTB is a specific version of cluster perturbation theory (CPT) in the
HubbardX -operators representation [29].

The rest of this chapter is organized as follows. In Sect. 5.2 we discuss the exact
Lehmann representation for the electronic Green function that gives us the answer
what is an electron in a SEC system. In Sect. 5.3 we provide the main ideas and
technical steps of the LDA+GTB. In Sect. 5.4 we consider different approximations
to solve the Dyson equation in the X -representation. In Sect. 5.5 we discuss
the LDA+GTB band structure of La2�xSrxCuO4 in long-range antiferromagnetic
(AFM) and short-range AFM spin-liquid regions. Sections 5.6 and 5.7 are devoted
to manganites and cobaltates, respectively. Section 5.8 is the conclusion.

5.2 Quasiparticle Definition of an Electron From
the Lehmann Representation

Before discussing how to calculate reliably the electronic structure in SEC materials
the more fundamental question has to be answered: What is an electron in SEC
system? Let us clarify this question first. Due to the strong interactions the free
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electrons are so heavily renormalized, so that the new objects are unlikely to be
called “the electrons.” Still, we would like to generate the output of the theory in
terms of the Green function that is the one-particle property, the “electron Green
function.” The goal is to find the electron Green function or, in other words, to
define the electron.

There are a lot of speculations in the literature about spinless fermions and
composite particles that are very often based on the exact solution of the one-
dimensional Hubbard model. In two and higher dimensions different approaches
result in the conclusion that the electron in SEC system is a sum of quasiparticles
(QPs) with a charge e, spin 1=2, and the renormalized spectral weight [30, 31]. We
use the exact Lehmann representation to define the electron in SEC system [32]. At
T D 0 the electron Green function can be written as

G�.k; !/ D
X
m



Am.k; !/

! �˝C
m

C Bm.k; !/

! �˝�
m

�
; (5.1)

where˝C
m D Em.N C 1/�E0.N /�
, ˝�

m D E0.N /�Em.N � 1/�
, 
 is the
chemical potential, and numerators are equal to

Am .k; !/ D jh0;N jak� jm;N C 1ij2 ;
Bm.k; !/ D jhm;N � 1j ak� j0;N ij2 :

Here, jm;N i is the mth eigenstate of the N electron system, H jm;N i D
Em jm;N i.

Since each single-pole contribution on the right-hand side of (5.1) corresponds to
some QP, we interpret the Lehmann representation in the following way: electron is
the linear superposition of QPs with the energies ˝C

m (˝�
m ) for electron addition

(removal) and with the spectral weights Am (Bm). At finite temperatures, the
Lehmann representation determines the QP as the excitation between two arbitrary
jm;N C 1i and jn;N i terms with the energy ˝mn D Em � En and a temperature-
dependent spectral weight [32]. This definition is very clear. Unfortunately it
cannot be used straightforwardly because the exact eigenstates jm;N i and the
eigenenergies Em are unknown. Later we will show that the GTB method is the
perturbative realization of the Lehmann representation.

We would like to emphasize two important points. First, it is clear that the Landau
Fermi liquid QP is a specific particular case of (5.1) with only one QP close to the
Fermi level. Second, for the free electron with energy "0, all QP energies are equal
to ˝C

m D ˝�
m D "0 � 
.

5.3 The Main Steps of the LDA+GTB Method

As any other CPT approach, the GTB method starts with the exact diagonalization
(ED) of the intracell part (Hc) of the multielectron Hamiltonian and treats the
intercell part (Hcc) by a perturbation theory. Thus we make a realization of the
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as perturbation

I. LDA

− 1

…
…

… 

+ 1

II. ED

III. Effective multiband 
Hubbard model: 

hoppings

Fig. 5.1 Schematic representation of three LDA+GTB steps for the CuO2 layer as an example.
First step consists of the band structure calculation via LDA and extraction of parameters for the
multiorbital Hamiltonian, then the subdivision of the Hamiltonian into intra- and inter cell parts,
Hc and Hcc , respectively. Unit cell is the CuO6 cluster = CuO4 + two apical oxygens. Second step
is the exact diagonalization of Hc which results in a set of energy levels. Eigenstates of Hc are
used to construct a multiband Hubbard model in the X-representation with hoppings (t , t 0, etc.)
between clusters from Hcc . After that, the perturbation theory for X-operators is used to obtain the
electron Green function

Lehmann representation inside one unit cell with all local QP energies and spectral
weights calculated via ED. The total procedure consists of the following steps [26],
illustrated in Fig. 5.1:

Step I: LDA. Calculation of the LDA band structure, construction of Wannier
functions with the given symmetry, and computation of the one- and two-electron
matrix elements of the TB Hamiltonian with the local and nearest-neighbor
Coulomb interactions.

Step II: ED. Separation of the total Hamiltonian H into the intra- and inter cell
parts,H D Hc CHcc , whereHc represents the sum of the orthogonal unit cells,
Hc DP

f

Hf . ED of a single unit cell term,Hf , and construction of the Hubbard

X -operators Xpq

f D jpi hqj using the complete orthogonal set of eigenstates
fjpig of Hf .

Step III: Perturbation theory. Within the X -representation, local interactions
are diagonal and all intercell hoppings and long-range Coulomb interaction
terms have the bilinear form in theX -operators. Various perturbation approaches
known for the Hubbard model in the X -representation can be used. The most
general one includes treatment within the generalized Dyson equation obtained
by the diagram technique [29].

Below we discuss each step in detail.
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5.3.1 Step I: LDA

Let us assume that LDA provides us a set of Bloch functions j��ki (� is the
band index) and band energies "�.k/. For example, LDA band structure calculation
for La2CuO4 and Nd2CuO4 was done within the TB-LMTO-ASA (linear muffin-
tin orbitals using atomic sphere approximation in the tight-binding) method [33].
Using the Wannier functions (WFs) formalism [34], we obtain hopping integrals
of the TB model via a projection procedure [26]. A number and a symmetry
of chosen WFs are determined by the energy window that we are interested
in. For example, it is widely believed that the low-energy physics of cuprates is
captured by the three-band model [35,36] which includes bonding of Cu-dx2�y2 and
O-px;y orbitals. Nevertheless if we are interested in any physics involving apical
oxygen we have to add pz oxygen and dz2 copper orbital that results in the five
band p � d model [25]. If one wants to study UPS (ultraviolet photoelectron
spectroscopy) or XPS (X-ray photoelectron spectroscopy), then all 3d orbitals have
to be included. If we restrict ourself to the five band model, it allows us to consider
ARPES (angle-resolved photoemission spectroscopy) with the binding energy up to
2 eV, RIXS (resonant inelastic X-ray spectroscopy), and other phenomena including
polarization dependence. For other transition metal oxides, the set of essential
Wannier functions is chosen separately. The projection procedure with the WFs
(see details in [26, 34]) gives the single-electron parameters, "� and T ��

0

fg , of the TB
Hamiltonian:

H D
X
f;�;�

.�� � 
/nf �� C
X
f¤g

X
�;�0 ;�

T ��
0

fg c
�

f ��cg�0�

C 1
2

X
f;g;�;�0

X
�1;�2;�3;�4

V ��0

fg c
�

f ��1
cf ��3c

�

g�0�2
cg�0�4 ; (5.2)

where cf �� is the annihilation operator in the Wannier representation of the hole

at the site f on the orbital � and with the spin � , nf �� D c
�

f ��cf �� . The values

of Coulomb parameters V ��0

fg are obtained by LDA supercell calculations [37]. For
Cu in La2CuO4, the Hubbard parameter U and the Hund’s exchange J are equal to
10 eV and 1 eV, respectively [38].

Another possible approach to calculation of the matrix elements in (5.2) from
LDA is to use the NMTO method [39]. For example, the NMTO orbitals have been
obtained for the p � d model in Nd2�xCexCuO4 [40]; the Fourier transform of the
NMTO Hamiltonian results in the parameters "� and T ��

0

fg of the TB Hamiltonian.

5.3.2 Step II: Exact Diagonalization

In transition metal (Me) oxides, the unit cell may be chosen as the MeOn (n D
6; 5; 4) cluster and usually there is a common oxygen shared by two adjacent
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cells. All other ions provide the electroneutrality and contribute to the high-energy
electronic structure. In the low-energy sector, they are inactive. Before ED calcula-
tions we should solve the problem of nonorthogonality of the oxygen molecular
orbitals of adjacent cells. For the �-bonding of the 3d metal eg electrons and
a1g , b1g oxygen orbitals this problem is solved explicitly using the diagonalization
in k-space [41]. We have used the same procedure for the t2g orbitals. Such
orthogonalization results in the renormalization of the hopping and Coulomb matrix
elements in (5.2).

The effect of renormalization is very important, so we would like to discuss it.
Due to the common oxygen in the two unit cells, the MOLCAO (molecular orbital
as a liner combination of atomic orbitals) constructed from atomic px, py , and pz

�-bonding orbitals are nonorthogonal. The diagonalization of the TB Hamiltonian
in k-space [41] results in the following linear combination

pk� D
X



c�	.k/ Qpk	; .� D x; y; z/; (5.3)

with the Fourier transforms of Qpf 	 (the so-called oxygen group orbitals) that are
orthogonal in different cells. In the coordinate space, the group orbital Qpf 	 is a
Wannier-like oxygen wave function centered at the 3d -metal site Rf ; it spreads
over several neighboring sites. Thus, the renormalizations of the p � d and p � p
hoppings are given by

P
k

T ��
0

pd p
�

k�dk�0 DP
k;	

T ��
0

pd c
�
�	.k/ Qp�k	dk�0 DP

f;g

T 	�
0

fg Qp�f	dg�0 ;

P
k

T ��pp p
�

k�pk�0 D P
k;	;	0

T ��
0

pp c
�
�	.k/c�0	0.k/ Qp�k	pk	0 D P

f;g;	;	0

T 		
0

fg Qp�f 	 Qpk	0 :

(5.4)

The renormalized p � d hopping parameters T 	�
0

fg decrease with distance R D
Rf �Rg and are non-zero for the next nearest neighbors even if the initial hopping
parameters, Tpd and Tpp, are taken to be nonzero only for the nearest neighbors.
For cuprates as an example, these parameters were calculated up to the sixth
coordination sphere and are nonvanishing until the third coordination sphere [24].
It is the reason why the long-range hopping parameters t 0 and t 00 appear and are
necessary in the t�t 0�t 00�J model for cuprates. Similarly, the intercell (long-range,
but restricted to several nearest neighbors) Coulomb interaction with participation
of oxygen hole is also strongly distance-dependent. The p � d and p � p Coulomb
interactions are equal to

H int
pd D

P
f;i;j

P
	;�;�;� 0

Vpd˚f ij ndf �� Qp�i	� 0 Qpj	� 0 ;

H int
pp D

P
f;g;i;j

P
	

Up�fgijp
�

f 	"pg	"p�i	#pj	#:
(5.5)
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The intracell p � d coefficient is ˚000 D 0:918, while the intercell ones are ˚001 D
�0:13 and˚002 D �0:02 [41]. The p�p coefficients are˚0000 D 0:21 and˚0001 D
�0:03. Thus, the Coulomb interaction is mainly localized inside the one unit cell in
the HamiltonianHf .

Later we will work with the renormalized parameters. After the orthogonal-
ization, the Hamiltonian (5.2), can be written as a sum of intracell and intercell
contributions

H D Hc CHcc; Hc D
X
f

Hf ; Hcc D
X
f;g

Hfg (5.6)

with orthogonal states in different cells described byHf .
The ED of Hf gives us the set of eigenstates jpi D ˇ̌np; ip

˛
with the energy Ep .

Here, np is the number of electrons per unit cell and ip denotes all other quantum
numbers like spin, orbital moment, etc. For cuprates, the hole language is more
convenient, so n D 0 means the hole vacuum (d10p6 configuration), n D 1 is given
by the hole molecular orbitals (d9p6C d10p5 configurations), n D 2 represents the
two-hole orbitals (d9p5 C d10p4 C d8p6); the Zhang–Rice singlet is the important
but not exclusive contribution to the n D 2 ground state. For manganites, n D 5; 4; 3
electron configurations are important and are given by the high-spin terms d5p6

(S D 5=2), d4p6Cd5p5 (S D 2), d3p6C d4p5 (S D 3=2), correspondingly [27].
For cobaltates, n D 7; 6; 5 electron configurations are involved [28]. We should
emphasize that we perform the ED with all possible excited eigenstates, not the
Lancoz procedure.

How to determine which configurations are relevant? They are found from the
local electroneutrality. Let us consider LaMeO3 with Me being a 3d element as
an example. The ionic valency is La3CMe3CO�2

3 , thus the 3d cation is Me3C
(d4 for Mn3C and d6 for Co3C). Due to the covalency, the ground state of the
unit cell is given by the hybridization of dnp6 C dnC1p5 configurations (in the
spectroscopic notations dn C dnC1L, where L means a ligand hole [42]. Electron
addition process results in dnC1 subspace of the Hilbert space with a mixture of
dnC1 C dnC2L configuration. Similarly, electron removal results in dn�1 subspace
with a dn�1 C dnL C dnC1L2 mixture. Thus for stoichiometric compound, the
three relevant subspaces, dn�1, dn, and dnC1, of the Hilbert space are shown in
Fig. 5.2. For each subspace, the ED provides a set of multielectron states jn; ii with
an energy Ei.n/, i D 0; 1; 2; : : : ; Nn. Within this set of multielectron terms, the
charge-neutral Bose-type excitations with the energy!i D Ei.n/�E0.n/ are shown
by the vertical wavy lines. Electron addition excitations (local Fermi-type QP) have
energies ˝c;i D Ei.n C 1/ � E0.n/. Here, the index “c” means that QPs form
the empty conductivity band. Similarly, the valence band is formed by the electron
removal Fermi-type QPs with energies ˝v;i D E0.n/ � Ei.n � 1/ (a hole creation
with an energyEi.n�1/�E0.n/ is shown in Fig. 5.2). This multielectron language
has been used in the spectroscopy, see for example [42]. The proper mathematical
tool to study both the local QP and their intercell hoppings is given by the Hubbard
X -operators.
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n − 1 n n + 1
E0(n − 1)

E1(n − 1)

E2(n − 1)

EN 1 (n − 1)

E0(n + 1 )

E1(n + 1 )

E2(n + 1 )

EN 3 (n + 1 )

Ων, 0 Ωc, 0

E0(n )

E1(n )

E2(n )

EN 2 (n )

Ων, 1 Ωc, 1

Ων, 2 Ωc, 2

Fig. 5.2 The occupied ground term E0.n/, marked by the cross, and excited terms Ei.n/ of the
dn configuration as well as electron removal [addition] dn�1 [dnC1] sectors of the Hilbert space
with energies Ei.n � 1/ [Ei .n C 1/]. Vertical wavy lines show local Bose-type excitons. Solid
lines with arrows show electron removal (index 	) and electron addition (index c) Fermi-type
excitations. Dashed line shows the virtual Fermi-type excitation from E0.nC 1/ to E1.n/

One more question to discuss is why we do not consider the La electrons. It
is clear that due to the high stability of the La3C closed shell, the excitations
involving La electrons will have a very high energy and are irrelevant in the low-
energy physics. Thus for LaMeO3 we take the MeO6 cluster as the unit cell. The
situation may change if instead of La we will have another transition or rare-earth
element. How to treat doped or nonstoichiometric compounds will be discussed later
in Sect. 5.4.2.

The set of eigenstates fjpig is the complete orthonormalized one and we use it
to construct the Hubbard X -operators,

X
pq

f D jpi hqj (5.7)

with algebra given by the multiplication rule

X
pq

f X
rs
f D ıqrXps

f ; (5.8)

and by the completeness condition

X
p

X
pp

f D 1: (5.9)

The last two equations reflect the fact that X -operators are the projective
operators; they project the state jqi onto jpi. This is the Hubbard definition
[4] except for one important difference: Hubbard used the intraatomic states
fjpi D j0i ; j"i ; j#i ; j"#ig, while we use the intracell statesfjpig. In the Hubbard
model,Xpq is the 4� 4matrix. In our approach, it is theN �N matrix, whereN is
given by the total number of the cell eigenstates; it depends on the number of initial
Wannier functions included in the considered energy window. For example, for
cuprates N � 100 and for manganites N � 250. Nevertheless, in the low-energy
limit N � 10.
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The operator Xpq

f describes the transition from the initial state jqi to the final
state jpi, Xpq jqi D jpi. The important property of X -operators is that any local
operator is given by a linear combination of X -operators. Indeed,

OOf D O1 � OO � O1 D
X
p;q

jpi hpj OOf jqi hqj D
X
p;q

hpj OOf jqiXpq

f : (5.10)

The commutation rule for Hubbard operators follows from the (5.8) and is rather
awkward. Nevertheless, if np � nq is odd (˙1, ˙3, etc.), then the Xpq is called
the quasifermionic operator; if np � nq is even (0, ˙2, etc.), the Xpq is a
quasibosonic one [4]. A single-electron (hole) creation operator is also given by
a linear combination in the X -representation:

cf �� DP
p;q

�� .p; q/X
pq

f ;

�� .p; q/ D hpj cf �� jqi :
(5.11)

In the 2D plane .p; q/, each pair .p; q/ corresponds to some vector ˛.p; q/ that
is called “root vector” in the diagram technique [43]. The number of states in our
Hilbert space is finite, thus we can numerate these vectors ˛m, m D 0; 1; 2; :::; N .
We will use a simplified notation

X
pq

f ! X
˛m
f ! Xm

f

with each Xpq

f being the excitation from jqi to jpi. The number m just enumerate
the excitation and plays the role of the QP band index. In this notation, (5.11)
becomes

cf �� D
X
m

�� .m/X
m
f : (5.12)

For practical calculations, a table of correspondence between .p; q/ and m is
very convenient. In the X -representation, the intracell part of the Hamiltonian is
diagonal,

Hc D
X
f;p

�
Ep � np


�
X
pp

f : (5.13)

The intercell hopping is given by

Hcc D
X
f¤g

X
m;m0

tmm
0

fg X
m�

f Xm0

g ; (5.14)
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where the matrix elements are

tmm
0

fg D
X
�;�;�0

T ��
0

fg 
�
�� .m/�0� .m

0/: (5.15)

All intraatomic d � d Coulomb interactions are included in Hf and since Hf

is diagonal in X -operators, they were treated exactly. The dominant part of the
p � d and p � p Coulomb interactions, (5.5), is also included in Hf and gives
contribution to energies Ep , while a small part of it (� 10%, as was discussed
after (5.5)) provides the intercell Coulomb interaction that is also bilinear in the
X -operators,

HCoul
cc D

X
f ¤g

X
p;q;p0 ;q0

V
pq;p0q0

fg X
pq

f X
p0q0

g : (5.16)

Matrix elements V pq;p0q0

fg can be written straightforwardly using (5.5) and (5.11).
The single-electron Green function for a particle with a momenta k, energy E,

spin � , and orbital indices � and �0,G��0

k� .E/ 	
DD
ck��

ˇ̌
ˇc�k�0�

EE
E

, is given by a linear

combination of the Hubbard operator’s Green functionsDmn
k� .E/ D

DD
Xm
k�

ˇ̌
ˇXn�

k�

EE
E

:

G��0

k� .E/ D
X
mm0

�� .m/
�
�0� .m

0/Dmm0

k� .E/: (5.17)

The intracell Green function is found exactly to be

G��0

.0/� .E/ D
X
m

j��.m/j2 ı��0Dm
.0/� .E/ ; (5.18)

where

Dm
.0/� .E/ D

Fm

E �˝m C iı : (5.19)

Here, ˝m D Ep.n C 1/ � Eq.n/ is the mth QP local energy, and the numerator
is equal to Fm D hXppi C hXqqi. We call Fm “the occupation factor”; it provides
a nonzero spectral weight for the QP excitation between at least partially filling
eigenstates and gives zero spectral weight for excitations between empty states.

Comparing the exact local Green function in (5.18) with the Lehmann repre-
sentation in (5.1), we can say that the electron in (5.18) is a linear combination of
local fermions (Hubbard fermions) with QP energy˝m and a spectral weightWm D
j��.m/j2 Fm. It is exactly the same language as in the Lehmann representation. The
difference is that it is realized locally and both QP energy and spectral weight are
calculated explicitly.
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5.4 Step III: Perturbation Theory

The characteristic local energy scale is given by the effective Hubbard parameter
Ueff D E0.n C 1/ C E0.n � 1/ � 2E0.n/ that is given by the difference of
the initial dn C dn and the excited dn�1 C dnC1 configurations [42]. The same
energy can be obtained as the local gap between the conductivity and valence
bands, Ueff D ˝c;0 � ˝v;0. Depending on the ratio of the bare Hubbard U and
the charge excitation energy �pd D "p � "d , the Ueff may represent the Mott–
Hubbard gap for U < �pd or the charge transfer (CT) gap ECT for U > �pd

[44]. The intercell hopping and interaction result in the dispersion and decrease
the energy gap, Eg < Ueff. The intercell hoppings, (5.14), and the non-local
Coulomb interactions, (5.16), can be treated by a perturbation theory. We would
like to emphasize that in the X -representation the perturbation, (5.14), has exactly
the same structure as the hopping Hamiltonian in the conventional Hubbard model.
That is why the accumulated experience of the Hubbard model study in the X -
representation can be used here.

5.4.1 Perturbation Theory in theX -Operators Representation

Before we start the discussion of the perturbation theory it is useful to make general
estimations typical for a CPT. If we use the N single electron wave functions to
construct the multielectron one, then the ED eigenstates jpi has a normalization
factor 1=

p
N , jpi � 1=pN . The X -operatorXpq D jpi hqj � 1=N . The electron

creation operator c� � Xpq � 1=N . The kinetic energy tfgc
�

f cg � 1
N2 tfg . The

intercell Coulomb interaction Vfgc
�

f cf c
�
gcg � 1

N4 Vfg. For MeO6 cluster, N � 10
is a typical value. It means that the renormalized hopping for Hubbard fermions is
t � tfg=N

2 � 0:1 eV and intercell Coulomb interaction is Vfg=N 4 � 10�2 
10�3 eV. This estimation explains the values ˚001 D �0:13 and ˚0001 D �0:03
discussed above for (5.5). It is also clear from this analysis that the most important
perturbation is the intercell hopping. ForN !1, it is the exact statement. A typical
value of Ueff is 2  4 eV for transition metal oxides. Thus we have a good small
parameter for the perturbation theory, t=Ueff � 0:1.

To calculate the X -operators’ Green function Dmn
k� .E/, we use the equation of

motion method. The exact equation of motion for the operator Xm
f is given by

i PXm
f D

h
Xm
f ;Hc CHcc

i
� D ˝mX

m
f C

h
Xm
f ;Hcc

i
� : (5.20)

The intercell hopping parameters in (5.15) depend only on the distance R D Rf �
Rg . The exact commutator with Hcc is then equal to
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h
Xm
f ;Hcc

i
� D 2

X
R;n1;n2

tn1n2.R/
�
E
mn1
f X

n2
fCR CDmn2

f X
n1�

fCR
	
; (5.21)

where the operatorsEmn
f andDmn

f describe the neutral and the doubly charged local
bosons, correspondingly:

n
Xm
f ;X

n�
g

o
C D ıfgE

m;n
f ;n

Xm
f ;X

n
g

o
C D ıfgD

m;n
f :

(5.22)

For example, in the t � J model with only one Fermi-type QP m D 0: ˛0 D .0; �/,
Xm
f D X0�

f . We have diagonal Bose operatorsX00
f and X��

f , and the spin operators

SC
f D X

"#
f , S�

f D X
#"
f , S z

f D
�
X

""
f �X##

f

	
=2. The doubly charged boson

matrix ODf is zero and the neutral boson matrix OEf includes both charge and spin
fluctuations,

Em;n
f D ı�� 0X00

f CX� 0�
f : (5.23)

For the single-band Hubbard model there are two Hubbard fermions, ˛0 D .0; �/

and ˛1 D . N�; 2/, where N� 	 �� . The Bose excitations in (5.21) are given by 2 � 2
matrices,

E
m;n
f D

 
ı�� 0X00

f CX� 0�
f 0

0 ı�� 0X22
f CX N�; N� 0

f

!
;

D
m;n
f D

 
0 ı� N� 0X02

f

ı� N� 0X02
f 0

!
:

In the Hubbard model the doubly charged excitations are additional ones to those
appearing in the t � J model. For a more complicated model, the explicit forms
for the neutral and the charged bosons are obtained straightforwardly using the
definition in (5.22).

Using the equation of motion (5.20), one can write down the exact equation for
the X -operators’ Green function

.E �˝m/
DD
Xm
f

ˇ̌
ˇXm0�

g

EE
E
D ımm0ıfgFm

C2
X
R;n1;n2

tn1n2 .R/
hDD
E
mn1
f X

n2
fCR

ˇ̌
ˇXm0�

g

EE
E

C
DD
D
mn2
f X

n1�

fCR
ˇ̌
ˇXm0�

g

EE
E

i
(5.24)

It is clear from (5.21) and (5.24) that due to the intercell hoppings, the
quasiparticle moves from site f to f C R and this process is accompanied by
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the charge/spin fluctuation (Emn1
f ) at the departure site f or another quasiparticle

is created at the final site f C R with the doublon fluctuation (Dmn2
f ) at the initial

site f .
The simplest solution of (5.24) is obtained via the Hubbard I decoupling of

the higher order Green functions [4]. It means that we neglect the local Boson
fluctuations and substitute OEf and ODf with their average values. For the spatially

uniform normal state, Em;n
f !

D
Em;n
f

E
D ımnF.m/ and Dm;n

f !
D
Dm;n
f

E
D 0. This

approximation results in the following equation for the Fourier transforms

Dmm0

k� .E/ D Dm
.0/� .E/ ımm0 CDm

.0/� .E/
X
n

tmn.k/D
n;m0

k� .E/ (5.25)

with the Hubbard I solution in the matrix form:

OD�1
k� .E/ D OD�1

0 .E/ � Ot.k/: (5.26)

The dispersion equation for the QP band structure of the Hubbard fermions in this
case is given by

det kımn .E �˝m/ =F.m/� tmn.k/k D 0: (5.27)

The dispersion equation, (5.27), is similar to the conventional TB dispersion
equation, but instead of a single-electron local energy "� we have a local QP
energy ˝m. That is why we call this approach the “generalized TB method.” One
systematical way to go beyond the Hubbard I approximation is to use the projection
operators technique that is considered in the other chapter of this book by Plakida.
We will use it below in Sect. 5.5 to study the electronic structure of cuprates in the
spin-liquid state.

The other regular way to treat perturbations is the diagram technique. For
X -operators with their awkward algebra there is no standard Wick’s theorem.
Nevertheless, the generalized Wick’s theorem has been proved quite some time ago
[45]. The first convenient version of the diagram technique has been formulated in
[43]. The general rules of the diagram technique for the X -operators are described
in details in [29], where the generalized Dyson equation has been obtained

ODk� .E/ D
h
.E �˝m/ ımm0 � OPk� .E/Ot.k/ � Ȯk� .E/

i�1 OPk� .E/: (5.28)

Besides the self-energy matrix Ȯk� .E/, the unconventional term OPk� .E/ called
“the strength operator” appears due to the X -operators algebra. Similar term had
been known for the spin-operator diagram technique [46]. This term determines the
QP oscillation strength (spectral weight) as well as the renormalized bandwidth.

The Hubbard I solution is obtained by setting Ȯk� .E/ D 0 and
h OPk� .E/

i
mm0

D
Fmımm0 .
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It should be stressed that the LDA+GTB bands are not the single-electron
conventional bands. There is no any single-particle Schrödinger equation with the
effective potential that gives the LDA+GTB band structure. These QPs are excita-
tions between different multielectron terms. The LDA+GTB bands depend on the
multielectron term occupation numbers through OPk� .E/ and Ȯk� .E/ that should be
calculated via the chemical potential equation. There is no rigid band behavior from
the very beginning; the band structure depends on doping, temperature, pressure,
and external fields.

5.4.2 Virtual and In-Gap States

The occupation numbers hXppi entering expressions for the X -operators’ Green
function ODk� .E/ are calculated self-consistently via the chemical potential equa-
tion,

ne D hNei
N
D 1

N

X
f;n;i

n
D
X
n;i I n;i
f

E
: (5.29)

The change of the concentration ne redistributes the occupation numbers and due to
the occupation factors, Fm changes the QP band structure.

The most unusual solutions of (5.27) are those with the zero spectral weight
(Fm D 0). We know the QP energy and this QP has zero number of states. We call
such QP the “virtual QP.” One of them is shown in Fig. 5.2 by dashed line. To obtain
the nonzero spectral weight Fm ¤ 0 the nonzero occupation of the initial or final
states for the excitation ˛m D .p; q/ is required. It may be achieved by doping,
pressure, finite temperature, and external field. The virtual states have been found in
GTB calculations for La2CuO4 [24] and for FeBO3 [47]. Recently they have been
experimentally observed in FeBO3 by the IR (infrared) spectroscopy [48].

The doping dependence of the QP band structure is especially important for the
physics of high-Tc superconductivity in cuprates and CMR (colossal magnetore-
sistance) in manganites. Let us consider a hole doped compound with the electron
concentration ne D n � x. At T D 0, the self-consistent solution of (5.29) is given
by (all other terms have zero occupation)

˝
Xn;0I n;0˛ D 1 � x; ˝

Xn�1;0I n�1;0˛ D x: (5.30)

The finite occupation of the dn�1 configuration results in the possibility to have
the dn�2 final state after the electron removal process. The corresponding low-
energy part of the Hilbert space is shown in Fig. 5.3. The QP band structure of
the undoped compound will change in several ways. First, the spectral weight
of the conductivity band ˝c;i will decrease due to the occupation factor Fc;i D˝
Xn;0I n;0˛C ˝XnC1;i I nC1;i ˛ D 1 � x. There is a redistribution of the spectral weight
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n − 2 n − 1 n n + 1Ω̃ ν, 0

Ω̃ν, 1

Ων, 0
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Ων Ωc,1
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*

Fig. 5.3 The relevant sectors of the Hilbert space for hole doped compound. Crosses means the
occupied ground states E0.n/ and E0.n � 1/ according to (5.30). Solid lines correspond to the
valence band and conductivity band QPs˝v;i and ˝c;i , respectively. Dashed lines show the in-gap
QPs with the spectral weight proportional to the doping x

from the conductivity band to the valence band. Dashed lines in Fig. 5.3 show QPs
with the occupation factors Fm D x; without doping they were the virtual states.
Doping results in the finite spectral weight. Especially important is the ˝�

v with the
energy inside the gap, Ueff, close to the top of the valence band. Such in-gap states
have been experimentally observed in doped cuprates and manganites.

In our general analysis, we neglect the degeneracy of theEi.n/ terms due to spin
and other quantum numbers. In practical calculations, this degeneracy is important;
each spin sublevel has the occupation number � 1=2S C 1. Simultaneously, the
number of different excitations increases due to different spin projections. Details
for cuprates can be found in [24, 26] and for manganites in [27].

The in-gap states look like deep impurity levels in the single particle density
of states (DOS); they form a peak with intensity � x. Nevertheless, the physical
nature is very different. While the impurity states stem from the fluctuations of
the electronic potential, the in-gap states appear in a spatially uniform media with
doping due to spectral weight redistribution induced by SEC. Of course, in reality
there are impurity induced fluctuations in the doped or off-stoichiometric crystal
and both mechanisms may form the in-gap states simultaneously.

5.4.3 Summary of Step III

We would like to summarize the perturbation theory approach. The hopping
Hamiltonian Hcc , (5.14), of the multiband Hubbard model has the structure of
the perturbation in the X -representation with a good small parameter t=Ueff� 1.
Depending on the particular physical problem, we use one of the following
approaches to treat the perturbation:

1. Hubbard I solution, (5.26), and the corresponding dispersion equation (5.27).
This is the most simplest approximation though it provides such nontrivial
solutions as the virtual and the in-gap states, and the nonrigid band behavior
with the band structure depending on external parameters (doping, temperature,
pressure, and external fields).

2. Go beyond the Hubbard I approximation by using the projection operators
technique which allows further iterations of the equation of motions for the Green
function, (5.24), and a more systematic decoupling in higher orders. One can do
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a “maximal” mean-filed theory via this approach; it allows us to study the spin-
liquid state of cuprates, as will be discussed in Sect. 5.5.

3. Use the diagram technique to calculate the self-energy, Ȯk� .E/, and the strength
operator, OPk� .E/, to get the Green function ODk� .E/ via Dyson equation, (5.28).
It is the most cumbersome but the most general approach. Virtually, one can
obtain the exact solution, but practically it is a very complicated task even in the
one-loop approximation.

5.5 LDA+GTB Band Structure of the Hole
and Electron Doped Cuprates

In this section we present the results for cuprates with one CuO2 layer in the
unit cell: p-type (hole doped) cuprate La2�xSrxCuO4 and n-type (electron doped)
cuprate Sm2�xCexCuO4. Yet there is no self-consistent treatment of both electronic
and magnetic structures; our LDA+GTB calculations have been carried out for
a prescribed magnetic order. Thus, we consider separately the antiferromagnetic
(AFM) phase with the long-range AFM order and the spin-liquid phase with the
short-range AFM correlations.

5.5.1 LDA+GTB Band Structure of the Undoped La2CuO4

The ED of the multiband p � d Hamiltonian (5.2) for the CuO6 cluster, which
includes the apical oxygens, results in the following local eigenstates (in the
hole representation): 1) nh D 0, the vacuum state j0i formed by d10p6 orbital
configuration, 2) nh D 1, the spin doublets j�; �i with different orbital symmetries.
The lowest one is b1g, j�i, and the first excited is a1g molecular orbital. 3) nh D 2.
A set of two-hole singlets and triplets, spread in the energy region of about Ud �
10 eV. The lowest one is the 1A1 singlet jSi that includes the Zhang–Rice singlet
among other two-hole singlets. The first excited triplet jTM i (M D C1; 0;�1) has
the 3B1g symmetry. The total number of eigenstates is about 100.

The next practical step is the calculation of the matrix elements,

h0j cf ��
ˇ̌
1� 0�

˛
;
˝
1� 0�

ˇ̌
cf �� j2; ii ;

and construction of X -operators, (5.11), for all single-electron orbitals. Here, �
stands for Cu-dx2�y2 , Cu-dz2 , O-b, O-a, or O-pz orbital. For the AFM-ordered
La2CuO4, we use the two-sublattice (A and B) version of the Hubbard I solution,
(5.26), with two occupation factors, Fm;A and Fm;B . Due to the effective molecular

field, the local b1g spin doublet is splitted so that at T D 0:
D
X

""
A

E
D
D
X

##
B

E
D 1,D

X
##
A

E
D
D
X

""
B

E
D 0. The GTB band structure and the DOS in the wide energy
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region with all excited two-hole states j2; ii have been calculated in [49]. The empty
conductivity band is formed by only one Hubbard fermion, X0;�

f . It is separated
by the CT gap ECT � 2 eV from the filled valence band. The valence band is
formed by a large number of Hubbard fermionsX�;2i

f and consists of a set of narrow
bands with the total bandwidth about 6 eV. If we are interested in a smaller energy
window around the ECT (for example, to study ARPES), it is possible to simplify
the calculation by neglecting the high-energy states from both j2; ii and j1� 0�i sets.
Then the minimal realistic basis is fj0i ; j�i ; jSi ; jTM ig.

The X -representation for the fermionic operators in this basis is

cfdx2�y2 �
D uX0;�

f C 2�xX N�;S
f ;

cfpb� D vX0;�
f C 2�bX N�;S

f ;

cfpa� D a.�
p
2X N�;T 0

f � X�;T 2�
f /;

cfdz2 �
D z.�

p
2X

N�;T 0
f � X�;T 2�

f /;

cfpz� D p.�
p
2X

N�;T 0
f � X�;T 2�

f /:

(5.31)

Here, N� 	 �� and T 2� stands for T .C1/ or T .�1/ depending on the value of the
spin label � D ˙1=2. The explicit form of the TB Hamiltonian (5.2) in this basis
looks like the two-band singlet–triplet Hubbard model:

Hpd D
X
f

"
"1
X
�

X
�;�
f C "2SXS;S

f C "2T
X
M

X
TM;TM
f

#

C
X
f¤g;�

h
t00fgX

�;0
f X0;�

g C tSSfg XS; N�
f X N�;S

g

C2�t0Sfg
�
X
�;0
f X N�;S

g C h:c:
	

CtSTfg
n�
�
p
2X

T0; N�
f � XT2�;�

f

	 �
vX0;�

g C 2�bX N�;S
g

	
C h:c:

o

C tT Tfg
�
�
p
2X

T0; N�
f � XT2�;�

f

	 �
�
p
2X N�;T 0

g � X�;T 2�
g

	i
: (5.32)

The hopping parameters, (5.15), of the effective Hubbard model are expressed
through the microscopic ab initio parameters tpd and tpp,

t00fg D �2tpd
fg2uv � 2tpp	fgv2; (5.33)

tSSfg D �2tpd
fg2xb � 2tpp	fg2b ;
t0Sfg D �2tpd
fg.vx C ub/ � 2tpp	fgvb; (5.34)
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Fig. 5.4 The LDA+GTB band structure for the AFM La2CuO4 along the principal cuts of the
Brillouin zone [26]

tT Tfg D
2p
3
tpd�fg2az C 2tpp	fg2a � 2t 0pp�fg2pa; (5.35)

tSTfg D
2p
3
tpd �fgz C 2tpp�fga � 2t 0pp�fgp: (5.36)

Here, 
fg , 	fg, �fg, �fg , and �fg are the coefficients of the oxygen group orbitals
construction, and u, v, x , b , a, p, and z are the matrix elements �� .p; q/, (5.11)
(see [24] for details). The QP band structure of La2CuO4 is shown in Fig. 5.4 for the
� .0; 0/ �M.�; �/ � X.�; 0/ � � .0; 0/ and X.�; 0/ � Y.0; �/ cuts of the square
Brillouin zone. Zero at the energy scale is not the Fermi level but rather fixed by the
condition "d

x2�y2
D 0.

The top of the valence band is at the NM D .�=2; �=2/ point, while the bottom
of the conductivity band is at the X - point. The dispersion of the valence band was
determined by the hybridization of the two bands, which formed by either X N�S

f or

X N�TM
f Hubbard fermions. The hybridization between them is provided by the tST

hopping matrix elements in (5.32). These are fermionic bands, but frequently in the
literature terms “singlet band” and “triplet band” are used. These terms reflect the
final two-hole states involved in the QP excitations. The dominant spectral weight
in the singlet band stems from the oxygen b1g states, while for the bottom of the
conductivity band it is from the dx2�y2 states of Cu.

5.5.2 Low-Energy Effective t � t0 � t00 � J � Model
and the Fermi Surface of Sm2�xCexCuO4

In the doped cuprates the chemical potential shifts either to the valence band (the
upper Hubbard band, UHB, for holes) or to the conductivity band (the LHB for



162 S.G. Ovchinnikov et al.

holes). These correspond to p- or n-type dopings, respectively. Because the other
band (LHB or UHB) is not participating in the low-energy physics directly, it is
possible to project it onto the band forming the Fermi surface. That way, it is
possible to construct a more simple t � J -type model by the unitary transformation
of the multiband Hubbard Hamiltonian (5.32) to fulfill the constraint due to SEC
(“no-double occupancy” condition) [50, 51]. Thus the effective t � t 0 � t 00 � J �
model is obtained with the Hamiltonian (for electron doping)

H D Ht�J CH.3/

Ht�J D
X
f;�

." � 
/X��
f C

X
f;g;�

tfgX
�0
f X

0�
g C

X
f;g

Jfg

�
S f � S g � 1

4
nf ng

�

H.3/ D
X

f¤g¤m;�

Qtf m Qtmg
Ueff

�
X�0
f X

N� N�
m X0�

g � X�0
f X

N��
m X0 N�

g

	
: (5.37)

Here, tfg is the hopping inside the LHB and equal to t00fg from (5.36). The exchange

interaction, Jfg D 2
�Qtfg

�2
=Ueff D 2

�
t0Sfg

	2
=Ueff is determined by the interband

(between the UHB and LHB) hopping t0Sfg . H.3/ is the three-cite correlated hopping

term with the same amplitude /
�
t0Sfg

	2
=Ueff as the exchange interaction. The fact

that the latter terms are important was shown in AFM phase by comparing the
results of the exact diagonalization for the Hubbard and the t � J models [52]. As
discussed above, Ueff D 2 eV. Due to the Wannier functions partial delocalization,
there is a gradual decrease of the hopping parameters tfg with the distance. We
have analyzed how the dispersion depends on the number of coordination spheres
taken into account and observed the following [26]: there are large differences in
dispersions when the first, second, and third nearest-neighbor hopping parameters
are nonzero, and negligibly small differences between the dispersions when the
third, fourth, and fifth nearest-neighbor hoppings are included. It is a microscopic
proof of the necessity of t 0 and t 00 in the t � t 0 � t 00 �J model since all hopping and
exchange parameters are calculated via LDA. For Sm2�xCexCuO4 these parameters
are

t D �0:59 eV; t 0 D �0:08t; t 00 D 0:15t;
J D 0:92jt j; J 0 D 0:01jt j; J 00 D 0:02jt j: (5.38)

Electron doped cuprates have the AFM long-range order until large doping values
x � 0:1. Sm2�xCexCuO4 with x D 0:14 is at the verge of the AFM order. We
have calculated the band structure and the Fermi surface for paramagnetic and
AFM phases [53]. A comparison with ARPES [54], see Fig. 5.5, shows that AFM
calculations are closer to the experimental data.
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Fig. 5.5 The band structure (a) and the Fermi surface (b) in the AFM phase for Sm2�xCexCuO4

within the LDA+GTB method for doping concentration x D 0:14. In (a), zero corresponds to the
Fermi level. Inset in (b) represents the ARPES data for the Fermi surface [54]

5.5.3 Doping-Dependent Evolution of the Fermi Surface
and Lifshitz Quantum Phase Transitions in La2�xSrxCuO4

The t � t 0 � t 00 � J � Hamiltonian for p-type La2�xSrxCuO4 (LSCO) looks similar
to (5.37). The main difference is that instead of the LHB we deal with the UHB
fermion X N�2

f . Also, we have disregarded the triplet state jTM i, which was present
in the Hamiltonian (5.32). The reason is that the triplet itself and the singlet–triplet
excitations do not contribute to the near-Fermi level physics.

The ab initio derived parameters for LSCO are (in eV)

t D 0:93; t 0 D �0:12; t 00 D 0:15;
Qt D 0:77; Qt 0 D �0:08; Qt 00 D 0:12;
J D 0:29; J 0 D 0:003; J 00 D 0:007:

(5.39)

In the wide-range of doping a strong AFM short-range order (spin fluctuations) is
known to persist in La2�xSrxCuO4. To study its effect on the electronic structure we
should go beyond the Hubbard I approximation and include spin correlations at the
different sites. It has been done using the Mori-type projection operators technique
[55]. The electron Green function has the same structure as given by the Dyson
equation (5.28),

G�.k; E/ D .1C x/=2
E � "0 C 
 � 1Cx

2
tk � 1�x2

4

.Qtk/2
Ueff
�˙.k/

(5.40)

with the strength operator Pk� .E/ D F�S D .1C x/=2 and the static self-energy
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˙.k/ D 2

1C x
1

N

X
q

("
tk�q � 1 � x

2
Jq C 1 � x

2

Qt2k�q
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� 1C x

2

2Qtk Qtk�q
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#

�


3

2
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Qt2q
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)
: (5.41)

Here, K.q/ and C.q/ are the kinetic and the spin correlation functions,

K.q/ D P
f �g

e�i.f �g/q
D
XS N�
f X N�S

g

E
;

C.q/ D P
f �g

e�i.f �g/q
D
X� N�
f X N��

g

E
D 2 P

f�g
e�i.f �g/q

D
S z
f S

z
g

E
:

(5.42)

At low temperatures, the spin fluctuations are much slower than the electronic
density variations that is why it is possible to neglect a frequency dependence
of the spin correlation function and, consequently, the electronic self-energy (see
discussion in [56]). We believe that the spatial dependence of the short-range
AFM order can be described by the isotropic spin-liquid model with all local

spin components being zero,
D
S˛f

E
D 0, ˛ D x; y; z, and a nonzero correlation

functions
D
Sxf S

x
g

E
D
D
S
y

f S
y
g

E
D
D
S z
f S

z
g

E
for f ¤ g. Following the method of [57],

these functions were calculated self-consistently with the chemical potential and
the electronic structure. The doping-dependent nonrigid band structure and Fermi
surface [55] are shown in Fig. 5.6.

The strongest doping dependence takes place around the .�; �/ point. The
Fermi surface for small dopings is a small closed pocket near .�=2; �=2/ point.
Its area increases with doping and at xc1 D 0:15 � xopt (optimal doping) we
found the Lifshitz quantum phase transition (QPT) with the change of the Fermi
surface topology. Above xc1, the two Fermi surfaces centered at .�; �/ point coexist
up to xc2 � 0:23. At the second Lifshitz QPT, the smaller electronic Fermi
surface collapses. For x > xc2, we have the large-hole Fermi surface centered at
.�; �/ point. The analysis of the low-temperature anomalies induced by QPT and
comparison with experimental data (ARPES, quantum oscillations, and transport)
are given in [56, 58]. The coincidence of the xc1 and xopt is not occasional. The
logarithmic divergence of the DOS at the Fermi level at xc1 results in the increasing
critical temperature of the d -wave superconductivity. The second QPT is related to
the crossover from the Fermi liquid behavior for x > xc2 to the non-Fermi liquid
behavior for x < xc2 [58].

Similar Fermi surface reconstructions have been obtained by the Mori-type
projection technique with Im˙.k; E/ D 0 [59], with Im˙.k; E/ ¤ 0 [60],
and by the multielectron quantum chemical approach [61]. Recently, the exact
diagonalization version of cluster DMFT (CDMFT+ED) was used to study the
electronic structure of the doped Mott–Hubbard insulator [62, 63]. The sequence
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Fig. 5.6 Band structure (on the left), density of states (in the middle), and Fermi surface (on the
right) evolution with doping concentration x within the t� t 0 � t 00 �J� model for p-type cuprates

of the FS transformations with doping in these references is very similar to ours in
spite of some differences in details.

5.6 LDA+GTB Band Structure of Manganite La1�xCaxMnO3

Band structure calculations for manganites is more complicated for two reasons:
(a) the orbital ordering double the unit cell and (b) the high spin values for d4

(S D 2) and for d4˙1 (S D 5=2 for d5 and S D 3=2 for d3) increase the number
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of states in the Hilbert space. The construction of the X -operators representation
for LaMnO3 within the high spin d3, d4, and d5 configurations has been done in
[27]. For the undoped LaMnO3, the LDA+GTB calculations result in the QP band
structure with the large CT gap ECT � 2 eV. Above the top of the occupied valence
band there is a virtual state with the activation energy �" � 0:4 eV. Doping or
nonstoichiometry transforms this state into the in-gap narrow band. It is peculiar
that the orbital ordering is necessary to get the insulating state in LaMnO3. The
similar LDA+GTB calculations for cubic LaMnO3 without both the orbital ordering
and the Jahn–Teller distortion result in the metallic ground state in spite of SEC. The
LDA+GTB calculations for hole-doped La1�xCaxMnO3 for x D 0:2 0:3 resulted
in the half-metallic ground state with the 100% spin polarization at the Fermi level
in the ferromagnetic phase, that is illustrated in Fig. 5.7.

Transition from the ferromagnetic to the paramagnetic phase results in the
twofold band narrowing that is much stronger than the double exchange model
provides [64].

5.7 Finite-Temperature Effect on the Electronic Structure
of LaCoO3

Perovskite LaCoO3 is known for its unique magnetic properties and a related
insulator–metal transition (IMT). All three spin states of Co3C ion in the d6

configuration [low-spin (LS) S D 0, intermediate-spin (IS) S D 1, and high-spin
(HS) S D 2 states] are close in energy. The only general agreement in the literature
is that the LS state is the ground state level at T D 0. The strong debates during the
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last 15 years concern the order of the lowest excited states; their thermal population
results in the paramagnetic susceptibility with a maximum around T D 100K. The
IMT is not a sharp phase transition but a smooth crossover in the region of 550–
600 K. In this section we demonstrate that the LDA+GTB method allows us to treat
the strong finite-temperature effect on the band structure of LaCoO3 and to explain
both the spin-state transition and the IMT.

Recently, it became clear that the first excited state is the HS one [65,66]. It has a
spin S D 2 and the orbital moment l D 1. Due to the spin–orbit coupling, the 5T2g
HS term is splitted into the QJ D 1, QJ D 2, and QJ D 3 sublevels [67]. The value of
the spin gap�s�t between the QJ D 1 HS sublevel and the 1A1 LS is small, �s�t D
140K. In the GTB scheme we have to include both d5 and d7 configurations to
treat the electron removal and addition processes. The multielectron eigenstates for
d5, d6, and d7 configurations have been constructed recently in [68]. They include
effects of SEC, covalence, and spin–orbital coupling and are presented in Fig. 5.8.
The ground state term for the d5 configuration is the HS 6A1. The single electron
removal from the 1A1d

6 LS state is prohibited by the spin selection rule. The solid
lines with arrows in Fig. 5.8 show the Hubbard fermions that form the top of the
valence band (d5 ! d6/ and the bottom of the conductivity band (d6 ! d7) at
T D 0. With the increasing temperature, the population of the d6 excited HS states

Fig. 5.8 The low-energy part of the Hilbert space for CuO6 cluster with the electron numbers
Ne D 5; 6; 7. Terms with a given Ne are the mixtures of dNe , dNeC1L, and dNeC2L2

configurations. At T D 0, only the Ne D 6 low-spin term 1A1 is occupied; the Fermi-type
excitations from this term which form the top of the valence band (d6 ! d5) and the bottom of the
conductivity band (d6 ! d7) are shown by the solid lines with arrows. The dashed lines denote
the in-gap excitations with the spectral weight increasing with temperature due to the population
of the HS excited d6 terms
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Fig. 5.9 Single-particle density of states at different temperatures. At T D 0, LaCoO3 is the
charge transfer insulator with the gapEg � 1:5 eV. At finite temperatures, the in-gap band appears
below the conductivity band with the temperature-dependent activation energy. At T D 100K,
Ea � 0:1 eV. At T D T � D 587K, Ea D 0, and above T �, the band structure is of the metal
type

with QJ D 1 and QJ D 2 results in the appearance of the new in-gap states which
are shown by the dashed lines in Fig. 5.8. These states radically change the band
structure (Fig. 5.9). At T D 0, we obtain the large charge gap Eg D 1:5 eV. The
in-gap states are below the chemical potential; they acquire finite bandwidth and
reduce the gap to Eg D 0:2 eV at T D 100K. Their bandwidth is determined
by the occupation factor that is equal to the thermal population of the HS states.
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With further increase of the temperature, the gap at the � point tends to zero at
some critical temperature T D TIMT. With the hopping parameters calculated via
the LDA+GTB, we found TIMT D 587K [28]. It is necessary to emphasize that in
spite of the large difference in the temperature of the spin-state transition (100 K)
and the IMT (600 K), the underlying mechanism for both transitions is the same and
is induced by the thermal population of the excited HS states.

5.8 Conclusions

We have presented the main ideas and some computational details of the LDA+GTB
method. The space restriction did not allow us to discuss physical results, we have
only mentioned them and provided the references. Being invented to study the
high-Tc superconductivity in cuprates, LDA+GTB method appears to be a powerful
approach to systems with SEC and useful for other Mott insulators. We have not
discussed the electronic structure of boroxides like FeBO3 and VBO3 and its change
at the spin crossover under the high pressure. One of the most unusual feature of
the LDA+GTB band structure is its strong dependence on the external parameters,
resulting in the in-gap formation in cuprates due to the doping and in cobaltates due
to the temperature. Recently, we have demonstrated that the in-gap states in FeBO3

are induced by the light irradiation [69].
The LDA+GTB method is not universal. Being a combination of the ab initio

and model approaches it cannot go beyond the restriction of the model used in GTB.
For example, the absence of the long-range Coulomb interaction which determines
the Coulomb matrix elements in the large-wavelength limit prevents the correct
description of the overdoped cuprates. Of course, it is the common deficiency of
all Hubbard-type models. The modern version of the LDA+GTB cannot be used
when the perturbation parameter t=U increases and the Mott transition is expected.
Nevertheless, it works in the most difficult for conventional band theory region
of strong electron correlations. Another variant of a combination of X -operators
representation with the ab initio approach for the rare-earth compounds has been
developed in [70].
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Chapter 6
Projection Operator Method

Nikolay M. Plakida

Abstract A general projection operator method in the equation of motion method
for the two-time Green functions is formulated. An exact Dyson equation for an
arbitrary Green function is derived. The method is used to consider the single-
particle electron Green functions for the Hubbard model within the non-crossing
approximation for the self-energy. Strong-coupling superconductivity theory for the
model is formulated and an equation for the superconducting Tc is analyzed. We
argue that the d -wave pairing with high-Tc can occur in the repulsive Hubbard
model, which is mediated by the antiferromagnetic exchange interaction and
the spin-fluctuation scattering, both induced by the kinematic interaction for the
Hubbard operators. A microscopic theory for the dynamic spin susceptibility within
the projection operator method is formulated. The theory is applied to study spin-
excitation spectrum for the t–J model within the mode-coupling approximation for
the self-energy. A new approach to the theory of the magnetic resonance mode in
cuprate superconductors is proposed.

6.1 Introduction

One of the basic models for studies of electronic spectra and superconductivity
in strongly correlated electronic systems (SCES), as the cuprate high-temperature
superconductors, is the Hubbard model [1]. In the simplest approximation, the
model is specified by two parameters: a single-electron hopping matrix element t
between the nearest neighbors and a single-site Coulomb energy U :

H D �t
X
i¤j�

a
�
i� aj� C U

X
i

ni" ni#; (6.1)
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where a�i� (ai� ) are the creation (annihilation) operators for an electron of spin � on
the lattice site i and ni� D a

�
i�ai� is the electron occupation number. The model

(6.1) permits one to consider both cases of weak correlations,U � t , and of strong
correlations, U � t . In the weak correlation limit, a metallic state is observed,
while in the strong correlation limit the model describes a Mott–Hubbard insulating
state at half-filling (an average occupation electron number n D 1). For hole doping
(n < 1) of the lower Hubbard subband (LHB), or for electron doping (n > 1) of the
upper Hubbard subband (UHB) the model describes a strongly correlated metal.

Various methods have been used to investigate the Hubbard model, among which
are numerical simulations for finite clusters (see, e.g., [2, 3]), dynamical mean field
theory (DMFT) (see, e.g., [4, 5]), the dynamical cluster theory (see, e.g., [6, 7]),
and other methods discussed in other chapters of this book. A rigorous analytical
method in the limit of strong correlations is based on the Hubbard operator (HO)
technique [8] since in this representation the local constraint of no double occupancy
of any lattice site is rigorously implemented by the Hubbard operator algebra.
However, since the HOs are composite operators with complicated commutation
relations, the diagram technique for them is rather complex and only simplest set of
diagrams can be taken into account in calculations (see, e.g., [9]).

A more convenient and straightforward technique is based on the equation of
motion method for the thermodynamic two-time Green functions (GFs) introduced
by Bogoliubov and Tyablikov [10]. By sequential differentiating GFs over time t or
t 0, a chain of equations can be derived. To obtain a closed system of equations, an
approximation should be used for higher order GFs, usually called as “truncating”
or “decoupling” of GFs [11, 12]. We emphasize here that any type of a decoupling
of higher order GFs for Fermi or Bose operators corresponds to a certain set of
diagrams in the temperature diagram technique for the causal GFs (see, e.g., [13]).
This enables to evaluate which set of diagrams are taken into account in the
decoupling approximation and, therefore, to estimate the accuracy of the adopted
approximation. It is possible to find such a correspondence also for the GFs for more
complicated operators, as spin or Hubbard operators where the diagram technique
is much more complex.

In recent years, a consistent way was developed for truncating a system of
equation of motion for the GFs based on projection operator method (POM) similar
to the Mori [14] memory function (for references, see [15]). The POM was used by
various authors (see, e.g., [16–20]) and in the most general way was formulated by
Tserkovnikov [21,22]. In particular, it was shown in [17] that the POM for the two-
time spin GF allows to reproduce results of the diagram technique for the spectrum
of spin excitations in the ferromagnetic Heisenberg model. The method was also
successfully used in studies of strongly anharmonic crystals close to the melting
point [18]. An extensive study of the Hubbard model within the POM was performed
by Mancini and Avella (for references see [19] and Chap. 3.7). Generally, it has been
proved that the Mori-type projection technique for the time-dependent correlation
functions provides reliable results in study spin dynamics, dense liquids, and phase
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transitions where strong correlations are essential as in SCES (for references see,
e.g., [23]).

In the next section, we formulate a general POM in the theory of GFs. The
method is applied to study superconductivity within the Hubbard model in Sect. 2
and to consider spin excitations in Sect. 3 in the t–J model.

6.2 Equation of Motion Method for Green Functions

6.2.1 General Formulation

We introduce the thermodynamic retarded .r/, advanced .a/, and causal .c/ two-
time Green functions (GFs) as defined by Zubarev [11]:

Gr
AB.t � t 0/ 	 hhA.t/jB.t 0/iir D �i�.t � t 0/hA.t/B.t 0/� �B.t 0/A.t/i;

Ga
AB.t � t 0/ 	 hhA.t/jB.t 0/iia D i�.t 0 � t/hA.t/B.t 0/ � �B.t 0/A.t/i;

Gc
AB.t � t 0/ 	 hhA.t/jB.t 0/iic D �ih OT A.t/B.t 0/i; (6.2)

where the time-ordered product of operators is defined as OTA.t/ B.t 0/ D �.t � t 0/
A.t/B.t 0/C ��.t 0 � t/B.t 0/A.t/ . Here, the step-function�.t/ D 1; for t > 0 and
�.t/ D 0 for t < 0, A.t/ D exp.iHt/A exp.�iHt/ is a time-dependent operator
in the Heisenberg representation and hABi D .1=Z/ T rfexp.�ˇH/ABg; Z D
T rfexp.�ˇH/g is the statistical average (we set ˇ D 1=T; kB D 1; „ D 1). The
parameter � D C1 is taken for commutator GFs and � D �1 for anticommutator
GFs: ŒA; B�� D AB � �BA .

In this notation, equations of motion for all types of GFs are the same and can be
written as

i
d

dt
hhA.t/jB.t 0/ii D ı.t � t 0/ hŒA.0/; B.0/��i C hhŒA.t/;H�jB.t 0/ii: (6.3)

The Fourier transformation for the GFs (6.2) and the respective time correlation
functions read,

GAB.t � t 0/ D 1

2�

Z C1

�1
GAB.!/ e�i!.t�t 0/d!; (6.4)

hB.t 0/A.t/i D 1

2�

Z C1

�1
JBA.!/ e�i!.t�t 0/ d!; (6.5)

where Fourier transformation for the correlation function hA.t/B.t 0/i is similar
to (6.5) with the spectral function JAB.!/ D e�ˇ!JBA.�!/ . The spectral
representation for the retarded (advanced) GF in (6.2) can be written as
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G
r;a
AB.E/ 	 hhAjBiir;aE D

1

2�

Z C1

�1
eˇ! � �

E � ! ˙ i� JBA.!/ d!; �! 0C : (6.6)

The retarded GF Gr
AB.E/ is an analytic function in the upper half-plane of the

complex variable E; ImE > 0, while the advanced GF Ga
AB.E/ is an analytic

function in the lower half-plane of the complex variableE; ImE < 0 and therefore,
a single analytic function can be introduced, GAB.E/ D Gr

AB.E/ for ImE > 0

and GAB.E/ D Ga
AB.E/ for ImE < 0 [10]. The analytical GF GAB.E/ obeys the

dispersion relation

ReGr;a
AB.!/ D ˙

1

�
P

Z C1

�1
dz

z� ! ImGr;a
AB.z/ ; (6.7)

where P denotes the principal value of the integral. At the same time, the causal
GF Gc

AB.E/ in (6.2) has a more complicated than (6.6) spectral representation,
which shows that it cannot be analytically continued into the complex E plane
at nonzero temperature, T > 0 (see [13]). In this respect, Gc

AB.E/ is less conve-
nient for application than the analytical function GAB.E/. Moreover, the retarded
commutator GFs have a simple physical meaning. They are directly related to the
complex admittance, or the generalized susceptibility, �AB.!/ D �hhAjBiir!;�DC1,
which describes an influence of an external perturbation determined by the operator
B on the average value of the dynamical variable A.

From the spectral representation (6.6) we obtain the relation between the spectral
density of the correlation function and the GF:

JBA.!/ D i fGAB.! C i�/ �GAB.! � i�/g .eˇ! � �/�1
D �2ImGAB.! C i�/ .eˇ! � �/�1; (6.8)

where the last relation holds for a real function JBA.!/ for operators A;B of the
same parity with respect to time inversion. The spectral density (6.8) is related to the
dynamical structure factor of a system which is measured in scattering experiments
and can be used in calculation of the time-dependent correlation functions (6.5).

In study of collective excitations, such as spin or charge fluctuations, it is more
convenient to consider the Kubo-Mori relaxation function (cf. [15, 22]),

˚AB.t � t 0/ 	 ..A.t/jB.t 0/// D �i�.t � t 0/.A.t/jB.t 0/ /

D 1

2�

Z 1

�1
..AjB//!e�i!.t�t 0/d!: (6.9)

Here, the Kubo–Mori scalar product is defined as,

.A.t/jB/ D
Z ˇ

0

d�hA.t � i�/Bi: (6.10)
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The retarded commutator GF in (6.2) and the relaxation function (6.9) are coupled
by the equation

!..AjB//! D .AjB/C hhAjBii!: (6.11)

Useful relations follow from (6.2) and (6.9)–(6.11):

..i PAjB//! D ..Aj � i PB//! D hhAjBii!; (6.12)

.i PAjB/ D .Aj � i PB/ D hŒA; B�i; .AjB/ D �hhAjBii!D0; (6.13)

where i PA D idA=dt D ŒA;H�.
However, it should be pointed out that the relation (6.8) and (6.12), (6.13) can

be used for the commutator GF for ergodic systems only. In those systems, the
time-dependent correlation function (6.5) decays with time, limt!1hBA.t/i ! 0

(assuming that hBi D hAi D 0), and its spectral density is a regular function. For a
nonergodic system, the spectral density can be written as,

JAB D J 0

AB.!/C 2�CABı.!/; (6.14)

where the first term is a regular function, while the second term is an irregular part.
The latter can be calculated from the pole of the anticommutator GFs (6.2):

2CAB D lim
!!0

! Re GAB.!/j�D�1: (6.15)

The nonergodic constant CAB determines the difference between the isothermal
thermodynamic susceptibility �TAB D .AjB/ and the Kubo (isolated) static sus-
ceptibility �KAB D �Gr

AB.! D 0/:

ˇCAB D �TAB � �KAB D lim
!!0

! ˚AB.!/: (6.16)

The nonergodic behavior occurs for a dynamical variable A coupled to integrals of
motion, hAKni ¤ 0, where ŒKn;H� D 0 [24].

6.2.2 Projection Technique for Green Functions

In this section, we formulate a general projection technique method in the equations
of motion for the GFs (6.2) or the relaxation function (6.9). The method is based
on the differentiation the GFs over two times, t and t 0 , that enables to derive a
Dyson-type equation with a self-energy similar to the memory function in the Mori
projection technique [14].

We consider the GF (6.2) for arbitrary dynamical operatorsAk;A
C
k ,

Gk;k0.t � t 0/ D hhAk.t/jAC
k0.t

0/ii: (6.17)
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In a general case, the operatorsAk and AC
k are vectors and the GF is a matrix. Using

(6.3), an equation of motion for the GF (6.17) reads,

i
d

dt
hhAk.t/jAC

k0.t
0/ii D ı.t � t 0/ hŒAk; Ak0 ��i C hhŒAk.t/;H�jAC

k0.t
0/ii: (6.18)

It is convenient to extract a linear term in the equation of motion for the original
operator Ak in (6.18) by using the Mori-type projection technique:

i PAk D ŒAk; H� D
X
q

Ek;qAq CZ.ir/
k : (6.19)

The irreducible Z.ir/
k -operator is determined by the orthogonality condition,

hŒZ.ir/
k ; AC

k0 �� i D hZ.ir/
k AC

k0 � �AC
k0Z

.ir/
k i D 0 : (6.20)

This defines the frequency matrix,

Ekq D
X
k0

hŒ ŒAk; H�; Ak0 ��i I�1
k0q ; Ikq D hŒAk; Aq��i: (6.21)

Using the Fourier transformation (6.4), the equation for the GF (6.17) can be written
as,

Gk;k0.!/ D G.0/

k;k0.!/C
X
q;q0

G
.0/

k;q.!/I
�1
q;q0hhZ.ir/

q0 jAC
k0ii!; (6.22)

where we introduced the zero-order GF,

G
.0/

k;k0.!/ D
X
q

f!ık;q �Ekqg�1 Iq;k0 ; (6.23)

which defines the excitation spectrum in the generalized mean-field approximation
(GMFA).

Differentiating the many-particle GF hhZ.ir/
q .t/jAC

k0.t
0/ii over the second time t 0

and using the same projection procedure as above, the equation (6.22) can be written
in the form,

Gk;k0.!/ D G.0/

k;k0.!/C
X
q;q0

G
.0/

k;q.!/ Tq;q0.!/G
.0/

q0;k0.!/: (6.24)

We introduced here the scattering matrix,

Tk;k0.!/ D
X
q;q0

I�1
k;q hhZ.ir/

q j.Z.ir/
q0 /

Cii!I�1
q0;k0 : (6.25)
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To obtain the Dyson equation, we define the self-energy matrix ˙k;k0.!/ by the
equation,

Tk;k0.!/ D ˙k;k0.!/C
X
q;q0

˙k;q.!/G
.0/

q;q0.!/ Tq0 ;k0.!/ ; (6.26)

which shows that the self-energy matrix is a proper part of the scattering matrix
which has no parts coupled by a single zero-order GF. An exclusion of the
free (GMFA) GF in the definition of the self-energy (6.26) is equivalent to an
introduction of the projected Liouvillian superoperator for the memory function
in the original Mori technique [14]. Thus, we obtain an exact Dyson equation for
the GF,

Gk;k0.!/ D G.0/

k;k0.!/C
X
q;q0

G
.0/

k;q.!/˙q;q0.!/Gq0;k0.!/; (6.27)

where the self-energy matrix, defined for the irreducible operators Z
.ir/
k D

ŒAk; H� �Pq Ek;qAq , reads,

˙k;k0.!/ D
X
q;q0

I�1
k;q hhZ.ir/

q j.Z.ir/
q0 /

Cii.proper/
! I�1

q0;k0 : (6.28)

In comparison with a standard diagram technique, where the self-energy operator in
the Dyson equation is written as a full vertex and a product of full GFs for excitations
under study, the self-energy operator in the projection technique method is defined
by the zeroth-order vertices and the full multiparticle GF which describes inelastic
scattering of quasiparticles.

To consider higher order contributions to the self-energy, a general theory
proposed by Tserkovnikov[21, 22] can be used. In the theory, formally an exact
system of equations is derived for the GFs (6.2) or (6.9) by differentiating them
over time t and t 0. For a sequence of operators A1;A2; : : : An where A1 is the
original dynamic operator for a physical quantity under study and the higher orders
operators are given by time derivatives: i PAn D ŒAn; H�, an infinite system of
coupled equations (in fact, identities) can be written:

!hhAnjAC
n ii!;n�1 D hAnjAC

n i C fhi PAnjAC
n i C hhi PAnj � i PAC

n ii!;ng
� hAnjAC

n i�1hhAnjAC
n ii!;n�1; n D 1; 2; : : : ; (6.29)

Here, the irreducible GFs of the nth order are coupled by the recurrence relation,

hhAjBCii!;n D hhAjBCii!;n�1
� hhAjBC

n ii!;n�1hhAnjBC
n ii�1!;n�1hhAnjBCii!;n�1; (6.30)

where hhAjAC
mii!;n D hhAmjBCii!;n D 0; for m � n. The higher order operators

An are also irreducible operators being orthogonal in respect to the scalar products
hAnjAC

n i:
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hAjBCin D hAjBCin�1 � hAjBC
n in�1hAnjBC

n i�1n�1hAnjBCin�1; (6.31)

where hAjBC
m in D hAmjBCin D 0; for m � n. In principle, within this approach,

higher order corrections to the self-energy can be found. However, in many cases,
the so-called mode-coupling approximation (MCA) for the lowest order self-energy
(6.28) (equivalent to the noncrossing approximation in the diagram technique) can
be used to obtain physically reasonable results. We discuss this approximation in
the next sections for particular models.

6.3 Superconducting Pairing in the Hubbard Model

In this section, we apply the POM to study superconducting pairing in the
Hubbard model (6.1). There are still hot debates whether the repulsion interaction
in the Hubbard model could provide superconducting pairing and explain high-
temperature superconductivity observed in cuprates. Our numerical calculations
have definitely confirmed such a possibility [25–27] (see also [28–31]).

6.3.1 Hubbard Model

We consider the Hubbard model on a square lattice in a hole representation usually
used in describing cuprate superconductors,

H D E1
X
i;�

X��
i C E2

X
i

X22
i

C
X
i¤j;�

tij fX�0
i X

0�
j CX2�

i X
�2
j C �.X2 N�

i X
0�
j C H:c:/

�
; (6.32)

where X˛ˇ
i D ji˛ihiˇj are the Hubbard operators (HOs) for the four states: an

empty state j0i, a singly occupied state j�i with spin �=2 D .";#/; � D ˙1,
N� D �� , and a doubly occupied state j2i D j "#i. We denote the single-site
repulsion energy by U and introduce E1 D "1 � 
 and E2 D 2E1 C U as the
energy levels for the one-hole (with a reference energy "1) and the two-hole states,
respectively. The model (6.32) can be used to study cuprate superconductors where,
within the cell-cluster perturbation theory, the repulsion energy is defined by the
charge-transfer gap �pd in cuprates, U D �pd (see, e.g., [32, 33]). In this case,
the one-hole band is the d -like copper band, "1 D "d , and the two-hole band is
the Zhang–Rice (ZR) p-d singlet band, "2 D "d C "p, [34]. We consider a strongly
correlated limit of the Hubbard model,U � t , with an insulating state at half-filling
(n D 1) when the atomic representation in terms of HOs is appropriate.

The bare electron dispersion is defined by the hopping parameter tij , which k-
dependence is specified by the equation,

t.k/ D 4t .k/C 4t 0  0.k/C 4t 00  00.k/; (6.33)
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where the hopping parameters are equal to t for the nearest neighbors and t 0; t 00
for the second neighbors, which determine the bare (band) dispersion by the
functions: .k/ D .1=2/.coskx C cosky/;  0.k/ D coskx cos ky , and  00.k/ D
.1=2/.cos2kx C cos 2ky/. In the cell-cluster perturbation theory, one can take
t ' �pd=8 ' 0:4 eV [33]. The chemical potential 
 depends on the average hole
occupation number,

n D hNii; Ni D
X
�

X��
i C 2X22

i : (6.34)

The spin operators in terms of HOs are defined as,

S�i D X� N�
i ; S z

i D
X
�D˙1

.�=2/X��
i : (6.35)

The HOs satisfy the completeness relation X00
i CX""

i CX##
i CX22

i D 1 and the

multiplication rules X˛ˇ
i X

ı
i D ıˇX

˛ı
i . From the latter follow, the commutation

relations, h
X
˛ˇ
i ; X

ı
j

i
˙ D ıij

�
ıˇX

˛ı
i ˙ ıı˛Xˇ

i

	
: (6.36)

The upper sign pertains to Fermi-type operators such as X0�
i which change the

number of particles and the lower sign pertains to Bose-type operators, for example,
the particle number operator Ni in (6.34) or the spin operators S˛i (6.35).

We emphasize that the Hubbard model (6.32) does not involve a dynamical
coupling of electrons (holes) to fluctuations of spins or charges. Its role is played by
the kinematic interaction caused by the non-Fermi nature of commutation relations
(6.36), as already has been noted by Hubbard [8]. For example, the equation of
motion for the HO X�2

i has the form,

i dX�2
i = dt D ŒX�2

i ;H � D .E1 C U /X�2
i (6.37)

C
X
l¤i;� 0

ti l

�
B22
i�� 0X

� 02
l ��B21

i�� 0X
0 N� 0

l

	
�
X
l¤i

ti l X
02
i

�
X�0
l C�X2 N�

l

�
;

B22
i�� 0 D .X22

i CX��
i / ı� 0� CX� N�

i ı� 0 N� D .Ni=2C S z
i / ı� 0� C S�i ı� 0 N� ;

B21
i�� 0 D .Ni=2C S z

i / ı� 0� � S�i ı� 0 N� : (6.38)

Here, B˛ˇ

i�� 0 are Bose-like operators related to the particle number operator Ni and
the spin operators S˛i (6.35).

6.3.2 Dyson Equation

To consider the superconducting pairing in the Hubbard model (6.32), we introduce
the 4 � 4 matrix anticommutator GFs (6.2) [35]
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Gij� .!/ D hh OXi� j OX�
j�ii! D

 OGij� .!/ OFij� .!/
OF �
ij� .!/ � OGji N� .�!/

!
; (6.39)

where OXi� and OX�
i� D .X2�

i X N�0
i X N�2

i X0�
i / are the four-component Nambu

operators. Because of the two-subband nature of the model (6.32), the normal OGij�
and anomalous OFij� components of the GF are 2� 2 matrices which are coupled by
the symmetry relations for the GFs [11].

To calculate the GF (6.39), we use the POM introduced above. As a result, we
derive the following equation for the frequency matrix (6.21):

Eij� D hfŒ OXi� ;H�; OX�
j�giQ�1; fA;Bg D AB C BA; (6.40)

Q D hf OXi�; OX�
i�gi D O�0 � OQ ; OQ D

�
Q2 0

0 Q1

�
: (6.41)

Here, O�0 is the 2 � 2 unit matrix and in a paramagnetic state the coefficients Q2 D
hX22

i CX��
i i D n=2 and Q1 D hX00

i CX N� N�
i i D 1�Q2 depend on the occupation

number of holes (6.34) only. In the Q matrix, we neglected anomalous averages of
the type hX02

i i which give no contribution to the d -wave pairing.
Frequency matrix (6.40) determines quasiparticle (QP) spectrum in the GMFA

given by poles of the zeroth-order GF:

G.0/
� .q; !/ D

�
! Q�0 � E� .q/

	�1
Q;

E� .q/ D .1=N /
X
Rij

Eij� expfi.q � Rij /g; (6.42)

where Q�0 is 4�4 unit matrix. According to (6.27), the Dyson equation in the .q; !/-
representation can be written as,

.G� .q; !//
�1 D �G0

� .q; !/
��1 �˙�.q; !/; (6.43)

where the self-energy matrix (6.28) reads,

˙�.q; !/ D Q�1hh OZ.ir/
q� j OZ.ir/�

q� ii.prop/
! Q�1: (6.44)

The system of equations (6.40)–(6.44) give an exact representation for the GF
(6.39). To obtain a closed system of equations, we have to evaluate the multiparticle
GF in the self-energy operator (6.44), which describes processes of inelastic
scattering of electrons (holes) on charge and spin fluctuations due to kinematic
interaction.
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6.3.3 Mean-Field Approximation

The superconducting pairing in the Hubbard model already occurs in the GMFA and
is caused by the kinetic exchange interaction as proposed by Anderson [36,37]. It is
therefore reasonable to consider the GMFA described by the GF (6.42) separately.
Using commutation relations for the HOs (6.36), we evaluate the frequency matrix
(6.40),

Eij� D
 
O"ij� O�ij�

O��
ij� �O"j i N�

!
; or E� .k/ D

 
O"� .k/ O��.k/
O��
�.k/ �O" N� .k/

!
: (6.45)

The matrix O"�.k/ determines the QP spectrum in the two Hubbard subbands in the
normal state (for details, see [32, 38]),

"1;2.k/ D .1=2/Œ!2.k/C !1.k/�� .1=2/�.k/;
�.k/ D fŒ!2.k/� !1.k/�2 C 4W.k/2g1=2; (6.46)

where !1.k/ D 4t ˛1.k/C 4t 0 ˇ1 0.k/�
, !2.k/ D 4t ˛2.k/C 4t 0 ˇ2 0.k/C
U � 
; and W.k/ D 4t ˛12.k/ C 4t 0 ˇ12 0.k/. The kinematic interaction
renormalizes the spectrum: ˛1.2/ D Q1.2/Œ1 C C1=Q

2
1.2/�; ˇ1.2/ D Q1.2/Œ1 C

C2=Q
2
1.2/� , ˛12 D

p
Q1Q2Œ1 � C1=Q1Q2�; ˇ12 D pQ1Q2Œ1 � C2=Q1Q2� .

Here, we go beyond the Hubbard I renormalization of hopping parameters given
by the factors Q1.2/ and take into consideration the renormalization caused by spin
correlation functions for the nearest and the second nearest neighbors, respectively:

C1 D hSiSi˙ax=ay i; C2 D hSiSi˙ax˙ay i : (6.47)

They considerably suppress the hopping parameters for the nearest neighbors:
˛1.2/ � 1 due to short-range antiferromagnetic (AF) correlations which are large
in the underdoped state, C1 < 0; jC1j D 0:1 � 0:2, and Q1.2/ � 1=2. It should be
pointed out that the DMFT fails to take into account a rather strong renormalization
induced by AF correlations. For large U � 8t , we can neglect charge correlations
in the renormalization of the frequency matrix O"�.k/ by using the mean-field
approximation: hNiNj i D hNii hNj i.

Now we evaluate the anomalous component O�ij� of matrix (6.45), which
determines the superconducting gap. In what follows, we consider only the singlet
d -type pairing, which is determined by the anomalous averages at noncoincident
sites, .i ¤ j /. The diagonal matrix components have the forms,

�22
ij� D ��tij hX02

i Nj i=Q2; �11
ij� D �tij hNjX02

i i=Q1: (6.48)

Expressing the Fermi operators in terms of the Hubbard operators as ai� D
X0�
i C �X N�2

i , we can write the anomalous averages in (6.48) as hai# ai"Nj i D
hX0#

i X
#2
i Nj i D hX02

i Nj i , because the other products of the Hubbard operators
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do not contribute, in accordance with the multiplication rules, X˛
i X

�ˇ
i D ı;�X˛ˇ

i .
This representation of the anomalous averages in terms of the Fermi operators shows
that the pairing occurs at a single site but in different Hubbard subbands.

The anomalous averages hX02
i Nj i can be calculated directly by using the

equation for the pair commutator GF Lij .t� t 0/ D hhX02
i .t/ j Nj .t 0/ii without any

decoupling approximations [26]. Below we consider the pair correlation function
of the two-hole subband, in which the pairing occurs under the hole doping,
n D 1C ı > 1:

hX02
i Nj i D �

1

U

X
m¤i;�

� timhX�2
i X

N�2
m Nj i ' �

4tij

U
� hX�2

i X
N�2
j i: (6.49)

The last equation is obtained in the two-site approximation, m D j , which is
typically used in the t–J model. As a result, the equation for the superconducting
gap (6.48) in the case of hole doping can be written as,

�22
ij� D �� tij hX02

i Nj i=Q2 D Jij hX�2
i X

N�2
j i=Q2: (6.50)

This is equivalent to the gap equation in the t–J model which describes a pairing
due to the exchange interaction Jij D 4 .tij /

2=U [25]. A similar gap equation
can be obtained in the one-hole Hubbard subband in the case of electron doping:
�11
ij� D Jij hX0 N�

i X
0�
j i=Q1. We thus conclude that anomalous averages (6.48) in

the Hubbard model correspond to the anomalous averages in one of the Hubbard
subbands (depending on the position of the chemical potential) in the t–J model.
Therefore, this is just conventional pairing mediated by the exchange interaction
which has been extensively studied within the t–J model (see, e.g., [25] and
references therein).

The same anomalous pair correlation functions (6.48) were obtained in the
GMFA for the original Hubbard model (6.1) in [28–31]. To calculate the anomalous
correlation function

˝
ci#ci"Nj

˛
in [28, 31], the Roth procedure, based on a

decoupling of the operators on the same lattice site in the time-dependent correlation
function, hci#.t/jci".t 0/Nj .t 0/i , was used. However, the decoupling of the Hubbard
operators on the same lattice site is not unique (as it has been really observed
in [28, 31]) and unreliable. To avoid the uncontrollable decoupling, kinematical
restrictions were imposed on the correlation functions for the Hubbard operators in
[29,30]. However, it also has not produced a unique solution for the superconducting
equations.

6.3.4 Self-Energy Operator

Self-energy operator (6.44) can be conveniently written in the same form as the
GF (6.39),

˙ij� .!/ D Q�1
 OMij� .!/ O̊

ij� .!/
O̊ �
ij� .!/ � OMji N�.�!/

!
Q�1 ; (6.51)
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where the matrices OM and O̊ denote the respective normal and anomalous compo-
nents of the self-energy operator.

The system of equations for the .4 � 4/ matrix GF (6.39) and the self-energy
(6.51) can be reduced to a system of equations for the normal OG�.k; !/ and
anomalous OF�.k; !/ .2 � 2/ matrix components. By using representations for the
frequency matrix (6.45) and the self-energy (6.51), we derive for these components
the following system of matrix equations,

OG�.k; !/ D
� OGN.k; !/�1 C O'�.k; !/ OGN .k;�!/ O'�� .k; !/

	�1 OQ ; (6.52)

OF �
� .k; !/ D � OGN .k;�!/ O'�� .k; !/ OG�.k; !/: (6.53)

In (6.52), we introduced the normal state matrix GF and the matrix superconducting
gap function,

OGN.k; !/ D
�
! O�0 � O".k/ � OM.k; !/= OQ

	�1
; (6.54)

O'�.k; !/ D O��.k/C O̊� .k; !/= OQ: (6.55)

To calculate the self-energy matrix (6.44), we use the noncrossing (NCA) or the
self-consistent Born approximation (SCBA), which can be also called as the MCA.
In this approximation, Fermi-like excitations described by the operators Xj D
X0�
j .X N�2

j / and Bose-like excitations described by the operators Bi (6.38) in the
multiparticle GF (6.44) are assumed to propagate independently, and, therefore,
their correlation functions at noncoincident lattice sites .i ¤ j; l ¤ m/ can be
factored into a product of the corresponding functions:

hBi.t/Xj .t/Bl .t 0/Xm.t 0/i ' hXj.t/Xm.t 0/ihBi.t/Bl .t 0/i: (6.56)

Using the spectral representation for these correlation functions, we get in the NCA
the following expressions for the normal M˛˛

� .q; !/ and anomalous ˚˛˛
� .q; !/

diagonal components of the self-energy:

M22
� .k; !/ D

1

N

X
q

C1Z

�1
dzK.C/.!; zjq;k� q/

� ˚�.1=�/ Im
�
G22
� .q; z/CG11

� .q; z/
��
; (6.57)

˚22
� .k; !/ D

1

N

X
q

C1Z

�1
dzK.�/.!; zjq;k � q/

� ˚�.1=�/ Im
�
F 22
� .q; z/ � F 11

� .q; z/
��
; (6.58)

whereG˛˛
� .q; z/ andF ˛˛

� .q; z/ are given by the diagonal components of the matrices
(6.52) and (6.53). Analogous expressions hold for M11

� .k; !/ and ˚11
� .k; !/ [35].
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The kernel of the integral equations (6.57), (6.58) has a form, similar to the strong-
coupling Eliashberg theory [39],

K.˙/.!; zjq;k � q/ D jt.q/j2 1
�

C1Z

�1

d	

! � z� 	
1

2

h
tanh

z

2T
C coth

	

2T

i

�Im�.˙/sc .k � q; 	/; (6.59)

where the interaction is defined by the hopping parameter t.q/ (6.33). The spectral
density of bosonic excitations in (6.59) is determined by the dynamic susceptibility
for the Bose-like operators Bi .t/ – spin and number (charge) fluctuations,

�.˙/sc .q; 	/ D �s.q; 	/˙ .1=4/ �c.q; 	/ ; (6.60)

where we introduced the dynamical spin and number susceptibility determined
by the commutator GF for fluctuations of spins �s.q; 	/ D �hhSqjS�qii	 , and
numbers �c.q; 	/ D hhNqjN�qii	 . The renormalized QP spectrum in the two-
hole subband in the normal state is determined by the equation (6.54): Q"2.k/ '
"2.k/ C ReM22

� .q; ! D Q"2.k//=Q2 , and the gap function (6.55) is defined as
'2;� .k; !/ D �22

� .k/C ˚22
� .k; !/=Q2.

In the NCA, the vertex corrections are neglected as in the Migdal–Eliashberg
theory. For the electron–phonon system the vertex corrections are small in the
adiabatic approximation, as shown by Migdal [40]. The kinematic interaction
induced by the intraband hopping is of the same order as the bandwidth and vertex
corrections may be important in obtaining quantitative results. However, in the NCA
the self-energy is calculated self-consistently allowing to consider a strong coupling
limit which plays an essential role both in the renormalization of QP spectra and in
superconducting pairing. Thus, this approach can be considered as a first reasonable
approximation. Concerning the spin fluctuation contribution, it should be pointed
out that the NCA is quite reliable in this case since a certain set of diagrams, in
particular the first crossing diagram [41], vanish due to kinematic restrictions for
spin scattering processes.

6.3.5 Equation for Superconducting Gap and Tc

In this section, we discuss equations for the superconducting gap (6.55) and Tc at
the case of hole doping. The linearized gap equation in the Matsubara frequency
representation, !n D i�T .2nC 1/, can be written as,

'2;� .k; i!n/ D T

N

X
q

X
m

f J.k� q/C �.�/.q;k � q j i!n � i!m/g

�G22
N .q;�i!m/G22

N .q; i!m/ '2;� .q; i!m/: (6.61)
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The interaction function determined by the spin susceptibility is given by the
equation,

�.�/.q;k� q j i!	/ D �jt.q/j
2

�

Z 1

0

2	 d	

	2 C .!	/2 ŒIm �.�/sc .k � q; 	/�: (6.62)

To calculate Tc and to find the gap function, one should solve the linear equation
(6.61) in .k; !n/-space which determines the eigenvalue and the eigenfunction. In
the strong-coupling limit within the Eliashberg-type theory, the full normal-state
GFs (6.54) calculated self-consistently with the self-energy (6.57) should be used as
has been implemented for the single-band t–J model in [25].

To discuss the pairing in the Hubbard model, we consider at first a weak-coupling
approximation (WCA) for the gap function equation (6.55). In the WCA, the kernel
(6.59) of the integral equation (6.58) is approximated by its value near the Fermi
energy for j!; zj � 
 as follows:

K.!; zjq;k � q/ D �jt.q/j2 �.�/sc .k� q/ .1=2/ tanh.z=2T /; (6.63)

where �.�/sc .q/ D Re�.�/sc .q; 	 D 0/ is the static susceptibility. In the WCA, the
self-energy contributions in the normal-state GFs in equation (6.61) are neglected
and the equation for the gap function at the Fermi energy �.k/ D '2;� .k; ! D 0/

can be written approximately as:

�.k/ D 1

N

X
q

�
J.k � q/� jt.q/j2 �.�/sc .k� q/

� Z2.q/
2"2.q/

tanh
"2.q/
2T

: (6.64)

In this equation, we take into account only the contribution from the two-hole
subband on the FS whereZ.q/ D 1�b.q/ is the QP weight reduced by the subband
hybridization b.q/ (see [38]). A numerical solution of this reduced equation has
been obtained in [26] in the limit of weak hybridization, b.q/ � 1, by taking
into account both the exchange J.k � q/ and the spin-fluctuation contribution for a
model spin-susceptibility �s.k � q/. The d -wave pairing with high T max

c � 200K
was found.

Concerning the mechanism of pairing in the Hubbard model, we can draw
the following general conclusion from the gap equations (6.61) or (6.64). These
equations show that there are two channels of pairing. The first one is mediated
by interband hopping and is determined by the AF exchange interaction J.k � q/,
which is usually considered in the RVB-type theories [36, 37]. There are no
retardation effects for the exchange pairing because of a large hopping energy
U � t that results in pairing of all electrons (holes) in the doped subband as shown
in Fig. 6.1. The second contribution comes from the spin and charge-fluctuation
pairing / �

.�/
sc .k� q/ induced by intraband hopping, which is only possible in

a range of energies ˙!s near the FS, as in the BCS theory. This type of pairing
is usually considered in phenomenological spin-fermion models where only the
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Fig. 6.1 Antiferromagnetic exchange pairing mediated by interband hopping t 12

Fig. 6.2 Spin-fluctuation pairing mediated by intraband hopping t 22

spin-fluctuation contribution / �s.k � q/ is considered as sketched in Fig. 6.2 (for
a review, see [42]). The spin-fluctuation interaction is repulsive and can produce
pairing only for an alternating-sign gap on the FS, as the d -wave gap.

To estimate both contributions, we consider the equation for the d -wave gap
�.k/ D �0 .coskx � cos ky/=2 	 �0 �.k/. By multiplying the equation (6.64) by
�.k/ and integrating over k, we obtain a conventional BCS equation for Tc:

1 D
eW�
Z

�


d�

2�
tanh

�

2Tc
ŒJ Nd .�/C �.!s � j�j/ �sfNsf.�/� ; (6.65)

where Nd.�/ and Nsf.�/ are the density of electronic states for the exchange and
spin-fluctuation interactions, respectively, weighted with the d -wave factor Œ�.k/�2.
In the first term, the integration is extended over the whole effective subband
width eW , while in the second spin-fluctuation contribution �sf � t2eff=!s the
integration is restricted to the characteristic spin-fluctuation energy !s � J [26]. By
solving equation (6.65) in the conventional logarithmic approximation, we obtain
for the exchange pairing T ex

c D Œ
.eW � 
/�1=2 exp.�1=Vex/; and for the spin-
fluctuation pairing T sf

c D !s exp.�1=Vsf/ where the effective coupling constants
Vex � J Nd.0/ and Vsf � �sfNsf.0/. It is remarkable that Tc;ex is proportional to
Fermi energy and even for a weak coupling can be large for 
 � .1=2/eW . By
taking into account both contributions, the superconducting temperature in WCA
can be written as

TWCA
c D !s exp.�1=eV sf/; eV sf D Vsf C Vex

1 � Vex ln.
=!s/
: (6.66)

In the conventional superconductors, the nonretarded Coulomb repulsion suppresses
the pairing, while in (6.66) the nonretarded exchange attraction Vex enhances the
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pairing due to the large ratio 
=!s. Therefore, even for originally weak coupling,
Vsf ' Vex ' 0:2 (e.g., by assuming !s ' J ' 0:13 eV, �s ' 0:2 eV, N.
/ �
1 eV�1), and for a narrow bandwidth eW ' 8teff D 1:6 eV we obtain T ex

c ' 60K for
a half-filled band 
 D eW =2 and T sf

c ' 10K, while according to (6.66) TWCA
c '

200K for eV sf ' 0:5. However, a strong reduction of the WCA value for Tc is
observed as we have found in solving of the full gap equation (6.61) in the strong-
coupling theory.

To conclude, we have unambiguously proved that the repulsive Hubbard model
provides superconducting d -wave pairing mediated by the AFM exchange inter-
action and spin-fluctuation scattering induced by the kinematic interaction charac-
teristic to systems with strong correlations. These mechanisms of superconducting
pairing are absent in the fermionic models (for a discussion, see [43]) and are
generic for cuprates. Therefore, we believe that the proposed superconducting
pairing is a relevant mechanism of high-temperature superconductivity in copper-
oxide materials. For a quantitative comparison of the theoretical results with
experiments in cuprates, one should also to consider contributions from the long-
range part of the Coulomb interaction (known as the pseudopotential 
�) and from
the electron–phonon interaction. The latter may be important in explaining the
isotope shift both for Tc and the magnetic penetration depth � due to polaron effects
in the QP spectra [44] but seems to be not efficient in the superconducting d -wave
pairing (for a discussion see [27]).

6.4 Spin-Excitation Spectrum

In the previous section, we consider an application of the POM to study fermionic-
type QP excitations in the Hubbard model. At the same time, the Mori projection
technique was extensively used in considering bosonic-type excitations as spin
waves or density fluctuations (see [15]). In this section, we demonstrate that the
POM can be also effectively used in study of the dynamical spin susceptibility
(DSS) in SCES within the t–J model, both in the normal and in the superconducting
states [45–47]). A similar approach based on a simplified version of the POM and
the original Mori memory function has been used in [48–51]. An application of
the POM to study the magnetic resonance mode observed in the superconducting
cuprates is discussed at the end of the section.

6.4.1 Dynamical Spin Susceptibility

Spin excitation spectrum is described by the DSS related to the retarded commutator
GF defined in Sect. 6.2.1:

�.q; !/ D �hhSC
q jS��qii! D �

X
Rij

expf�iq � Rij g hhSC
i jS�

j ii!: (6.67)
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For a spin-ordered state, ferromagnetic or antiferromagnetic, the POM can be
directly applied to the two-time GF as discussed in Sect. 6.2.2. In particular, the
method was used in [17] to show that the POM allows to reproduce results of
the diagram technique for the spectrum of spin excitations in the ferromagnetic
Heisenberg model [9]. In the paramagnetic state with zero sublattice magnetization,
an average of the commutator hŒSC

i ; S
�
j �i D 2ıij hS z

i i vanishes. Since just this
quantity enters as an initial condition .t D 0/ in the equation of motion for the GF
(6.3), it is more convenient to construct the self-consistent equation for the Kubo–
Mori relaxation function (6.9) ˚.q; !/ D ..SC

q jS��q//! coupled to the DSS (6.67)
by the equation (6.11),

! ˚.q; !/ D �q � �.q; !/; (6.68)

where �q 	 �.q; 0/ D .SC
q jS��q/ is the static spin susceptibility.

By differentiating the relaxation function ˚.q; t � t 0/ D ..SC
q .t/jS��q.t

0/// over
two times, t and t 0, and using the POM we derive the equation,

˚.q; !/ D ..SC
q jS��q//! D

�q

! �M.q; !/=�q
: (6.69)

Here, the memory function (MF) M.q; !/ is defined by the proper part of the
scattering matrix for the spin currents Jq̇ D i PSq̇ ,

M.q; !/ D ..i PSC
q j � i PS��q//

.proper/
! : (6.70)

The irreducible spin operator here fi PSq̇ girr D i PSq̇ due to the orthogonality

condition: .i PSq̇ jS��q/ D hŒSq̇ ; S
��q�i D 0 .

In the study of the single-particle spectrum in Sect. 6.3.4, it was sufficient to
use the NCA (6.56) for the self-energy in terms of the first-order time derivatives
of the Fermi-like HOs. However, the spectrum of spin-density fluctuations Sq̇

should be defined by the forces Fq̇ D i 2 RSq̇ , i.e., the second time derivatives
of the spin operators. Therefore, we should consider equations for the current-
current relaxation function (6.70) in terms of the forces, Fq̇ D i PJq̇ D i 2 RSq̇ .
By analogy with the derivation of the equations for relaxation function (6.69), we
write equations of motion for the MF ..i PSC

q .t/j � i PS��q.t
0/// by differentiating

it over two times, t and t 0 and using the POM. Taking into account that the
irreducible spin operators here fi RSq̇ girr D i RSq̇ due to the orthogonality condition

.� RSq̇ j � i PS��q/ D hŒi PSC
q ;�i PS��q�i D 0 the following equation for the MF is

derived,

M.q; !/ D m.q/
! �˙.q; !/ ; (6.71)

where the static correlation function
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m.q/ D .i PSC
q j � i PS��q/ D hŒi PSC

q ; S
��q�i: (6.72)

The self-energy in (6.71) is defined by the proper part of the scattering matrix of
the second order,

˙.q; !/ D 1

m.q/
..� RSC

q j � RS��q//
.proper/
! : (6.73)

As was pointed out in Sect. 6.2.2, an introduction of the memory function (6.70)
and the self-energy (6.73) as the proper parts in the respective equations for the
scattering matrices is equivalent to consideration only the projected part of the
temporal dependence of correlation functions in the original Mori technique [14].

Using representations (6.69) for the relaxation function and (6.71) for the MF,
we obtain the final expression for the relaxation function,

˚.q; !/ D �q
! �˙.q; !/

!2 � !2q � ! ˙.q; !/
; (6.74)

where we introduced the frequency of spin excitations in a GMFA,

!2q D m.q/=�q : (6.75)

Therefore, using (6.68) we obtain an exact representation for the DSS,

�.q; !/ D �q � ! ˚.q; !/ D � m.q/
!2 � !2q � ! ˙.q; !/

: (6.76)

The spectrum of spin excitations is defined by the imaginary part of the DSS

Im�.q; !/ D �00.q; !/ D �! ˙ 00.q; !/m.q/
Œ!2 � !2q � ! ˙ 0.q; !/�2 C Œ! ˙ 00.q; !/�2

; (6.77)

where we introduced the real part ˙ 0.q; !/ D �˙ 0.q;�!/ and the imaginary
part ˙ 00.q; !/ D ˙ 00.q;�!/ of the self-energy operator, ˙.q; !/ D ˙ 0.q; !/ C
i˙ 00.q; !/. They are coupled by the dispersion relation,

˙ 0.q; !/ D 1

�

Z 1

�1
d!0

!0 � !˙
00.q; !0/: (6.78)

Coherent propagation of spin excitations is described by the static frequency !q,
while the self-energy operator ˙.q; !/ defines the incoherent part of the spectrum,
determined by inelastic scattering processes. To study the spin-excitation spectrum
for a particular system, a certain approximations should be adopted in calculations
of the self-energy (6.73), while the static susceptibility �q in (6.75) can be
estimated from the dispersion relation for the DSS,
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�q D �.q; 0/ D 1

�

Z C1

�1
d!

!
�00.q; !/: (6.79)

However, this nonlinear equation is difficult to treat self-consistently and usually
a certain approximate calculation of the static spin-excitation spectrum (6.75) is
performed which gives an approximate expression for the static susceptibility.

6.4.2 Spin Susceptibility in the t � J Model

In this section, we derive an expression for the DSS (6.76) for the t–J model.
The model follows from the Hubbard model (6.1) in the limit of strong electron
correlations, U � t , by exclusion of virtual hopping between the Hubbard
subbands. In terms of the Hubbard operators (HOs), the model reads

H D Ht CHJ D �
X
i¤j;�

tij X
�0
i X

0�
j � 


X
i�

X��
i

C 1
4

X
i¤j;�

Jij

�
X� N�
i X N��

j �X��
i X N� N�

j

	
; (6.80)

where tij is the hopping integral and Jij is the kinematic exchange interaction. Here,
the HOs describe transitions between three possible states at a site i on a square
lattice: an empty state ji; ˛i D ji; 0i and a singly occupied state ji; ˛i D ji; �i with
spin �=2 D ˙.1=2/; . N� D ��/. In terms of the HOs, the spin and the number
operators read (cf. (6.34) and (6.35)),

S�i D X� N�
i ; S z

i D
X
�

.�=2/X��
i ; Ni D

X
�

X��
i : (6.81)

The completeness relation in the t–J model for the HOs takes the form: X00
i CP

� X
��
i D 1. The chemical potential 
 is determined from the equation for

the average electron density n D hNii D 1 � ı, where ı D hX00
i i is the hole

concentration.

6.4.2.1 Static Magnetic Properties

The DSS (6.76) is determined by the static spin-excitation spectrum !q (6.75)
and the self-energy (6.73). To calculate the static spin-excitation spectrum !q, the
equality

m.q/ D .� RSC
q ; S

��q/ D !2q .SC
q ; S

��q/; (6.82)

is used, where the correlation function .� RSC
q ; S

��q/ is evaluated in the GMFA by a
decoupling procedure in the site representation as described in [46]. This procedure
is equivalent to the MCA for the equal-time correlation functions which results in
the spin-excitation spectrum
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!2q D 4J 2.1 � q/
�
�2
n

2
� ˛1C1;0.4q C 1/C ˛2.2C1;1 C C2;0/

�

C 8t2�1.1 � q/Œ1 � n� F2;0 � 2F1;1�: (6.83)

Here t and J are the hopping integral and the exchange interaction for the nearest
neighbors, respectively, and q D .1=2/ .cosqx C cos qy/ (we take the lattice
spacing ax D ay to be unity). The static electron and spin correlation functions
are defined as

Fn;m 	 FR D hX�0
0 X0�

R i D
1

N

X
q

FqeiqR; (6.84)

Cn;m 	 CR D hSC
0 S�

R i D
1

N

X
q

CqeiqR; (6.85)

where R D nax Cmay . The GMFA spectrum (6.83) is calculated self-consistently
by using the MFA approximation for the static correlation function (6.85),

Cq D hSC
q S

��qi D
m.q/
2 !q

coth
ˇ !q

2
: (6.86)

The decoupling parameters ˛1; ˛2 and �1; �2 in (6.83) take into account the vertex
renormalization for the spin–spin and electron–spin interaction, respectively, as
explained in [46]. In particular, the parameters ˛1; ˛2 are evaluated from the results
for the Heisenberg model at ı D 0 and are kept fixed for ı ¤ 0. The parameters
�1; �2 are calculated from the sum rule C0;0 D hSC

0 S
�
0 i D .1=2/.1 � ı/ with

a fixed ratio �1=�2 D 0:378. The variation of the parameters �1; �2 below the
superconducting transition is negligibly small and practically has no influence on
the spectrum !q. The direct calculation of m.q/ yields

m.q/ D �8 .1 � q/ ŒJ C1;0 C t F1;0� : (6.87)

Thus, the static susceptibility �q D m.q/=!2q is explicitly determined by (6.83)
and (6.87).

The AF correlation length � is calculated by expanding the static susceptibility
in the neighborhood of the AF wave vector Q D .�; �/ , �QCk D �Q=.1C �2 k2/
which results in the expression,

�2 D 8J 2˛1jC1;0j=!2Q : (6.88)

The critical behavior of the model (6.80) is reflected by the divergence of �Q and �
as T ! 0, i.e., by !Q.T D 0/ D 0. In the phase with AF long-range order which,
in two dimensions, may occur at T D 0 only, the correlation function CR (6.85)
should be written as
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CR D 1

N

X
q¤Q

CqeiqR C C eiQR: (6.89)

The condensation part C determines the staggered magnetization which is defined
in the spin-rotation-invariant form as,

m2 D 3

2N

X
R

CRe�iQR D 3

2
C: (6.90)

The static susceptibility, the correlation functions, the correlation length, and the
magnetization were calculated in the GMFA for arbitrary temperatures and doping
in [46]). A good agreement with numerical simulations for finite clusters and
experiments in cuprates was found.

6.4.2.2 Spin Dynamics

To study spin dynamics and the spin-excitation spectrum determined by the DSS
(6.77), we should evaluate the self-energy operator (6.73). For this, the MCA is
used, as in Sect. 6.3.4, for the time-dependent multi-particle correlation function
which appears in the spectral representation of the self-energy,

˙ 00.q; !/ D � 1

2! m.q/
ŒI.q;�!/ � I.q; !/�;

I.q; !/ D
Z 1

�1
dt ei!th RS�

q j RSC�q.t/iproper: (6.91)

The second order time derivative of the spin operator,

� RSC
i D ŒŒSC

i ; .Ht CHJ /� ; .Ht CHJ /� 	
X
˛

F ˛
i ; (6.92)

determines the force operators F ˛
i denoted by the index ˛ D t t; tJ; J t; JJ

respective to the commutation with Ht or HJ terms in the Hamiltonian (6.80).
Therefore, the two-time correlation function in (6.91) yields 16 terms for the
self-energy ˙˛;ˇ.q; !/. In the Heisenberg limit at zero doping, ı D 0, only
the exchange interaction gives a contribution to the self-energy, ˙J .q; !/ D
..F JJ

q j.F JJ
q /C//!=m.q/. At a finite doping ı � 0:1, the term F tt

i gives the leading
contribution. Using the commutation relations for the Hubbard operators for the spin
operator SC

i D XC�
i we get for this term,
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io
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H�
ijn D X�0

i X
C�
j X0�

n CXC0
i .X00

j CX��
j /X0�

n : (6.93)
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After the Fourier transformation to the q-space, we obtain the force–force correla-
tion function

h ŒF t t
q �

� jF tt
q .t/i D .2t/4

X
q1;q2

X

q0

1 ;q
0

2

hŒ�q0
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2 ;q
0

3
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q0

1 ;q
0

2 ;q
0

3
C�q0

3;q
0

2;q
0

1
HC

q0

1 ;q
0

2;q
0

3
�� j (6.94)

Œ�q1 ;q2;q3 H
�
q1;q2 ;q3

.t/C�q3 ;q2;q1 H
C
q1;q2 ;q3

.t/�i;

where q3 D q � q1 � q2 and q0
3 D q � q0

1 � q0
2. Here we introduce the vertex

function
�q1q2q3 D 4.q3Cq2 � q1 / q3 C q2 � q1Cq3 ; (6.95)

where the terms linear in q reflect the exclusion of terms in F tt
i with coinciding

sites.
In the MCA, we assume that the propagation of electronic- and bosonic-type

excitations at different lattice sites in (6.93) occurs independently, which results in
the decoupling of the correlation function (6.94) into a product of the corresponding
time-dependent correlation functions. In this approximation, the spin-diagonal
correlation functions in the normal state reads,
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2
ıq3;q0

3
: (6.96)

Here, the contribution from the charge excitations given by .X00
j CX��

j / in (6.93) is

neglected in comparison with the spin-excitation contribution given byXC�
j D SC

j .
In the superconducting state, the pair correlation functions should be additionally
taken into account in the spin off-diagonal terms
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: (6.97)

Substituting the MCA correlation functions (6.96) and (6.97) into (6.91) we write
the multi-particle correlation function in the form,
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N 2
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X
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X0�
q3
.t/i�: (6.98)
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Using the spectral representation for the time-dependent correlation functions (6.5)
and (6.8) after integration over time t , the self-energy takes the form,

˙ 00
t .q; !/ D �

�.2t/4.eˇ! � 1/
m.q/ !

Z 1

�1

Z 1

�1

Z 1

�1
d!1d!2d!3

1

N 2

X
q1 ;q2

N.!2/Œ1 � n.!1/�n.!3/ı.! C !1 � !2 � !3/

Bq2.!2/
�
.�2

q1 ;q2;q3
C�2

q3 ;q2;q1
/ ANq1

.!1/ A
N
q3
.!3/

�2�q1;q2 ;q3�q3;q2 ;q1 A
S
q1�
.!1/ A

S
q3�
.!3/

�
; (6.99)

where q3 D q � q1 � q2. The Fermi and Bose functions are denoted by
n.!/ D .eˇ! C 1/�1 and N.!/ D .eˇ! � 1/�1, respectively. Here, we intro-
duced the spectral functions: ANq .!/ D �.1=�/ImhhX0�

q jX�0
q ii! , ASq� .!/ D

�.1=�/ImhhX0�
q jX0 N��qii! , and Bq.!/ D .1=�/ �00.q; !/, where AN;Sq .!/ are deter-

mined by the GFs for electrons in the normal and superconducting states. The real
part of the self-energy˙ 0

t .q; !/ can be found from the dispersion relation (6.78).
The spin-excitation spectrum defined by the DSS (6.77) with the self-energy

operator ˙.q; !/ D ˙J .q; !/C˙t.q; !/ was studied in a broad range of doping
and temperatures in [46]. At low doping, a spin-wave-type behavior was found as
in the Heisenberg model, while at higher doping a strong damping caused by hole
hopping occurs, and a relaxation-type spin dynamics was observed in agreement
with numerical simulations and experiments.

6.4.3 Magnetic Resonance Mode

In the superconducting state, the spin-excitation spectrum of high-Tc cuprates is
dominated by a sharp magnetic peak at the planar AF wave vector Q D �.1; 1/,
which is called the resonance mode (RM). The spin-excitation dispersion close
to the RM exhibits a peculiar “hour-glass”-like shape with upward and downward
dispersions. Whereas the RM energy changes with doping, no essential temperature
dependence of it was found. In the optimal doping region, the RM and both
dispersion branches vanish above Tc. In the strongly underdoped YBCO crystal,
only the downward dispersion vanishes above Tc, whereas the upward dispersion
and the RM are observed in the normal pseudogap state (for reviews see, e.g.,
[27, 52]). Since the energy of the RM scales with the superconducting temperature,
Er � 5:3kBTc, [52] it has been argued that it might constitute the bosonic excitation
mediating superconducting pairing in cuprates which has motivated an extensive
study of the RM phenomenon (see, e.g. [53]).

To explain the RM in superconducting cuprates, two basic approaches can be
singled out. In the first one, the RM is considered as a particle-hole bound state,
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usually referred to as a spin-1 exciton. In this approach, a Fermi-liquid model of
itinerant electrons is assumed and the DSS is calculated within the random phase
approximation (RPA) (for references, see, e.g., [53–56]). The state is formed below
the continuum of particle-hole excitations which is gapped at a threshold energy
!c � 2�.q�/ determined by the superconductingd -wave gap 2�.q�/ at a particular
wave vector q� on the Fermi surface (FS). In the Fermi-liquid approach, the d -
wave symmetry of the gap and a shape of the Fermi surface which should cross
the AF Brillouin zone (BZ) are essential in explaining the q- and !-dependence
of the RM. In particular, a difference of the magnetic neutron scattering in the
LSCO and YBCO compounds was explained by distinctions in the FS of these
compounds [54].

In the second approach, an importance of strong electron correlations is stressed
which are usually treated within the t–J model suitable for consideration of low-
energy spin dynamics. To take into account a projected character of electron
operators, the slave-boson technique (see, e.g., [57] and references therein) or a
more rigorous diagram technique for HOs [58] were used. In particular, calculations
of the DSS within the RPA revealed a sharp RM caused by opening of the
superconducting gap below Tc and low-energy collective excitations similar to the
Fermi-liquid models [59].

A more general Mori projection technique in the equation of motion method for
the relaxation function was used by several groups (see, e.g., [60–63]. To clarify
some of the open problems in describing the RM phenomenon (e.g., an appearance
of the RM above Tc and its temperature dependence), we calculated the DSS in
the superconducting state as described in the previous section and analyzed the
RM phenomenon [47]. Our general expression for the DSS (6.76) is similar to
that one obtained within the original Mori projection technique in previous studies
of the t–J model. However, in those calculations the DSS was approximated by
the bubble-type diagrams similar to the RPA which ignores an important role of
spin excitations in the decay process. We have found out that an energy gap in the
spin-excitation spectrum at the AF wave vector Q strongly reduces the damping
at low temperatures, T � Er ' 5 kBTc and bring about a sharp peak in the
spectral function, the RM excitation. In the low doping region, where the damping
is extremely small, the RM is found even above Tc. In the overdoped region at hole
concentration ı � 0:2 and T � Tc, the spin-excitation damping is large and opening
of the superconducting gap enhances the intensity of the RM, so that it becomes
observable only below Tc. Thus, as compared with the spin-exciton scenario, we
propose an alternative explanation of the RM which is driven by the spin gap at the
AF wave vector Q instead of the superconducting gap 2�.

6.4.3.1 Numerical Results

As a first step, the self-energy (6.99) is calculated by perturbation using the mean-
field approximation for the electron spectral functions and the spin-excitation
spectral function, respectively,
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ANq .!/ D Q
X

!1D˙Eq

Œ.!1 C "q/=2!1�ı.! � !1/ (6.100)

ASq� .!/ D Q
X

!1D˙Eq

Œ�q� =2!1�ı.! � !1/ (6.101)

Bq.!/ D m.q/
X

!1D˙ Q!q

Œ1=!1� ı.! � !1/: (6.102)

Here, Q D 1 � n=2 is the Hubbard weighting factor, Eq D
q
"2q C�2

q, and the

superconducting gap function �q� D .sgn �/�q. For the electron spectrum we
take the simplest approximation, "q D �4t Q q � 
"q, where t is the nearest-
neighbor hopping (cf. (6.46)). The spectrum of spin excitations e!q in (6.102) is
determined by the pole of the DSS, e!q D Œ!2qCe!q ˙

0.q;e!q/�
1=2 . After integration

over energies in (6.99) using these spectral functions, the self-energy can be written
in the form convenient for calculations in the limit T ! 0:
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X
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�2�q1;q2 ;q3�q3 ;q2;q1�q1�q3

�
ı.! C !1 � !2 � !3/:

It should be emphasized that the self-energy (6.99) or (6.103) is determined by
the decay of a spin excitation with the energy ! and wave vector q into three
excitations: a particle-hole pair and a spin excitation. This process is controlled
by the energy and momentum conservation laws, ! D .!3 � !1/ C !2 and
q D q1Cq2Cq3, respectively. In previous studies of the t–J model, the contribution
of the additional spin excitation has been neglected (see, e.g., [59]) or approximated
by static or mean-field-type expressions (see, e.g., [60] and [61]) which results in
the fermion-bubble approximation for the self-energy as in the RPA. The fermion-
bubble approximation follows from (6.99), if we ignore the time dependence of the
spin correlation function in the MCA (6.96), (6.97) and exclude the spin-excitation
wave vector q2 by averaging over it in (6.99). Using the spectral densities (6.100)–
(6.102), we obtain the fermion-bubble approximation for the self-energy,

ė 00
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In the numerical calculations in [47], both the d -wave and s-wave symmetry
of the superconducting gap �

.d/
q D .�=2/.cosqx � cos qy/ and �.s/ D �

were considered with the temperature-dependent amplitude �.T /. To compare the
numerical results with experiments, two doping values ı D 0:2, close to the optimal
doping, and ı D 0:09 for the underdoped case were considered. Below we present
only few results referring to a more interesting underdoped case when the RM is
observed even above Tc, while a detailed discussion can be found in [47].

To elucidate the role of spin excitations in the damping and their relevance to
the shape of the spectral function, (6.77), the temperature dependence of the spin-
excitation damping at the AF wave vector, � .Q; !/ D �.1=2/˙ 00

t .Q; !/, was
calculated. Figure 6.3 shows the damping for ı D 0:09 at various temperatures in the
case of the d -wave gap. A weak and smooth variation of the damping with energy
is revealed below Tc contrary to a sharp suppression of the damping in the fermion-
bubble approximation (6.104). As numerical calculations show, a sharp increase
of �q away from the AF wave-vector Q explains the resonance character of spin
excitations at Q. In Fig. 6.4, the temperature dependence of the spectral function
�00.Q; !/ for ı D 0:09 is plotted. The RM energy weakly depends on temperature
and is still quite visible at T D Tc and even at T D 1:4Tc. In comparison with the
results for the overdoped case, the resonance energy decreases with underdoping,
while the intensity of the RM greatly increases. A general good agreement with
neutron-scattering experiments in cuprates was obtained concerning the doping

Fig. 6.3 Spin-excitation
damping � .Q; !/ for
ı D 0:09 at T � Tc for the
d -wave pairing

Fig. 6.4 Temperature
dependence of the spectral
function �00.Q; !/ at
ı D 0:09
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and temperature dependence of the RM energy Er. For instance, no temperature
dependence was found for Er in the underdoped ortho-II YBCO6:5 single crystal
with Er D 33meVD 6:5 kBTc [64] and for the local spin susceptibility in the
YBCO6:6 single crystal with Tc D 61K and Er D 38meV [65, 66].

Quite a different behavior of the damping and the spectral function is obtained
for the self-energy (6.104). In the fermion-bubble approximation, a step-like
dependence of the damping is observed for ! � 2� at T � Tc for a large FS in the
overdoped case as was also found in [60]. Moreover, the RM energy Er noticeably
decreases with increasing temperature caused by decreasing the superconducting
gap 2�.T /, contrary to a negligible shift of the RM shown in Fig. 6.4 for T D 0:4Tc.
This comparison demonstrates that in the fermion-bubble approximation (6.104)
the superconducting gap plays a crucial role in the occurrence of the RM with
Er.T / < 2�.T /, while in the full self-energy (6.103) the superconducting gap and
details of the electron dispersion and the FS are less important.

This difference can be explained as follows. Whereas in the fermion-bubble
approximation (6.104) the spin excitation with the energy ! at the wave vector Q
can decay only into a particle-hole pair with the energy !.Q/ D EQCq C Eq, in a
more general process described by (6.103) an additional spin excitation participates
in the scattering. In the limit T ! 0, the decay process in this case is governed
by another energy-conservation law, !.Q/ D Eq3 C Eq1 C e!q2 where the largest
contribution from the spin excitation comes frome!q2 ' e!Q due to the factor m.q2/
(6.87) in (6.103). This energy-momentum conservation law strongly reduces the
phase space for the decay and suppresses the damping of the initial spin excitation
with the energy !.Q/. In fact, the occurrence of an additional spin excitation
in the scattering process with the finite energy e!Q plays a role similar to the
superconducting gap in the excitation of the particle-hole pair in (6.104). Therefore,
the damping at low temperatures (kB T � e!Q � Er) appears to be small even in
the normal state as numerical calculations show [47]. In the case of the particle-hole
relaxation, the condition for the occurrence of the RM, !.Q/ D EqCQ C Eq �
2�.q�/, imposes a strong restriction on the shape of the FS which should cross
the AF Brillouin zone to accommodate the scattering vector Q and the vector q�
on the FS (see, e.g. [56]). In particular, in the underdoped case with a small FS
the energy-momentum conservation law cannot be fulfilled and the RM does not
appear.

To conclude, a detailed study of the DSS in the superconducting state has
revealed an important role of the spin-excitation damping in the RM phenomenon.
We have found that the low-temperature damping essentially depends on the gap
e!Q ' Er in the spin-excitation spectrum at the AF wave vector Q, while the opening
of a superconducting gap 2� below Tc is less important contrary to the fermion-
bubble approximation and the RPA in the Fermion-liquid models. A good agreement
of our results for the temperature and doping dependence of the spin-excitation
spectrum and the RM with inelastic neutron-scattering experiments provides a
strong support for the proposed theory.
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6.5 Conclusion

The projection operator method, as was demonstrated in previous sections, is a
powerful tool in calculation of the excitation spectrum within the equation of motion
method for the two-time Green functions. The method is especially useful in study
of the SCES where a conventional diagram technique cannot be used, while, in the
absence of a small parameter, the perturbation theory is unreliable. The method
is equally effective both in study of the single-particle Fermion-like excitations
considered in Sect. 6.3, and the collective spin excitations in Sect. 6.4. A completely
self-consistent theory of electronic spectrum and superconducting pairing within the
Hubbard model can be developed by using the projection operator method for the
electronic Green functions and the dynamical spin (and charge) susceptibility.
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62. I. Sega, P. Prelovšek Phys. Rev. B 73, 092516 (2006)
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Chapter 7
Dynamical Mean-Field Theory

Dieter Vollhardt, Krzysztof Byczuk, and Marcus Kollar

Abstract The dynamical mean-field theory (DMFT) is a widely applicable approx-
imation scheme for the investigation of correlated quantum many-particle systems
on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular,
the combination of the DMFT with conventional methods for the calculation of
electronic band structures has led to a powerful numerical approach which allows
one to explore the properties of correlated materials. In this introductory article
we discuss the foundations of the DMFT, derive the underlying self-consistency
equations, and present several applications which have provided important insights
into the properties of correlated matter.

7.1 Motivation

7.1.1 Electronic Correlations

Earlier in 1937, at the outset of modern solid state physics, de Boer and Verwey
[1] drew attention to the surprising properties of materials with incompletely filled
3d -bands. This observation prompted Mott and Peierls [2] to discuss the interaction
between the electrons. Ever since transition metal oxides (TMOs) were investigated
intensively [3]. It is now well-known that in many materials with partially filled
electron shells, such as the 3d transition metals V and Ni and their oxides, or
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4f rare-earth metals such as Ce, electrons occupy narrow orbitals. The spatial
confinement enhances the effect of the Coulomb interaction between the electrons,
making them “strongly correlated.” Correlation effects can lead to profound quan-
titative and qualitative changes of the physical properties of electronic systems as
compared to non-interacting particles. In particular, they often respond very strongly
to changes in external parameters. This is expressed by large renormalizations
of the response functions of the system, e.g., of the spin susceptibility and the
charge compressibility. In particular, the interplay between the spin, charge and
orbital degrees of freedom of the correlated d and f electrons and with the lattice
degrees of freedom leads to an amazing multitude of ordering phenomena and
other fascinating properties, including high temperature superconductivity, colossal
magnetoresistance and Mott metal–insulator transitions (MIT) [3].

7.1.2 The Hubbard Model

The simplest microscopic model describing the interaction with electrons in a solid
is the one-band, spin-1/2 Hubbard model [4–6] where the interaction between the
electrons is assumed to be so strongly screened that it is purely local. More generally
the Hubbard model applies to lattice fermions with a point interaction, such as ultra-
cold fermionic atoms in optical lattices where the interaction is indeed extremely
short ranged. The Hamiltonian consists of two terms, the kinetic energy OH0 and the
interaction energy OHI (the operators here and in the following equations are denoted
by a hat):

OH D OH0 C OHI (7.1a)

OH0 D
X
i;j

X
�

tij OcC
i� Ocj� D

X
k;�

�k Onk� (7.1b)

OHI D U
X
i

Oni" Oni#; (7.1c)

where OcC
i� . Oci� / are creation (annihilation) operators of fermions with spin � at site

Ri (for simplicity denoted by i ), and Oni� D OcC
i� Oci� . The Fourier transform of the

kinetic energy in (7.1b), where tij is the amplitude for hopping between sites i and
j , involves the dispersion �k and the momentum distribution operator Onk� . This
model provides the basis for most of the theoretical research on correlated electrons
during the last decades.

The Hubbard model describes an interacting many-body system which cannot be
solved analytically, except for dimension d D 1, for nearest-neighbor hopping [7].
In the absence of exact solutions there is clearly a great need for reliable, controlled
approximation schemes for this model. However, such approximations are not
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easy to construct as the following observation shows. When viewed as a function
of time a given site of the lattice will sometimes be empty, singly occupied or
doubly occupied. For strong repulsion U double occupations are energetically very
unfavorable and are therefore strongly suppressed, implying h Oni" Oni#i ¤ h Oni"ih Oni#i.
Therefore approximation schemes based on the factorization of the interaction term,
e.g., Hartree–Fock-type mean-field theories, are generally insufficient to explain
the physics of electrons in their paramagnetic phase beyond the limit of weak
interactions. This is due to the fact that in such approximations the interaction is
described only as an average, static potential, whereby correlations, i.e., dynamical
many-body effects due to the interaction of individual electrons, are excluded
from the beginning. Hence correlation phenomena such as the Mott–Hubbard
MIT cannot be described by such approximations. This clearly shows the need
for comprehensive approximation schemes, which are applicable for all values of
the input parameters, e.g., coupling parameters and temperature, diagrammatically
controlled, and thermodynamically consistent [8].

7.1.3 Construction of Comprehensive Mean-Field Theories
for Many-Particle Models

There exists a well-established branch of approximation techniques which makes
use of the simplifications that occur when some parameter is taken to be large
(in fact, infinite), e.g., the length of the spins S , the spin degeneracy N , the
spatial dimension d , or the coordination number Z, i.e., the number of nearest
neighbors of a lattice site.1 Investigations in this limit, supplemented if possible by
an expansion in the inverse of the large parameter, often provide valuable insights
into the fundamental properties of a system even when the inverse parameter is not
very small.

One of the best-known mean-field theories in many-body physics is the Weiss
molecular-field theory for the Ising model [10]. It is a prototypical single-site mean-
field theory which becomes exact for infinite-range interaction, as well as in the
limit of the coordination number Z ! 1 or the dimension d ! 1. In the latter
case 1=Z or 1=d is a small parameter which can be used to improve the mean-
field theory systematically. This mean-field theory is comprehensive in the sense
discussed above. Namely, it contains no unphysical singularities, is applicable for

1The coordination number Z is determined by the dimension d and the lattice structure. Already
in d D 3 the coordination number can be quite large, e.g.,Z D 6 for a simple cubic lattice,Z D 8

for a bcc-lattice and Z D 12 for an fcc-lattice, making its inverse, 1=Z, rather small. It is then
natural to consider the limit Z ! 1 to simplify the problem. For a hypercubic lattice, obtained
by generalizing the simple cubic lattice in d D 3 to arbitrary dimensions, one has Z D 2d .
The limit d ! 1 is then equivalent to Z ! 1. Several standard approximation schemes
which are commonly used to explain experimental results in dimension d D 3 are exact only in
d;Z D 1 [9].
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all values of the input parameters, i.e., the coupling parameter, magnetic field, and
temperature, and is diagrammatically controlled [11].

Itinerant quantum mechanical models such as the Hubbard model and its
generalizations are much more complicated than classical, Ising-type models.
Generally there is no semiclassical approximations for such models that might
serve as a starting point for further investigations. Under such circumstances the
construction of a mean-field theory with the comprehensive properties of the
Weiss molecular field theory for the Ising model will necessarily be much more
complicated, too. Here the limit of high spatial dimensions d or coordination
number Z has again been extremely useful since it provides the basis for the
construction of a comprehensive dynamical mean-field theory (DMFT) for lattice
fermions.

In this article we will first discuss (Sect. 7.2) the limit of high spatial dimensions
d for lattice fermions, the scaling of the hopping amplitude which is necessary to
obtain a meaningful limit d ! 1 as well as the simplifications of the many-body
perturbation theory occurring in this limit. In Sect. 7.3 the self-consistency equations
obtained in the limit d !1 are derived which provide the basis for the DMFT for
correlated lattice fermions. An example for the many insights gained by the DMFT
is the Mott–Hubbard MIT discussed in Sect. 7.4. The application of the DMFT to
real correlated materials is described in Sect. 7.5. Brief introductions to the DMFT
for correlated systems in the presence of disorder (Sect. 7.6), correlated bosons in
optical lattices (Sect. 7.7), and systems in non-equilibrium (Sect. 7.8) are also given.
In Sect. 7.9 a summary and outlook is presented.

7.2 Lattice Fermions in the Limit of High Dimensions

7.2.1 Scaling of the Hopping Amplitude

We consider the kinetic energy term (7.1a) since the interaction term is purely local
and is thereby completely independent of the lattice structure and the dimension.
For hopping between nearest-neighbor (NN) sites i and j with amplitude tij 	 �t
on a d -dimensional hypercubic lattice with lattice spacing a, the dispersion �k is
given by

�k D �2t
dX
nD1

cos.kna/: (7.2)

The density of states (DOS) corresponding to �k is

Nd.!/ D
X
k

ı.„! � �k/; (7.3)
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which is the probability density for finding2 ! D �k for a random choice of k D
.k1; : : : ; kd /. If the ki are chosen randomly, �k in (7.2) is the sum of (independent)
random numbers �2t cos ki . The central limit theorem then implies [12] that in the
limit d !1 the DOS is given by a Gaussian

Nd.!/
d!1�! 1

2t
p
�d

exp

"
�
� !

2t
p
d

	2#
: (7.4)

Unless t is scaled properly with d this DOS will become arbitrarily broad and
featureless for d !1. Clearly only the scaling

t ! t�p
d
; t� D const:; (7.5)

(“quantum scaling”) yields a non-trivial limit d !1 for the DOS [12, 13].
The interaction term in (7.1) is seen to be purely local and independent of

the surrounding; hence it is independent of the spatial dimension of the system.
Consequently, the on-site interactionU need not be scaled. So we see that the scaled
Hubbard Hamiltonian

OH D � t�p
Z

X
hi;j i

X
�

OcC
i� Ocj� C U

X
i

Oni" Oni# (7.6)

has a nontrivial Z ! 1 limit, where both terms, the kinetic energy and the
interaction, are of the same order of magnitude and are thereby able to compete;
here hi; j i denotes NN sites i and j . It is this competition between the two terms
which leads to interesting many-body physics. Mathematically this is expressed by
the fact that the generic matrix elements of the commutator between the kinetic and
the interaction part of the Hamiltonian do not vanish in the d !1 limit.

The quantum scaling (7.5) was determined within a k-space formulation, but
it can also be derived within a position-space formulation as will be discussed
next.

7.2.2 Simplifications of the Many-Body Perturbation Theory

The most important consequence of the scaling (7.5) is the fact that it leads
to significant simplifications in the investigation of Hubbard-type lattice models
[12,14–19]. To understand this point better we take a look at the perturbation theory
in terms of U . At T D 0 and U D 0 the kinetic energy of the electrons is given by

2In the following we set the Planck constant „, the Boltzmann constant kB, and the lattice constant
a equal to unity.



208 D. Vollhardt et al.

E0
kin D �t

X
hi;j i

X
�

g0ij;� : (7.7)

Here g0ij;� D hOcC
i� Ocj� i0 is the one-particle density matrix which can be interpreted

as the probability amplitude for hopping from site j to site i . The square of its
absolute value is proportional to the probability for an electron to hop from j to i ,
i.e., jg0ij;� j2 � 1=Z � 1=d , since site j has O.d/ NN sites i . The sum of jg0ij;� j2
over all NN sites i of j must then yield a Z or d independent constant. In the limit
d !1 we therefore find

g0ij;� � O
� 1p

d

	
: (7.8)

Since the sum over NN sites in (7.7) is of O.d/, the NN hopping amplitude t must
obviously be scaled according to (7.5) for E0

kin to remain finite in the limit d;Z !
1. Hence, as expected, a real-space formulation yields the same results for the
required scaling of the hopping amplitude.

The one-particle Green functionG0
ij;� .!/ of the non-interacting system obeys the

same scaling as g0ij;� . This follows directly from its definition

G0
ij;� .t/ 	 �hT Oci� .t/ OcC

j� .0/i0; (7.9)

where T is the time ordering operator, and the time evolution of the operators is
given by the Heisenberg representation. The one-particle density matrix is obtained
as g0ij;� D limt!0� G0

ij;� .t/. If g0ij;� obeys (7.8) the one-particle Green function must
follow the same scaling at all times since this property does not dependent on the
time evolution and the quantum mechanical representation. The Fourier transform
G0
ij;� .!/ also preserves this property.

It is important to realize that, although G0
ij;� � 1=

p
d vanishes for d ! 1,

the particles are not localized, but are still mobile. Indeed, even in the limit
d ! 1 the off-diagonal elements of G0

ij;� contribute, since a particle may hop

to d the nearest neighbors with reduced amplitude t�=
p
2d . For general i; j one

finds [15, 20]

G0
ij;� � O

�
1=d jjRi�Rj jj=2

	
; (7.10)

where jjRjj D Pd
nD1 jRnj is the length of R in the so-called “New York metric”

(also called “taxi cab metric,” since particles only hop along horizontal or vertical
lines, never along a diagonal).

It is the property (7.10) which is the origin of all simplifications arising in the
limit d ! 1. In particular, it implies the collapse of all connected, irreducible
perturbation theory diagrams in the position space [12, 14, 15]. In general, any
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two vertices which are connected by more than two separate paths3 will collapse
onto the same site. In particular, the external vertices of any irreducible self-energy
diagram are always connected by three separate paths and hence always collapse.
As a consequence the full irreducible self-energy becomes a purely local quantity
[12], but retains its dynamics [14]

˙ij;� .!/
d!1D ˙ii;� .!/ıij : (7.11a)

In the paramagnetic phase we may write ˙ii;� .!/ 	 ˙.!/. The Fourier transform
of ˙ij;� is then momentum-independent:

˙�.k; !/
d!1	 ˙�.!/: (7.11b)

This leads to tremendous simplifications in all many-body calculations for the
Hubbard model and related models. It should be noted that a k-independence of
˙ was sometimes assumed as a convenient approximation (“local approximation”)
[21–23]. Here we identified the limit where this is indeed exact.

7.2.3 Interactions Beyond the On-Site Interaction

In the case of more general interactions than the Hubbard interaction, e.g., the
nearest-neighbor interactions such as

OHnn D
X
hi;j i

X
�� 0

V�� 0 Oni� Onj� 0 (7.12)

the interaction constant has to be scaled, too, in the limit d ! 1. In the case of
(7.12), which has the form of a classical interaction, the “classical” scaling

V�� 0 ! V �
�� 0

Z
(7.13)

is required. Of course, the propagator still has the dependence (7.10).
Due to (7.13) all contributions, except for the Hartree term, are found to vanish

in d D 1 [14]. Hence nonlocal interactions only contribute via their Hartree
contribution, which is purely static. This gives the Hubbard interaction a unique
role: of all interactions for fermionic lattice models only the purely local Hubbard
interaction remains dynamical in the limit d !1 [14].

3Here a “path” is any sequence of lines in a diagram; they are “separate” when they have no lines
in common.
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7.2.4 Single-Particle Propagator

Due to the k-independence of the irreducible self-energy, (7.11b), the one-particle
propagator of an interacting lattice fermion system is given by

Gk;� .!/ D
1

! � �k C 
 �˙�.!/
: (7.14)

Most importantly, the k dependence of Gk.!/ comes entirely from the energy
dispersion �k of the non-interacting particles. This means that for a homogeneous
system with the propagator

Gij;� .!/ D L�1 X
k

Gk;� .!/eik�.Ri�Rj / (7.15)

its local part, Gii;� , has the form [16]

Gii;� .!/ D L�1X
k

Gk;� .!/ D
1Z

�1
dE

N1.E/
! � E C 
 �˙�.!/

(7.16a)

	 G�.!/: (7.16b)

In the following we will limit our discussion to the paramagnetic phase and omit the
spin index. The spectral function of the interacting system (often referred to as the
DOS as in the non-interacting case) is given by

A.!/ D � 1
�

ImG.! C i0C/I (7.16c)

for U D 0 one has A.!/ 	 N.!/. In the limit d !1 two quantities then play the
most important role: the local propagatorG.!/ and the self-energy˙.!/.

7.2.5 Consequences of the Momentum Independence
of the Self-Energy

We now discuss some more consequences of the k-independence of the self-energy
as derived by Müller–Hartmann [16]. Let us consider the Hubbard model, or any one
of its generalizations, in the paramagnetic phase, i.e., without a broken symmetry.
At T D 0 the one-particle Green function (7.14) then reads

Gk.!/ D 1

! � �k C EF �˙.!/ : (7.17)
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In general, even when ˙.!/ is k-dependent, the Fermi surface is defined by the
! D 0 limit of the denominator of (7.17) as

�k C˙k.0/ D EF: (7.18a)

According to Luttinger and Ward [24] the volume within the Fermi surface is not
changed by interactions, provided the effect of the latter can be treated in infinite-
order perturbation theory (i.e., no broken symmetry). This is expressed by

n D
X
k�

�ŒEF � �k �˙k.0/�; (7.18b)

where n is the particle density and �.x/ is the step function. In general, the
k-dependence of ˙k.0/ in (7.18a) implies that, in spite of (7.18b), the shape of
the Fermi surface of the interacting system will be quite different from that of
the non-interacting system (except for the fully rotation invariant case �k � k2/.
For lattice fermion models in d < 1, with ˙k.!/ 	 ˙.!/, (7.18a) implies
that the Fermi surface itself (and hence the volume enclosed) is not changed by
interactions.4 The Fermi energy is simply shifted uniformly from its non-interacting
value E0

F, i.e., EF D E0
F C ˙.0/, to keep n in (7.18b) as a constant. From

(7.16a) we thus conclude that the ! D 0 value of the local propagator, G.0/,
and hence of the spectral function, A.0/ D � 1

�
ImG.i0C/, is not changed by

interactions. Renormalizations of A.0/ can only come from a k-dependence of ˙ ,
i.e., if @˙=@k ¤ 0.

For ! ! 0 the self-energy has the property

Im ˙.!/ / !2 (7.18c)

which implies quasiparticle (Fermi liquid) behavior. The effective mass

m�

m
D 1 � d˙

d!

ˇ̌
ˇ̌
!D0
D 1C 1

�

Z 1

�1
d!

Im˙.! C i0�/
!2


 1 (7.18d)

is seen to be enhanced. In particular, the momentum distribution

nk D 1

�

Z 0

�1
d! ImGk.!/ (7.19)

has a discontinuity at the Fermi surface, given by nk�

F
� n

k
C

F
D .m�=m/�1, where

kḞ D kF ˙ 0C.

4In d D 1 limit the notion of a Fermi surface of a lattice system is complicated by the fact that
the dispersion �k is not a simple smooth function.
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7.3 Dynamical Mean-Field Theory for Correlated
Lattice Fermions

The limit of high spatial dimensions d or coordination number Z provides the
basis for the construction of a comprehensive mean-field theory for lattice fermions
which is diagrammatically controlled and whose free energy has no unphysical
singularities. It starts from the scaled Hamiltonian (7.6) and makes use of the
simplifications in the many-body perturbation theory discussed in Sect. 7.2.2. There
we found that the local propagator G.!/, i.e., the probability amplitude for an
electron to return to a lattice site, and the local, but fully dynamical self-energy
˙.!/ are the most important quantities in such a theory. Since the self-energy is
a dynamical variable (in contrast to the Hartree–Fock theory where it is merely an
average, static potential) the resulting mean-field theory is also dynamical and can
thus describe genuine correlation effects such as the Mott–Hubbard MIT.

The self-consistency equations of this dynamical mean-field theory (DMFT) for
correlated lattice fermions can be derived in different ways. All derivations make
use of the fact that in the limit of high spatial dimensions Hubbard-type models, i.e.,
lattice models with a local interaction, reduce to a “dynamical single-site problem,”
where the d -dimensional lattice model is effectively described by the dynamics of
the correlated fermions on a single site embedded in a “bath” provided by the other
particles. In particular, the derivation by Janiš [25, 26] is a generalization of the
coherent potential approximation (CPA) for disordered systems5 to the Hubbard
model. In the following we will present today’s standard derivation by Georges
and Kotliar [31] which is based on the mapping of the lattice problem onto a
self-consistent single-impurity Anderson model; this approach was also employed
by Jarrell [32]. Although the DMFT equations derived within the CPA approach
and the self-consistent single-impurity approach, respectively, are identical it is the
latter formulation which was immediately adopted by the community since it makes
contact with the theory of quantum impurities and Kondo problems; for a review, see
[33]. This is a well-understood branch of many-body physics [34] for whose solution
efficient numerical codes had been developed already in 1980s, in particular by use
of the quantum Monte-Carlo (QMC) method [35].

7.3.1 Construction of the DMFT as a Self-Consistent
Single-Impurity Anderson Model

Following the presentation of Georges et al. [33] the DMFT equations will now
be derived using the so-called cavity method.6 This derivation starts by removing

5The CPA is the best single-site approximation for disordered, non-interacting lattice electrons
[27–29]; it becomes exact in the limit d;Z ! 1 [8, 30].
6We note that the sign of the hopping amplitude tij used here (see the definition in (7.1b)) is
opposite to that in [33].
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d or Z

d=3, Z=12

time

dynamical
mean field

Fig. 7.1 Already in a d D 3 the coordination number Z can be quite large, as in the case of a
face-centered cubic lattice with Z D 12. In the limit d ! 1, i.e., Z ! 1, the many-body
lattice problem reduces to that of a single lattice site embedded in a dynamical mean field. As
shown in the inset electrons can hop onto and off that site and interact as in the finite-dimensional
Hubbard model. Therefore the DMFT describes the dynamics of the interacting electrons correctly

one lattice site together with its bonds from the rest of the lattice. The remaining
lattice, which now contains a cavity, is replaced by a particle bath which plays the
role of the dynamical mean field (see Fig. 7.1). Now comes a physically motivated
step: the bath is coupled, via a hybridization, to the cavity. The resulting problem
then amounts to the solution of an effective single-impurity Anderson model where
the degrees of freedom of the bath, represented by an appropriate hybridization
function, have to be determined self-consistently.

To be specific, we consider the partition function in the grand canonical
ensemble

Z D
Z Y

i �

Dc�
i�Dci� expŒ�S�: (7.20)

The action S for the Hubbard model is given by
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#
; (7.21)

where we use Grassmann variables c�
i� , ci� . We split the action S into three parts

S D S0 C�S C S.0/; (7.22)

where S0 is the part containing only variables on site 0
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(7.23)
�S contains the hoppings between site 0 and other sites of the lattice i ¤ 0
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and the rest, denoted by S.0/, is the part of the action where the site 0 and its bonds
are removed, i.e., for i; j ¤ 0 one has
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We now rewrite the partition function Z as

Z D
Z Y

�

Dc�
0�Dc0� expŒ�S0�

�
Z Y

i¤0�
Dc�

i�Dci� expŒ�S.0/� expŒ��S� (7.26)

and use the ensemble average

hXi.0/ 	 1

Z .0/

Z Y
i¤0�

Dc�
i�Dci�X expŒ�S.0/� (7.27)

taken with respect to S.0/ (the action where the site i D 0 is excluded), with Z .0/

being the corresponding partition function. Then the partition function reads

Z D Z .0/

Z Y
�

Dc�
0�Dc0� expŒ�S0�hexpŒ��S�i.0/: (7.28)

In the next step we expand the second exponent with respect to the action �S .
A non-trivial limit d ! 1 is obtained by scaling the hopping amplitudes tij as
described in Sect. 7.2.2. Consequently, in the Z ! 1 limit only the contribution
G
.0/

jk� , where
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G
.0/

jk� .�1 � �2/ D �hT�cj� .�1/c�
k� .�2/i.0/; (7.29)

or disconnected contributions made of products of G.0/

jk� ’s remain. Applying the
linked-cluster theorem and collecting only connected contributions in the exponen-
tial function one obtains the local action
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where the rescaled hoppings are denoted with a star. Introducing the hybridization
function

��.�1 � �2/ D �
X
i;j¤0

t�i0t�j 0G
.0/
ij� .�1 � �2/; (7.31)

and employing the free (“Weiss”) mean-field propagator G� one can express the
DMFT local action in the following form (here the site index i D 0 is omitted for
simplicity)
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where
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Finally, we need the relation between the Green functionG.0/
ij� .� � � 0/ where the

site i D 0 is removed and the full lattice Green function, i.e.,

G
.0/
ij� D Gij� �Gi0�G�1

00�G0j� ; (7.34)

which holds for a general lattice.
In order to obtain the full solution of the lattice problem it is convenient to express

the relation between the local Green function G00� 	 G� and the “Weiss” mean
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field7 G�1
� in the form of a Dyson equation

ŒG� .i!n/�
�1 D G�1

� .i!n/ �˙�.i!n/ (7.35)

D i!n C 
 ���.i!n/�˙�.i!n/: (7.36)

Then the lattice Green function (in k-space) Gk � .i!n/ is given by

Gk � .i!n/ D 1

i!n � �k C 
 �˙�.i!n/
: (7.37)

After performing the so-called lattice Hilbert transform we recover the local Green
function
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The ionic lattice on which the electrons move, and its structure, are seen to enter
only via the DOS of the non-interacting electrons. After analytic continuation to
real frequencies the local (“k averaged”) propagator reads

Gk � .!/ D 1

! � �k C 
 �˙�.!/
: (7.40)

This completes the derivation of the self-consistent DMFT equations. Namely,
the functional integral determining the local propagator

G�.i!n/ D � 1Z
Z Y

�

Dc�
�Dc� Œc� .i!n/c

�
� .i!n/� expŒ�Sloc�; (7.41)

where the partition function Z and the local action Sloc are given by

Z D
Z Y

�

Dc�
�Dc� expŒ�Sloc� (7.42)

and (7.32), respectively, together with the expression (7.39) for the lattice Green
function provide a closed set of equations for the local propagatorG�.i!n/ and the

7In principle, any one of the local functions G� .i!n/, ˙�.i!n/, or ��.i!n/ can be viewed as a
“dynamical mean field” acting on particles on a site, since they all appear in the bilinear term of
the local action (7.32).
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self-energy ˙�.i!n/. These equations can be solved iteratively: Starting with an
initial value for the self-energy one obtains the local propagator from (7.39) and
thereby the bath Green function G� .i!n/ from (7.35). This determines the local
action (7.32) which is used to solve the single-impurity problem (7.41), leading to a
new value for the local propagator and, by employing the old self-energy, a new bath
Green function, etc. The single-impurity problem is still a complicated many-body
interacting problem which cannot, in general, be solved exactly.

7.3.2 Solution of the Self-Consistency Equations of the DMFT

Due to the purely on-site interaction in the local action (7.32) the dynamics of
the Hubbard model, (7.1), remains complicated even in the limit d ! 1. Exact
evaluations are only feasible when there is no coupling between the frequencies
as, for example, in the Falicov–Kimball model [36]. This model was solved
analytically by Brandt and Mielsch [19] soon after the introduction of the d ! 1
limit [12].

In general, the local action (7.32) is the most complicated part of the DMFT
equations. To solve the self-consistency equations different techniques (“impurity
solvers”) have been developed which are either fully numerical and “numerically
exact,” or semi-analytic and approximate. The numerical solvers can be divided
into renormalization group techniques such as the numerical renormalization group
(NRG) [37, 38] and the density-matrix renormalization group (DMRG) [39], exact
diagonalization (ED) [40–42], and methods based on the stochastic sampling of
quantum and thermal averages, i.e., QMC techniques such as the Hirsch-Fye QMC
algorithm [32, 33, 43, 44] and continuous-time (CT) QMC [45–47].

Semi-analytic approximations such as the iterated perturbation theory (IPT)
[31, 33, 48], the non-crossing approximation (NCA) [33, 49], the fluctuation
exchange approximation (FLEX) [50–53], the local moment approach (LMA)
[54, 55], and the parquet approximation [56] can also provide valuable insight.

It quickly turned out that the DMFT is a powerful tool for the investigation
of electronic systems with strong correlations. It provides a non-perturbative and
thermodynamically consistent approximation scheme for finite-dimensional sys-
tems which is particularly valuable for the study of intermediate-coupling problems
where perturbative techniques fail [8, 33, 57–59].

7.4 The Mott–Hubbard Metal–Insulator Transition

The correlation induced transition between a paramagnetic metal and a paramag-
netic insulator, referred to as “Mott–Hubbard MIT”, is one of the most intriguing
phenomena in condensed matter physics [60–62]. This transition is a consequence
of the competition between the kinetic energy of the electrons and their local
interaction U . Namely, the kinetic energy prefers the electrons to move (a wave
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effect) which leads to doubly occupied sites and thereby to interact between the
electrons (a particle effect). For large values of U the doubly occupied sites become
energetically very costly. The system may reduce its total energy by localizing
the electrons. Hence the Mott transition is a localization–delocalization transition,
demonstrating the particle–wave duality of electrons [59].

Mott–Hubbard MITs are found, for example, in transition metal oxides with
partially filled bands. For such systems band theory typically predicts metallic
behavior. The most famous example is V2O3 doped with Cr [63–65]. In particular,
below T D 380K the MIT in paramagnetic (V0:96Cr0:04)2O3 is of first order [64],
with discontinuities in the lattice parameters and in the conductivity. However, the
two phases remain isostructural.

Making use of the half-filled, single-band Hubbard model (7.1) the Mott–
Hubbard MIT was studied intensively in the past [5, 60–62, 65]. Important early
results were obtained by Hubbard [66] within a Green function decoupling scheme,
and by Brinkman and Rice [67] within the Gutzwiller variational method [4], both
at T D 0. Hubbard’s approach yields a continuous splitting of the band into a lower
and upper Hubbard band, but cannot describe quasiparticle features. By contrast, the
Gutzwiller–Brinkman–Rice approach gives a good description of the low-energy,
quasiparticle behavior, but cannot reproduce the upper and lower Hubbard bands.
In the latter approach the MIT is signalled by the disappearance of the quasiparticle
peak.

To solve this problem the DMFT has been extremely valuable since it provided
detailed insights into the nature of the Mott–Hubbard MIT for all values of the
interaction U and temperature T [33, 59].

7.4.1 DMFT and the Three-Peak Structure of the Spectral
Function

The Mott–Hubbard MIT is monitored by the spectral function A.!/ D
� 1
�

ImG.! C i0C/ of the correlated electrons8 [33]. While at small U the system
can be described by coherent quasiparticles whose DOS still resembles that of the
free electrons, the spectrum in the Mott insulator state consists of two separate
incoherent “Hubbard bands” whose centers are separated approximately by the
energy U . The latter originate from atomic-like excitations at the energies ˙U=2
broadened by the hopping of electrons away from the atom. At intermediate values
of U the spectrum then has a characteristic three-peak structure as in the single-
impurity Anderson model, which includes both the atomic features (i.e., Hubbard
bands) and the narrow quasiparticle peak at low excitation energies, near ! D 0.
This corresponds to a strongly correlated metal. The general structure of the
spectrum (lower Hubbard band, quasiparticle peak, and upper Hubbard band) is

8In the following we only consider the paramagnetic phase, whereas magnetic order is assumed to
be suppressed (“frustrated”).
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rather insensitive to the specific form of the DOS of the non-interacting electrons.
The width of the quasiparticle peak vanishes for U ! Uc2.T /. On decreasing U ,
the transition from the insulator to the metal occurs at a lower critical value Uc1.T /,
where the gap vanishes.

It is important to note that the three-peak spectrum originates from a lattice
model with only one type of electrons. This is in contrast to the single-impurity
Anderson model whose spectrum shows very similar features, but is due to two types
of electrons – the localized orbital at the impurity site and the free conduction band.
Therefore the screening of the magnetic moment which gives rise to the Kondo
effect in impurity systems has somewhat a different origin in interacting lattice
systems. Namely, as explained by the DMFT the electrons provide both the local
moments and the electrons which screen these moments [33].

Interestingly, for any typical spectral function A.!/ with three peaks, Kramers–
Kronig relations and the DMFT self-consistency equations imply that the self-
energy ˙.!/ abruptly changes slope inside the central peak at some frequency !?
[68], once at positive and once at negative frequency. While this behavior is not
visible in A.!/ itself, it leads to “kinks” in the effective dispersion relation Ek of
one-particle excitations, which is defined as the frequency for which the momentum-
resolved spectral function A.k; !/ D �ImG.k; !/=� D �.1=�/ ImŒ1=.! C 
 �
�k � ˙.!//� is maximal. For frequencies below !? the dispersion is given by
Fermi-liquid (FL) theory, Ek D ZFL�k, where ZFL D .@Re˙.!/=@!/!D0 is
the FL renormalization parameter. The FL regime terminates at the kink energy
scale !?. This energy cannot be obtained within FL theory itself. Namely, it is
determined by ZFL and the non-interacting DOS, e.g., !? D 0:41ZFLD, where
D is an energy scale of the non-interacting system such as half the bandwidth [68].
Above !? the dispersion is given by a different renormalization with a small offset,
EkDZCP�k C const, where ZCP is the weight of the central peak of A.!/. This
theory explains kinks in the slope of the dispersion as a direct consequence of
the electronic interaction [68]. The same mechanism may also lead to kinks in the
low-temperature electronic specific heat [69]. These kinks have also been linked to
maxima in the spin susceptibility [70]. Of course, additional kinks in the electronic
dispersion may also arise from the coupling of electrons to bosonic degrees of
freedom, such as phonons [71,72] or spin fluctuations [73,74]. Interestingly, recent
experiments [75] have found evidence for kinks in Ni(1 1 0), which may be due to
the electronic mechanism discussed here.

The evolution of the spectral function of the half-filled frustrated Hubbard
model at a finite temperature is shown in Fig. 7.2. This temperature is above the
temperature of the critical point so that there is no real transition but only a crossover
from a metallic-like to an insulating-like solution. The height of the quasiparticle
peak at the Fermi energy is no longer fixed at its zero temperature value. This is
due to the temperature dependent imaginary part of the self-energy. The spectral
weight of the quasiparticle peak is seen to be gradually redistributed and shifted
to the upper (lower) edge of the lower (upper) Hubbard band. The inset of Fig. 7.2
shows the U -dependence of the spectral function at zero frequency A.!D 0/. For
higher values of U the spectral density at the Fermi level is still finite and vanishes
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Fig. 7.2 Spectral function for the half-filled Hubbard model for various values of U at T D
0:0276W (W : bandwidth) in the crossover region. The crossover from the metal to the insulator
occurs via a gradual suppression of the quasiparticle peak at ! D 0. The inset shows the U
dependence of A.!D0/, in particular the rapid decrease for U � 1:1W ; from [76]

only in the limit U ! 1. For the insulating phase DMFT predicts the filling of
the Mott–Hubbard gap with increasing temperature. This is due to the fact that the
insulator and the metal are not distinct phases in the crossover regime, implying that
the insulator has a finite spectral weight at the Fermi level. This behavior has been
detected experimentally by photoemission experiments [77].

Altogether, the thermodynamic transition line Uc.T / corresponding to the Mott–
Hubbard MIT is found to be of first order at finite temperatures, and is associated
with a hysteresis region in the interaction range Uc1 < U < Uc2, where Uc1 and Uc2

are the interaction values at which the insulating and metallic solution, respectively,
vanish [33, 37, 76, 78–80]. As shown in Fig. 7.3 the hysteresis region terminates
at a critical end point. At higher temperatures the transition changes into a smooth
crossover from a bad metal to a bad insulator. At half-filling and for bipartite lattices
in dimensions d > 2 (in d D 2 only at T D 0) the paramagnetic phase is, in fact,
unstable against antiferromagnetic long-range order. The MIT is then completely
hidden by the antiferromagnetic insulating phase [81].

In Fig. 7.3 it is seen that the slope of the phase transition line Uc is negative down
to T D 0, which implies that for constant interaction U the metallic phase can be
reached from the insulator by decreasing the temperature T , i.e., by cooling. This
anomalous behavior (which corresponds to the Pomeranchuk effect [82] in 3He, if
we associate solid 3He with the insulator and liquid 3He with the metal) can be
understood from the Clausius–Clapeyron equation dU=dT D �S=�D. Here �S
is the difference between the entropy in the metal and in the insulator, and�D is the
difference between the number of doubly occupied sites in the two phases. Within
the DMFT there is no exchange coupling J between the spins of the electrons
in the insulator, since the scaling (7.5) implies J / �t2=U / 1=d ! 0 for
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Fig. 7.3 Phase diagram of the Mott–Hubbard MIT showing the metallic phase and the insulating
phase, respectively, at temperatures below the critical end point, as well as a coexistence region;
from [80]

d ! 1. Hence the insulating state is macroscopically degenerate, with entropy
Sins D kB ln 2 per electron down to T D 0. This is larger than the entropy
Smet / T per electron in the Landau Fermi liquid describing the metal, i.e., �S D
Smet�Sins < 0. At the same time the number of doubly occupied sites is lower in the
insulator than in the metal, i.e., �D D Dmet �Dins > 0. The Clausius–Clapeyron
equation then implies that the phase-transition line T versusU has indeed a negative
slope down to T D 0. However, this is an artifact of the DMFT. Namely, there will
usually exist an exchange coupling between the electrons which leads to a vanishing
entropy of the insulator for T ! 0. Since the entropy of the insulator vanishes
faster than linearly with the temperature, the difference�S D Smet�Sins eventually
becomes positive, whereby the slope also becomes positive9; this is indeed observed
in cluster DMFT calculations [83]. However, since �S ! 0 for T ! 0 the phase
boundary must eventually terminate at T D 0 with infinite slope.

7.5 Theory of Electronic Correlations in Materials

7.5.1 The LDA C DMFT Approach

Although the Hubbard model is able to explain basic features of the phase diagram
of correlated electrons it cannot describe the physics of real materials in any detail.

9Here we assume for simplicity that the metal remains a Fermi liquid and the insulator stays
paramagnetic down to the lowest temperatures.
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Clearly, realistic theories must take into account the explicit electronic and lattice
structure of the systems.

Until recently the electronic properties of solids were investigated by two
essentially separate communities, one using model Hamiltonians in conjunction
with many-body techniques, the other employing density functional theory (DFT)
[84,85]. DFT and its local density approximation (LDA) have the advantage of being
ab initio approaches which do not require empirical parameters as input. Indeed,
they are highly successful techniques for the calculation of the electronic structure
of real materials [86]. However, in practice DFT/LDA is seriously restricted in
its ability to describe strongly correlated materials where the on-site Coulomb
interaction is comparable with the band width. Here, the model Hamiltonian
approach is more powerful since there exist systematic theoretical techniques to
investigate the many-electron problem with increasing accuracy. Nevertheless, the
uncertainty in the choice of the model parameters and the technical complexity
of the correlation problem itself prevent the model Hamiltonian approach from
being a suitable tool for studying real materials. The two approaches are therefore
complementary. In view of the individual power of DFT/LDA and the model
Hamiltonian approach, respectively, a combination of these techniques for ab initio
investigations of correlated materials including, for example, f -electron systems
and Mott insulators, would be highly desirable. One of the first successful attempts
in this direction was the LDACU method [87, 88], which combines LDA with a
static, i.e., Hartree–Fock-like, mean-field approximation for a multi-band Anderson
lattice model with interacting and non-interacting orbitals. This method proved to be
a very useful tool in the study of long-range ordered, insulating states of transition
metals and rare-earth compounds. However, the paramagnetic metallic phase of
correlated electron systems such as high-temperature superconductors and heavy-
fermion systems clearly requires a treatment that goes beyond a static mean-field
approximation and includes dynamical effects, i.e., the frequency dependence of
the self-energy.

Here the recently developed LDACDMFT method, a new computational
scheme which merges electronic band structure calculations and the DMFT, has
proved to be a breakthrough [49, 52, 59, 89–98]. Starting from conventional band
structure calculations in the LDA the correlations are taken into account by the Hub-
bard interaction and a Hund’s rule coupling term. The resulting DMFT equations are
solved numerically, e.g., with a QMC algorithm. By construction, LDACDMFT
includes the correct quasiparticle physics and the corresponding energetics. It also
reproduces the LDA results in the limit of weak Coulomb interaction U . More
importantly, LDACDMFT correctly describes the correlation induced dynamics
near a Mott–Hubbard MIT and beyond. Thus, LDACDMFT is able to account for
the physics at all values of the Coulomb interaction and doping level.

In the LDACDMFT approach the LDA band structure is expressed by a
one-particle Hamiltonian OH0

LDA, and is then supplemented by the local Coulomb
repulsion U and Hund’s rule exchange J . This leads to a material specific
generalization of the one-band model Hamiltonian
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X
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Onim" Onim# C
X

i;m¤m0;�;� 0

.V � ı�� 0J / Onim� Onim0� 0 : (7.43)

Here m and m0 enumerate those orbitals for which the interaction between the
electrons is explicitly included, e.g., the three t2g orbitals of the 3d electrons of
transition metal ions or the 4f orbitals in the case of rare earth elements. The
interaction parameters are related by V D U � 2J which holds exactly for
degenerate orbitals and is a good approximation for t2g electrons. The actual values
for U and V can be calculated by constrained LDA [49].

In the one-particle part of the Hamiltonian

OH0
LDA D OHLDA �

X
i

X
m�

��d Onim� : (7.44)

the energy term containing ��d is a shift of the one-particle potential of the
interacting orbitals. It cancels the Coulomb contribution to the LDA results, and
can also be calculated by constrained LDA [49].

Within the LDA + DMFT scheme the self-consistency condition connecting the
self-energy˙ and the Green function G at frequency ! reads:

Gqm;q0m0.!/ D 1

VB

Z
d3k

��
!1C 
1 �H0

LDA.k/� ˙̇̇ .!/
��1	

qm;q0m0

:(7.45)

Here, 1 is the unit matrix,
 the chemical potential,H0
LDA.k/ is the orbital matrix

of the LDA Hamiltonian derived, for example, in a linearized muffin-tin orbital
(LMTO) basis, ˙̇̇ .!/ denotes the self-energy matrix which is nonzero only between
the interacting orbitals, and Œ:::��1 implies the inversion of the matrix with elements
n (Dqm), n0(Dq0m0), where q and m are the indices of the atom in the primitive
cell and of the orbital, respectively.10 The integration extends over the Brillouin
zone with volume VB.

For cubic transition metal oxides (7.45) can be simplified to

G.!/DG0.! �˙.!// D
Z

d�
N 0.�/

! �˙.!/ � � (7.46)

provided the degenerate t2g orbitals crossing the Fermi level are well separated from
the other orbitals [49]. For non-cubic systems the degeneracy is lifted. In this case
(7.46) is an approximation where different ˙m.!/, N0

m.�/ and Gm.!/ have to be
used for the three non-degenerate t2g orbitals.

The Hamiltonian (7.43) is diagonalized within the DMFT where, for example,
QMC techniques [35] are used to solve the self-consistency equations. From the
imaginary time QMC Green function we calculate the physical (real frequency)
spectral function with the maximum entropy method [99].

10We note that OH0
LDA may include additional non-interacting orbitals.
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During the last few years the LDA + DMFT and other DMFT based computa-
tional schemes have provided great progress in the understanding of the electronic,
magnetic and structural properties of many correlated electron materials. These
materials range from 3d transition metals and their oxides, and f electron systems,
all the way to Heusler alloys, ferromagnetic half-metals, fullerenes, and zeolites
[52, 95–98]. Nevertheless, this framework still needs to be considerably improved
before it becomes a truly comprehensive ab initio approach for complex correlated
matter with predictive power. In particular, the interface between the band-structure
and the many-body components of the approach needs to be optimized. This
includes, for example, a solution of the double counting correction problem and
a fully self-consistent treatment of the spin, orbital, and charge densities. Another
important goal are realistic computations of free energies and forces, and the
development of efficient methods to treat non-local correlations with the quantum
cluster methods [100–102].

7.5.2 Single-Particle Spectrum of Correlated Electrons
in Materials

Transition metal oxides are an ideal laboratory for the study of electronic correla-
tions in solids. Among these materials, cubic perovskites have the simplest crystal
structure and thus may be viewed as a starting point for understanding the electronic
properties of more complex systems. Typically, the 3d states in those materials form
comparatively narrow bands with widthW�2�3 eV, which leads to strong Coulomb
correlations between the electrons. Particularly simple are transition metal oxides
with a 3d1 configuration since, among others, they do not show a complicated
multiplet structure.

Photoemission spectra provide a direct experimental tool to study the electronic
structure and spectral properties of electronically correlated materials. Intensive
experimental investigations of spectral and transport properties of strongly corre-
lated 3d1 transition metal oxides started with investigations by Fujimori et al. [103].
These authors observed a pronounced lower Hubbard band in the photoemission
spectra which cannot be explained by conventional band structure theory. In
photoemission spectroscopy (PES) a photon of a given energy is used to emit
an electron whose properties (energy, angular distribution) are measured by a
detector. Angular resolved PES is referred to as ARPES. These techniques measure
the occupied electronic states, i.e., those states which are described by the full
spectral function multiplied by the Fermi function f .!; T /. By contrast, inverse
photoemission spectroscopy (IPES) measures the unoccupied electronic states,
i.e., the states described by the full spectral function of a material multiplied
by 1 � f .!; T /. IPES is harder to perform and not as accurate as PES. But in
many situations information about the unoccupied states is also available by X-ray
absorption spectroscopy (XAS).
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Spectroscopic techniques provide very valuable information about correlated
electronic systems since they can directly measure the spectral function of a
material, a quantity which can also be directly calculated as discussed in Sect. 7.4.
In particular, photoemission techniques allow one to detect the correlation induced
shift of spectral weight. In the following we will illustrate the computation of the
k-integrated electronic spectra of correlated materials within the LDACDMFT
scheme by investigating the two simple transition metal oxides SrVO3 and CaVO3.

7.5.2.1 SrxCa1�xVO3

SrVO3 and CaVO3 are simple transition metal compounds with a 3d1 configuration.
The main effect of the substitution of Sr ions by the isovalent, but smaller, Ca ions
is to decrease the V–O–V angle from � D 180ı in SrVO3 to � � 162ı in the
orthorhombically distorted structure of CaVO3. Remarkably this rather strong bond
bending results only in a 4% decrease of the one-particle bandwidthW and thus in
a correspondingly small increase of the ratio U=W as one moves from SrVO3 to
CaVO3 [104, 105].

LDACDMFT(QMC) spectral functions of SrVO3 and CaVO3 were calculated
by Sekiyama et al. [104] by starting from the respective LDA DOS of the two
materials; they are shown in Fig. 7.4. These spectra show genuine correlation effects,
i.e., the formation of lower Hubbard bands at about 1.5 eV and upper Hubbard
bands at about 2.5 eV, with well-pronounced quasiparticle peaks at the Fermi
energy. Therefore both SrVO3 and CaVO3 are strongly correlated metals. The small
difference of the LDA bandwidth of SrVO3 and CaVO3 is only reflected in some
additional transfer of spectral weight from the quasiparticle peak to the Hubbard
bands, and minor differences in the positions of the Hubbard bands. The DOS of
the two systems shown in Fig. 7.4 are quite similar. In fact, SrVO3 is slightly less
correlated than CaVO3, in accord with their different LDA bandwidths. The inset of
Fig. 7.4 shows that the effect of temperature on the spectrum is weak for T . 700K.
Detailed spectra of SrVO3 and CaVO3 were also computed by Pavarini et al. [106].

Since the three t2g orbitals of this simple 3d1 material are almost degenerate the
spectral function has the same three-peak structure as that of the one-band Hubbard

Fig. 7.4
LDA + DMFT(QMC) spectral
functions of SrVO3 (solid
line) and CaVO3 (dashed
line) calculated at T D 300 K;
inset: effect of temperature in
the case of CaVO3;
after [104]
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Fig. 7.5 Comparison of the calculated, parameter-free LDA + DMFT(QMC) spectral functions for
SrVO3 (solid line) and CaVO3 (dashed line) with experiment. Left: Bulk-sensitive high-resolution
PES (SrVO3 : circles; CaVO3: rectangles). Right: 1s XAS for SrVO3 (diamonds) and Ca0:9Sr0:1VO3

(triangles) [107]. Horizontal line: experimental subtraction of the background intensity; after [105]

model shown in Fig. 7.2. The temperature induced decrease the quasiparticle peak
height that is also clearly seen. We note that the actual form of the spectrum no
longer resembles the LDA DOS used as input, i.e., it essentially depends only on
the first three energy moments of the LDA DOS (electron density, average energy,
and band width).

In the left panel of Fig. 7.5 the LDA + DMFT(QMC) spectral functions at 300 K
are compared with experimental high-resolution bulk PES. For this purpose the
full theoretical spectra were multiplied with the Fermi function at the experimental
temperature (20 K) and were Gauss broadened with the experimental resolution of
0:1 eV [104]. The quasiparticle peaks in theory and experiment are seen to be in very
good agreement. In particular, their height and width are almost identical for both
SrVO3 and CaVO3. The difference in the positions of the lower Hubbard bands may
be partly due to (1) the subtraction of the estimated oxygen contribution (which
may also remove some 3d spectral weight below �2 eV), and (2) uncertainties
in the ab initio calculation of the local Coulomb interaction strength. In the right
panel of Fig. 7.5 comparison is made with XAS data of Inoue et al. [107]. To
this end the full LDA + DMFT spectrum was multiplied with the inverse Fermi
function at 80 K and was then Gauss broadened with the experimental resolution
of 0:36 eV [I.H. Inoue, private communication (2003)]. The overall agreement of
the weights and positions of the quasiparticle and upper t2g Hubbard band is good,
including the tendencies when going from SrVO3 to CaVO3 (in fact, Ca0:9Sr0:1VO3

in the experiment). For CaVO3 the weight of the quasiparticle peak is somewhat
lower than in the experiment. In contrast to one-band Hubbard model calculations,
the material specific results reproduce the strong asymmetry around the Fermi
energy w.r.t. weights and bandwidths.

The experimentally determined spectra of SrVO3 and CaVO3 and the good
agreement with parameter-free LDA + DMFT calculations confirm the existence
of a pronounced three-peak structure in a correlated bulk material. Although the
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DMFT had predicted such a behavior for the Hubbard model [33] it was not clear
whether the DMFT would really be able to describe real materials. Now it is clear
that the three-peak structure not only occurs in single-impurity Anderson models or
the DMFT for the Hubbard model, but also is a characteristic feature of correlated
bulk matter in d D 3.

7.6 Electronic Correlations and Disorder

The properties of real materials are influenced not only by the interaction between
the electrons in the periodic crystal lattice, but also by the presence of randomness,
e.g., impurities and lattice defects [108]. In particular, Coulomb correlations and
disorder are separately the driving forces behind MITs (MITs) connected with the
localization and delocalization of particles. The Mott–Hubbard MIT is caused by
the electronic repulsion [5, 61, 109] and is characterized by the opening of a gap in
the DOS at the Fermi level. By contrast, the Anderson localization transition is due
to coherent backscattering of non-interacting particles from randomly distributed
impurities [108,110]. At the Anderson transition the character of the spectrum at the
Fermi level changes from a continuous to a dense point spectrum. Both MITs can
be characterized by a single quantity, the local density of states (LDOS). Although
the LDOS is not an order parameter associated with a symmetry-breaking phase
transition, it can distinguish between a metal and an insulator.

The DMFT can easily be extended to study correlated lattice electrons with local
disorder [8, 111–116]. For this purpose a single-particle term with random local
energies �i is added to the Hubbard model, leading to the Anderson–Hubbard model

OH D �t
X
ij;�

OcC
i� Ocj� C

X
i�

�ini� C U
X
i

Oni" Oni#: (7.47)

The ionic energies �i describe the local, quenched disorder acting on the motion of
the electrons. They are drawn from a probability distribution function P.�i /, which
can be a continuous or a multi-modal function.

The DMFT provides a valuable, non-perturbative theoretical framework also
for the investigation of correlated electrons in the presence of disorder. If in the
DMFT the effect of local disorder is taken into account through the arithmetic
mean of the LDOS one obtains, in the absence of interactions (U D 0), the coherent
potential approximation (CPA) [30, 117], which does not describe the physics of
Anderson localization. To overcome this deficiency Dobrosavljević and collabora-
tors formulated a variant of the DMFT where the geometrically averaged LDOS
is computed from the solutions of the self-consistent stochastic DMFT equations
[118] which is then incorporated into the self-consistency cycle [119]. Thereby a
mean-field theory of Anderson localization can be derived which reproduces many
of the expected features of the disorder-driven MIT for non-interacting electrons
[119]. This scheme uses only one-particle quantities and can therefore easily be



228 D. Vollhardt et al.

included in the DMFT to treat disordered electrons in the presence of phonons
[120] or Coulomb correlations [121,122]. In particular, the DMFT with geometrical
averaging allows one to compute the phase diagram for the Anderson–Hubbard
model [121, 122]. For a continuous disorder distribution function and a half-filled
band one finds that the metallic phase is enhanced at small and intermediate values
of the interaction and disorder, but that the metallicity is eventually destroyed when
the disorder is strong enough [121]. Surprisingly, the Mott and Anderson insulators
are continuously connected.

New interesting phenomena are also expected in correlated electron systems
when the disorder distribution function has a binary-alloy form. Namely, it was
predicted that a disorder induced splitting of the band (“alloy-band splitting”) can
enhance the critical temperature for the onset of itinerant ferromagnetism [123,124].
Another direct consequence of the alloy-band splitting is the fact that, if the alloy
subband is effectively half-filled, a Mott–Hubbard MIT can occur at non-integer
filling [125]. The spectral-weight transfer in correlated systems with binary-alloy
disorder was also investigated away from the MIT regime [126, 127]. For the
periodic Anderson model with the binary-alloy disorder analogous behavior was
predicted [128].

7.7 DMFT for Correlated Bosons in Optical Lattices

The observation of Bose–Einstein condensation (BEC) in ultra-cold atomic gases
has greatly stimulated research into the properties of this fascinating quantum state
of matter [129]. In particular, experiments with alkali atoms confined in optical
lattices [130–132] have renewed the theoretical interest [133–135] in the physics
of strongly correlated bosons on lattices, which promises significant new insights
and even applications in fields such as quantum computing [136].

A lattice model of interacting bosons with purely local interaction, the bosonic
Hubbard model, has the form

HBH D
X
hi;j i

tij Ob�i Obj C
U

2

X
Ri

Oni . On1 � 1/; (7.48)

where Obi and Ob�i are bosonic operators. In the ground state two characteristically
different phases are expected to occur: a bosonic incompressible Mott phase with
a correlation gap and a compressible superfluid phase characterized by a non-
vanishing expectation value h Obii which serves as an order parameter [137].

The construction of a DMFT for the bosonic Hubbard model which – as in the
case of the fermionic DMFT – becomes exact in the limit d or Z ! 1 and is
valid at all temperatures is made complicated by the fact that the system can Bose
condense below a BEC temperature TBEC. This has immediate consequences for
the expectation value of the kinetic energy in (7.48). Namely, while in the normal
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state only the product Ob�i Obj has a finite expectation value, in the Bose condensed
phase even h Obj i (the order parameter) is non-zero. For the expectation value of the
kinetic energy in (7.48) to remain finite in the limit Z !1 the hopping amplitude
then has to be scaled differently in the two phases. In the normal phase the hopping
amplitude needs to be scaled as in the fermionic case (“quantum scaling”), i.e.,
as tij D t�ij =

p
Z, while in the condensed phase a classical scaling tij D t�ij =Z

is required. Such a scaling of the hopping amplitudes cannot be performed on
the level of the Hamiltonian, but is possible in the effective action [138]. The
bosonic DMFT (“B-DMFT”) derived thereby treats normal and condensed bosons
on equal footing and thus includes the effects caused by their dynamic coupling. The
self-consistency equations of the B-DMFT are those of a single bosonic impurity
coupled to two baths, one corresponding to bosons in the normal state and one
to bosons in the condensate. The B-DMFT derived in the limit d or Z ! 1 is
again a comprehensive mean-field theory, i.e., it is valid for all input parameters
and all temperatures. It not only reproduces all exactly solvable limits, such as
the non-interacting (U D 0) and the atomic (tij D 0) limit, but also well-known
approximation schemes for interacting bosons. For example, by neglecting all terms
containing the hybridization function in the local action one obtains the mean-field
theory of Fisher et al. [137]; for a detailed discussion see [138].

The solution of the self-consistent bosonic impurity problem defined by the
B-DMFT equations requires new theoretical/computational methods. So far exact
diagonalization [139, 140] and continuous-time QMC [141] were employed.
Thereby the bosonic Hubbard model was solved on the Bethe lattice for finite
[139] and infinite [140] coordination number Z as well as on a simple-cubic lattice
[141]. The phase diagram of correlated bosons on a simple-cubic lattice computed
by the bosonic DMFT was found to agree with that obtained by numerically exact
QMC to within 2% [141].

The B-DMFT is expected to be a valuable approximation scheme for the
investigation of lattice bosons in situations where exact numerical computations are
difficult to perform or inefficient, as in the case of bosons with disorder or many
internal degrees of freedom, and for Bose–Fermi mixtures [142].

7.8 DMFT for Nonequilibrium

Recently the study of strongly correlated many-body systems out of equilibrium has
received much attention [143, 144]. This is motivated in particular by experimental
progress in the investigation of ultra-cold atomic gases [132] and time-resolved
pump-probe spectroscopy on strongly correlated materials [145, 146]. In general
the real-time dynamics of correlated systems can be described by the extension
of DMFT to nonequilibrium, provided that they are dominated by local temporal
fluctuations and spatial correlations are not crucial. In nonequilibrium DMFT an
effective impurity problem is formulated using the Keldysh formalism [147, 148],
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and as in equilibrium DMFT this mapping onto a single site becomes exact in the
limit of infinite dimensions. For the Hubbard model in nonequilibrium the single-
site DMFT action reads

S D �i
Z

C
dt Hloc.t/� i

X
�

Z

C
dt
Z

C
dt 0 c�� .t/�.t; t 0/c� .t 0/ ; (7.49)

where the Keldysh contour C runs from tmin to tmax on the real time axis, back to
tmin, and finally to �iˇ along the imaginary time axis [149, 150]. The first term
contains the local part of the Hamiltonian, e.g., Hloc.t/ D U.t/n"n# � 
.n" C
n#/ for a time-dependent interaction. The second term involves the hybridization
function �.t; t 0/ which couples the impurity to a time-dependent bath which must
be determined self-consistently. Local contour-ordered correlation functions such
as the Green function G.t; t 0/ are obtained from the action (7.49) as expectation
values hA.t/B.t 0/ � � � i D TrŒTC exp.S/A.t/B.t 0/ � � � �=Z at the appropriate times,
where TC is the contour-ordering operator. For the Hubbard model this evaluation
is the most demanding part of nonequilibrium DMFT and can so far be done with
real-time quantum Monte Carlo methods [150, 151] for not too long times, and for
sufficiently largeU using a self-consistent perturbation expansion around the atomic
limit [152]. For the Falicov–Kimball model, on the other hand, closed equations of
motion govern the impurity Green function [19], which can be solved on the real
time axis. The hybridization function �.t; t 0/ in (7.49) must be determined self-
consistently by computing the local self-energy ˙.t; t 0/ from the Dyson equation
of the impurity model, calculating the momentum-dependent Green function of the
lattice model from the lattice Dyson equation, integrating over momentum to obtain
the local lattice Green function, and finally equating it with the impurity Green
function. While this procedure is necessary for a Gaussian or other general DOS,
for a semielliptical DOS the self-energy can be eliminated and� expressed directly
in terms of G [153].

Nonequilibrium DMFT was used to obtain the response of time-resolved photoe-
mission [154–156] and optical spectroscopy [157] in correlated systems in terms of
Green functions of the electronic system. The Falicov–Kimball and Hubbard models
were studied in the presence of dc and ac electric fields [148,156,158–165], as well
as for abrupt [150–152, 155, 157, 166] or slow changes [167, 168] of the interaction
parameter as a function of time.

As an example, we consider a sudden change (“quench”) in the interaction
parameter of the Hubbard model from U D 0 (i.e., with the non-interacting ground
state as initial state) to finite values of U for times t > 0. For this case the DMFT
equations were solved numerically for the paramagnetic phase and a semielliptic
DOS [150–152]. In the following discussion the bandwidth is equal to 4, and time
is thus measured in units of 4„=bandwidth, e.g., on the order of femto-seconds
for a bandwidth on the order of eV. An interesting question is whether such an
isolated system can thermalize due to the many-body interaction alone, i.e., whether
at least some of its properties are the same as for an equilibrium system with
the same energy [169]. Before the quench the momentum distribution is a step
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function, and the Fermi surface discontinuity �n.t/ remains nonzero for a finite
time after the quench. For quenches to U . 2:5 the momentum discontinuity first
reaches a so-called prethermalization plateau for t . 5 due to the vicinity of the
integrable point at U D 0. This plateau in �n.t/ is given to good accuracy by
2Z � 1 [151], where Z is the Fermi-liquid quasiparticle weight in equilibrium at
zero temperature and for interaction U . This value and also the transient behavior
at short times is precisely predicted by second-order unitary perturbation theory in
U [170, 171]. On the other hand, the double occupation essentially relaxes to its
thermal value on this timescale, showing that the potential energy (and therefore
also the kinetic energy) relax quicker than the occupation of individual states. For
large U the behavior is different, showing strong so-called collapse-and-revival
oscillations with approximate frequency 2�=U . They stem from the vicinity of
the atomic limit (i.e., zero hopping amplitude), for which the propagator e�iHt is
exactly periodic with period 2�=U [172]. For finite hopping (small compared to
U ) these oscillations are damped and decay on timescales of order „=bandwidth.
The oscillations of the double occupation are not centered at its thermal value, but
rather at a different value that can be derived from strong-coupling perturbation
theory [151]. The situation is thus similar to that at small coupling in the sense
that the relaxation to the thermal state is delayed because the system is stuck in
a metastable state close to an integrable point. However, both the weak-coupling
prethermalization plateau in�n.t/ as well as the strong-coupling oscillations vanish
in a narrow region of interaction parameters U near 3:2 [151]. For quenches of U
to approximately this value the system thermalizes rapidly: Both the momentum
distribution and thus also the double occupation (due to energy conservation
after quench) relax to their thermal values. In fact the retarded nonequilibrium
Green function relaxes to the corresponding equilibrium function [150], so that all
observables that can be obtained from it tend to the thermal value predicted by
equilibrium statistical mechanics. In other words, for quenches to interaction values
in the vicinity of U � 3:2 the isolated system indeed thermalizes rapidly due to the
many-body interactions. Many interesting questions remain open in this context,
e.g., how thermalization depends on the parameters of the system. We refer to the
reviews [143, 144] for further discussion.

7.9 Summary and Outlook

Due to the intensive international research over the last 2 decades the DMFT
has quickly developed into a powerful method for the investigation of electronic
systems with strong correlations. It provides a comprehensive, non-perturbative and
thermodynamically consistent approximation scheme for the investigation of finite-
dimensional systems (in particular for dimension d D 3), and is particularly useful
for the study of problems where perturbative approaches are inapplicable. For this
reason the DMFT has now become the standard mean-field theory for fermionic
correlation problems, including cold atoms in optical lattices [173–175]. The study
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of models in nonequilibrium using an appropriate generalization of DMFT has
become yet another fascinating new research area [148, 150–152, 155–168].

Until a few years ago research into correlated electron systems concentrated
on homogeneous bulk systems. DMFT investigations of systems with internal or
external inhomogeneities such as thin films and multi-layered nanostructures are
still very new [174, 176–181]. They are particularly important in view of the novel
types of functionalities of such systems, which may have important applications
in electronic devices. Here the DMFT and its non-local extensions [100–102] will
certainly become very useful.

In particular, the development of the ab initio band-structure calculation tech-
nique referred to as LDACDMFT has proved to be a breakthrough in the inves-
tigation of electronically correlated materials. It had already provided important
insights into the spectral and magnetic properties of correlated electron materials
[49,52,94–97]. Clearly, this approach has a great potential for further developments.
Indeed, it is not hard to foresee that the LDA + DMFT framework will eventually
develop into a comprehensive ab initio approach which is able to describe, and even
predict, the properties of complex correlated materials.
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114. V. Dobrosavljević, G. Kotliar, Phys. Rev. B 50, 1430 (1994)
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Chapter 8
Cluster Perturbation Theory

David Sénéchal

Abstract Cluster perturbation theory (CPT) is a simple approximation scheme
that applies to lattice models with local interactions, like the Hubbard model, or
models where the local interaction is predominant. It proceeds by tiling the lattice
into identical, finite-size clusters, solving these clusters exactly and treating the
inter-cluster hopping terms at first order in strong-coupling perturbation theory.
This review will focus on the kinematical aspects of CPT, in particular the
periodization procedure, and on the practical implementation of CPT using an exact
diagonalization solver for the cluster. Applications of CPT will be briefly reviewed.

8.1 Introduction: CPT in a Nutshell

Cluster perturbation theory (CPT) is a simple approximation scheme that applies to
lattice models with local interactions, like the Hubbard model, or models where the
local interaction is predominant. It can be viewed as a cluster extension of strong-
coupling perturbation theory [1], limited to lowest order [2]. Its features are found
in more sophisticated approaches that rely on a tiling of the lattice into clusters, like
the variational cluster approximation (VCA) and the cellular dynamical mean-field
theory (C-DMFT).

CPT was first introduced in [3], and later, independently, in [4], where it was
related to the strong-coupling perturbation theory and where a periodization scheme
was introduced.

CPT has been used mostly to calculate the spectral function of strongly correlated
models, where it has the advantage of allowing for a continuum of wavevec-
tors (useful in particular in momentum-dependent plots) while at the same time
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capturing short-range dynamical correlations. Most notable is its application to
the understanding of the pseudogap phenomenon in the normal state of high-Tc

materials[20], but it has been applied to a variety of situations (see Sect. 8.8).
Let us establish some notation by writing the lattice model as the sum of a one-

body partH0 and an interaction part H1 (H D H0 CH1), where

H0 D
X
˛;ˇ

t˛ˇc
�
˛cˇ H1 D

X
i

H1;i : (8.1)

The greek indices ˛; ˇ label distinct one-electron states in a Wannier basis, and
correspond to a aggregation of site, spin and possibly band indices: we write ˛ D
.i; �/, where i labels a site on the Bravais lattice  and � represents spin and band
indices. N� is the number of states associated with each lattice site (for instance,
N� D 2 for the one-band Hubbard model). H1 is assumed to be a sum of local
interactions, each confined to a lattice site r i 2  . We will use boldface symbols for
matrices acting in the space of one-electron states: t will stand for the matrix with
elements t˛ˇ , and likewise for the Green functionG .!/, and so on.

CPT, like other quantum cluster methods, proceeds by dividing the lattice  into
a superlattice � of identical clusters of L sites each. The lattice Hamiltonian H
is written as H D H 0 C HV , where H 0 is the cluster Hamiltonian, obtained by
severing the hopping terms between different clusters, which are put into HV :

H 0 D
X
˛;ˇ

t 0̨ˇc�˛cˇ CHU HV D
X
˛;ˇ

V˛ˇc
�
˛cˇ; (8.2)

where t 0 contains the one-body terms that are confined to a given cluster, and V the
inter-cluster terms.1 HV is treated as a perturbation of the cluster part H 0. In what
follows, primes (0) will be used to distinguish quantities associated with the cluster
from the corresponding quantities associated with the full lattice.

CPT is an approximation scheme for the one-electron Green function G .!/.
It can be viewed as an application of the strong-coupling perturbation theory
developed by Pairault et al. [1, 5], in which the one-body part H0 was considered
a perturbation of the interaction part H1. But the only true requirement of that
approach is that the perturbation be a one-body operator. Thus, strong-coupling
perturbation theory can be applied to the case where HV is a perturbation over H 0;
this was carried out to lowest order in HV in [2, 4]. The result for the one-electron
Green function G .!/ in terms of the unperturbed Green function G 0.!/ and the
perturbation V is

G�1.!/ D G 0�1.!/ � V : (8.3)

1In the VCA, V is the difference between the lattice HamiltonianH and the reference Hamiltonian
H 0, and as such may also contain intra-cluster terms.
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A site index i can be mapped to a pair .m; a/, wherem labels clusters within the
superlattice and a labels sites within a given cluster. The cluster Green functionG 0 is
diagonal in m, whereas V is essentially off-diagonal in m. The CPT approximation
explicitly breaks translation invariance on the original lattice  , down to translation
invariance on the superlattice � 2  only. The residual translation invariance makes
it more convenient to use a basis of one-electron states labelled by a wavevector
Qk in the Brillouin zone of the superlattice, instead of the cluster index m (this is
explain at length in Sect. 8.2). We will commonly use the basis of one-electron states
labelled by . Qk; a; �/. This is a mixed Fourier-position space representation, in which
the Fourier transform has been carried out at large distances only. The CPT Green
function (8.3) is diagonal in Qk, but not in a (cluster indices):

G�1. Qk; !/ D G 0�1.!/� V . Qk/: (8.4)

The matrices appearing in the above formula are now of the orderLN� (the number
of one-electron states in the cluster), i.e. they are matrices with indices (a; �) only.
G 0 is independent of Qk, whereas V is frequency independent.

The basic CPT relation (8.4) may also be expressed in terms of the self-energy
˙ of the cluster Hamiltonian:

G�1. Qk; !/ D G 0
�1. Qk; !/ �˙ .!/; (8.5)

where G 0. Qk; !/ is the Green function derived from the non-interacting part H0 of
the lattice Hamiltonian. This follows simply from the relations:

G 0�1 D ! � t 0 �˙ (8.6)

G 0
�1 D ! � t 0 � V ; (8.7)

where t 0 is the restriction to the cluster of the hopping matrix (chemical potential
included). It is in the form (8.5) that CPT was first proposed [3].

Since the form of the inter-hopping term V . Qk/ is known analytically, the CPT
Green function (8.4) is readily computed once the cluster Green function G 0�1.!/
is known. The latter must be computed numerically, for instance by an exact
diagonalization of the cluster HamiltonianH 0. It will be shown in Sect. 8.3 that the
CPT Green function has the same analytical properties as the exact Green function:
its poles are located on the real axis and its residues obey the basic sum rules. The
CPT Green function can be used to compute averages of one-body operators and
some thermodynamic quantities. After a periodization procedure (see Sect. 8.5),
it provides an approximation to the spectral function, useful in particular when
comparing with ARPES experiments. The CPT Green function pervades the VCA
(see Chap. 9.5) and the C-DMFT (see Chap. 10.7).
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CPT has the following characteristics:

1. Although it may be derived using the strong-coupling perturbation theory, it is
exact in the non-interacting limit, since the self-energy disappears in that case.

2. It is also exact in the strong-coupling limit tij ! 0.
3. It provides an approximate lattice Green function for a continuum of wavevec-

tors. Hence its usefulness in comparing with ARPES data. Even though CPT does
not have the self-consistency of DMFT approaches, at fixed computing resources
it allows for the best momentum resolution (likewise for the VCA).

4. Although formulated as a lowest-order result of the strong-coupling perturbation
theory, it is not controlled by including higher-order terms in that perturbation
expansion – this would be extremely difficult – but rather by increasing the
cluster size.

5. It cannot describe broken-symmetry states, since it is based on the solution of
a single cluster that is too small to support spontaneously broken symmetries.
Broken-symmetry states can be described by the VCA and the C-DMFT, which
can both be viewed as extensions or refinements of the CPT (alternately, one
could view the CPT as a special case of VCA without variational parameters).

6. Clusters in CPT have open boundary conditions. When periodic boundary
conditions are used by adding the missing hopping terms inH 0 while subtracting
them in HV , the results obtained are unsatisfactory (see Fig. 5 of [2]). This is
also shown by treating the missing hopping terms as variational parameters [6].
However, a periodic CPT (or PCPT) has been developed [7] that connects with
the dynamic cluster approximation (DCA), itself based on periodic clusters.

This review of CPT will proceed as follows: Section 8.2 will introduce the
notation and the various Fourier transforms used to relate the different bases of
one-body states used in CPT. Section 8.3 will describe the Lehmann representation
of the cluster Green functionG 0 and of the CPT Green functionG . Section 8.4 will
mostly review the exact diagonalization solver used in most applications of CPT.
Section 8.5 will describe various schemes used to recover a wavevector-resolved
Green function out of CPT, particularly useful when comparing with ARPES data.
Section 8.6 will explain how to calculate various quantities of interest from the CPT
Green function. Section 8.7 will show some results obtained on the Hubbard model,
and Sect. 8.8 will review applications of CPT to other models.

8.2 Cluster Kinematics

Cluster methods are based on a cluster decomposition of the model, i.e. on a tiling
of the original lattice  with identical clusters of L sites each. Mathematically, this
corresponds to introducing a superlattice � , whose sites, labelled by latin indices
(e.g., m; n; : : : ), form a subset of the lattice  . This superlattice is generated by
D basis vectors e1; : : : ; eD belonging to  : every site rm of the superlattice may
be expressed as an integer linear combination of these basis vectors. Associated
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e1

e2

(− π, − π)

(π, π)

(0, 0)

K

k̃

k

Fig. 8.1 Left panel: Tiling of the square lattice with 10-site clusters and superlattice vectors e1
and e2. Right panel: A wavevector k has a unique decomposition k D QkCK , where K is one of
the L elements of the reciprocal superlattice that belongs to the original Brillouin zone BZ

with each site of � is a cluster of L sites, whose shape is not uniquely determined
by the superlattice structure (for instance, see Fig. 8.1). The cluster sites will be
labelled by latin indices (a; b; : : : ). Each site r i of the original lattice  can be
expressed in a unique way as a combination of a superlattice vector rm and of a
site ra within the cluster: r i D rm C ra.2 This means that the index i may in fact
be replaced by a compound index .m; a/, and we have the following equivalence
between summations: X

i

 !
X
m2�

X
a

: (8.8)

The number of sites in the cluster is simply the ratio of the unit cell volumes of the
two lattices. In D D 3, this is

L D V�

V
D j.e1 ^ e2/ � e3j (8.9)

(the above formulae can be adapted to D D 2 by setting e3 D .0; 0; 1/).
The Brillouin zone of the original lattice, denoted BZ , contains L points

belonging to the reciprocal superlattice � �. The Brillouin zone of the superlattice,
BZ� , also called the reduced Brillouin zone, has a volumeL times smaller than that
of the original Brillouin zone. Any wavevector k of the original Brillouin zone can
be uniquely expressed as

k D K C Qk; (8.10)

2For simplicity, we will suppress the spin and band indices � in this section, but the whole
discussion is trivially generalized to the case where there are many electron states per lattice site.
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where K belongs both to the reciprocal superlattice and to BZ , and Qk belongs to
BZ� (see Fig. 8.1). Thus, we have the equivalent summations

X
k

 !
X

Qk

X
K

: (8.11)

Going between momentum space and real space, by discrete Fourier transforms,
can be done either directly (i $ k) or independently for cluster and superlattice
indices (m$ Qk and a$ K ):

fj D 1p
N

X
k

eik�rj f .k/ f .k/ D 1p
N

X
j

e�ik�rj fj

fm D
r
L

N

X
Qk

eiQk�rmf . Qk/ f . Qk/ D
r
L

N

X
m

e�iQk�rmfm

fa D 1p
L

X
K

eiK �rafK fK D 1p
L

X
a

e�iK �rafa

; (8.12)

where f stands for a generic one-index quantity, and N is the total number of sites
in the lattice  , which we suppose to be very large (the lattices  and � being
then formally periodic).3 These discrete Fourier transforms close by virtue of the
following identities

1

N

X
k

eik�rj D ırj
1

N

X
j

e�ik�rj D �.k/ (8.13)

L

N

X
Qk

eiQk�rm D ırm
L

N

X
m

e�ik�rm D �� . Qk/ (8.14)

1

L

X
K

eiK �ra D ıra
1

L

X
a

e�iK �ra D �.K /; (8.15)

where ır is a Kronecker delta (D 1 if and only if r D 0 within a discrete set), and
the �’s are the so-called Laue functions:

�.k/ D
X
Q2�

ıkCQ �� . Qk/ D
X
P2� �

ıQkCP : (8.16)

3Dependence on quasi-continuous indices, like k and Qk, will be indicated by parentheses instead
of subscripts. This notation may rightfully be deemed capricious, since the labels i and k take the
same number N of values, but we adopt it nonetheless as it helps reminding us that the values of
the labels are closely separated.
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Laue functions are used instead of Kronecker deltas in momentum space because of
the possibility of Umklapp processes. Note especially that even though

ık D ıQkıK .k D QkCK /; (8.17)

the same does not hold for the Laue functions:

�.k/ ¤ �� . Qk/�.K /: (8.18)

Instead we have the following relations:

�� . Qk/ D
X
K

�. QkCK / (8.19)

�.k/ D �. QkCK / D ıQk�.K / (8.20)

which reflect the arbitrariness in the choice of Brillouin zone of the superlattice.4

A one-index quantity like the destruction operator cj D cm;a can be represented
in a variety of ways, through partial Fourier transforms:

ca. Qk/ D
r
L

N

X
m

e�iQk�rmcm;a (8.21)

cm;K D 1p
L

X
a

e�iK �racm;a (8.22)

cK . Qk/ D 1p
N

X
m;a

e�i.Qk�rmCK �ra/cm;a (8.23)

c.k/ D 1p
N

X
i

e�ik�ri ci (8.24)

The last two representations are not identical, since the phases in the two cases differ
by Qk � ra. They are related by a L-dimensional unitary matrix:

c. QkCK / D
X

K 0

�KK 0. Qk/cK 0. Qk/; (8.25)

where

�KK 0. Qk/ D 1

L

X
a

e�ira �.QkCK�K 0/: (8.26)

4We use the term Brillouin zone in a rather liberal manner, as a complete and irreducible set of
wavevectors, and not as the Wigner–Seitz cell of the reciprocal lattice.
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A two-index quantity like the hopping matrix tij may thus have a number of
different representations. Due to translation invariance on the lattice, this matrix is
diagonal when expressed in momentum space: t.k;k0/ D ".k/ık;k0 , "k being the
dispersion relation:

tij D 1

N

X
k

eik�.ri�rj /"k: (8.27)

However, we will generally use the mixed representation:

tab. Qk/ D
X
m

eiQk�rmtij
i D .0; a/
j D .m; b/: (8.28)

For instance, if we tile the one-dimensional lattice with clusters of lengthL D 2, the
nearest-neighbor hopping matrix, corresponding to the dispersion relation ".k/ D
�2t cos.k/, has the following mixed representation:

t. Qk/ D �t
 

0 1C e�2iQk

1C e2iQk 0

!
(8.29)

8.3 Lehmann Representation of the Green Function

The zero-temperature cluster Green function G0
ab.!/ has the following expression,

as a function of the complex-valued frequency !:

G0
ab.!/ D G0

ab;e .!/CG0
ab;h.!/ (8.30)

G0
ab;e.!/ D h˝jca

1

! �H C E0 c
�

b j˝i (8.31)

G0
ab;h.!/ D h˝jc�b

1

! CH � E0 caj˝i; (8.32)

where j˝i is the ground state of H 0. The above expression is used as the starting
point of the Green function’s numerical computation (see Sects. 8.4.3 and 8.4.4).

By inserting completeness relations in (8.30), one finds the Lehmann representa-
tion:

G0
ab.!/ D

X
m

h˝jcajmihmjc�bj˝i
! � Em CE0 C

X
n

h˝jc�bjnihnjcaj˝i
! C En � E0 : (8.33)

The two sums are over different sets of eigenstates, in the spaces with one more and
one less electron, respectively. Let us introduce the notation
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Q.e/
am D h˝jcajmi Q.h/

an D h˝jc�ajni (8.34)

as well as !.e/m D Em � E0 > 0 and !.h/n D �En C E0 < 0 to write

G0
ab.!/ D

X
m

Q
.e/
amQ

.e/�
bm

! � !.e/m
C
X
n

Q
.h/
anQ

.h/�
bn

! � !.h/n
: (8.35)

TheQ.e/
am forms a L�N.e/ matrix, whereN.e/ is the number of states jmi that give

a non-zero contribution to the first sum above. Likewise, the Q.h/
am forms a L�N.h/

matrix. Let M D N.e/ C N.h/ and let us introduce a L �M matrix Q by joining
vertically the matrixQ.h/ below the matrixQ.e/, and let !r denote the elements of
the concatenated sets f!.e/m g and f!.h/n g. Then we can write

G0
ab.!/ D

X
r

QarQ
�
br

! � !r : (8.36)

If we introduce the diagonal matrix�rs D ırs!r and

g.!/ D 1

! �� ; (8.37)

then we have the matrix expression

G .!/ DQg.!/Q�: (8.38)

This is a very general representation of the exact cluster Green function. If we
restore spin and band indices, the matrixQ becomesN�L �M instead of L �M .

The band Lanczos method (Sect. 8.4.4) will provide a truncated Lehmann
representation of the Green function, in which the number M of columns of the
matrixQ is small, but with essentially the same properties as the exact matrix.

8.3.1 The Lehmann Representation and the CPT
Green Function

The CPT Green function (8.4) also has a Lehmann representation of the form (8.38).
Following [8], we write

G . Qk; !/ D 1

.Qg.!/Q�/�1 � V . Qk/
D Qg.!/Q� C .Qg.!/Q�/V .Qg.!/Q�/C � � �
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D Q
�
g.!/C g.!/.Q�V Q/g.!/C � � �

	
Q�

D Q 1

! �L. Qk/Q
�; (8.39)

where L. Qk/ D �CQ�V . Qk/Q. The poles of G . Qk; !/ are those of Œ! � L. Qk/��1,
which we denote as !r. Qk/. They are simply the eigenvalue of the N � N matrix
L. Qk/.

Let U . Qk/ be the matrix that diagonalizesL. Qk/:

U . Qk/L. Qk/U �. Qk/ D Q�. Qk/: (8.40)

Then

G . Qk; !/ D QQ. Qk/ 1

! � Q�. Qk/
QQ�
. Qk/; (8.41)

where QQ. Qk/ D QU . Qk/. This has the same form as (8.36) and constitutes a
Lehmann representation for the CPT Green function.

The representations (8.36) or (8.41) ensure the positivity of the cluster Green
function and the CPT Green function, respectively, i.e. the positive character of the
corresponding spectral functions. Indeed, the local (cluster) spectral weight is

Aa.!/ D �2 lim
�!0

ImG0
aa.! C i�/ (8.42)

and

G0
aa.!/ D

X
r

jQar j2
! � !r : (8.43)

This expression has poles on the real axis only with positive residues, and this
guarantees that the corresponding spectral function Aa.!/ is positive. Moreover,

the properties QQ� D 1 and QQ. Qk/ QQ�
. Qk/ D 1 ensure that the spectral functions

obtained from the cluster or the CPT Green functions are normalized.
An essential characteristic of CPT emerges from this Lehmann representation:

the poles of the CPT Green function, given by the diagonal matrix Q�. Qk/, disperse
as a function of reduced wavevector.

8.4 The Impurity Solver

Applying the CPT, or any other quantum cluster approach, requires the ability to
compute the Green function of a single, finite cluster. The procedure used to do
so is commonly called the impurity solver, an expression borrowed from DMFT
methods, in which the cluster is formally treated like an impurity embedded in an
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effective medium. Since CPT is often used to obtain spectral information in terms
of real frequencies, the most common impurity solver used with CPT is the exact
diagonalization (ED) solver, which has the advantage of providing real-frequency
information. Of course, the ED solver has the disadvantage of being limited to small
clusters (16 orbitals or less) given currently available computational resources. In
this section we will review the exact diagonalization method, based on the Lanczos
algorithm.

The first step of the exact diagonalization procedure is the choice of a basis
of state vectors, and the construction of the Hamiltonian in this basis – this may
or may not involve keeping the Hamiltonian matrix in memory. Then the ground
state is found in a quasi-exact way by an iterative method such as the Lanczos
algorithm. The Green function is thereafter calculated by similar means to be
described below. The main difficulty in executing the method is the large memory
required, which grows exponentially with the number of degrees of freedom. The
main implementation difficulty is to optimize the method by coding states belonging
to a given irreducible representation of the cluster’s point group.

To simplify the discussion, we will focus on the one-band Hubbard model.

8.4.1 Coding of the Basis States

The first step in the exact diagonalization procedure is to define a coding scheme for
the quantum basis states. Let us first describe how this is done without taking point
group symmetries into account. A basis state may be specified by the occupation
number n˛ (D 0 or 1) of electrons in the orbital labelled ˛ and has the following
expression in terms of creation operators:

.c
�

1"/
n1" � � � .c�

L"/
nL".c

�

1#/
n1# � � � .c�

L#/
nL# j0i; (8.44)

where the order in which the creation operators are applied is important, but a matter
of convention. If the number of orbitals is smaller than or equal to 32, the string of
n˛’s forms the binary representation of a 32-bit unsigned integer b, which can be
split into spin up and spin down parts:

b D b" C 2Lb#: (8.45)

There are 22L such states, but not all are relevant, since the Hubbard Hamiltonian
is block-diagonal : The number of electrons of a given spin (N" and N#) is con-
served and commutes with the HamiltonianH 0. Therefore, the exact diagonalization
is to be performed in a sector (i.e., a subspace) of the total Hilbert space with fixed
values of N" and N#. This space has the tensor product structure

V D VN"
˝ VN#

(8.46)
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and has a dimension d D d.N"/d.N#/, where

d.N�/ D LŠ

N�Š.L �N�/Š (8.47)

is the number of ways to distribute N� electrons among L sites.
Note that the ground state j˝i of the Hamiltonian generally belongs to the sector

N" D N#. For a half-filled, zero-spin system (N" D N# D L=2), this translates
into d D .LŠ=.L=2/Š2/2, which behaves like 4L=L for large L: The size of the
eigenproblem grows exponentially with system size. In contrast, the non-interacting
problem can be solved only by concentrating on one-electron states. For this reason,
the exact diagonalization of the Hubbard Hamiltonian is restricted to systems of the
order of 16 sites or less.

In practice, a generic state vector is represented by a d -component array of
double precision numbers. In order to apply or construct the Hamiltonian acting
on such vectors, we need a way to translate the label of a basis state (an integer i
from 0 to d � 1), into the binary representation (8.44). A generic and safe way to
accomplish this is to build a two-way look-up table that tabulates the correspondence
between consecutive integer labels and the binary representation of the basis state
(for instance, by using the STL map container).

The next step is to construct the Hamiltonian matrix. The particular structure of
the Hubbard model Hamiltonian brings a considerable simplification in the simple
case studied here. Indeed, the Hamiltonian has the form

H 0 D K" ˝ 1C 1˝K# C Vint; (8.48)

where K" only acts on up electrons and K# on down electrons, and where the
Coulomb repulsion term Vint is diagonal in the occupation number basis. Thus,
storing the Hamiltonian in memory is not a problem: the diagonal Vint is stored (an
array of size d ), and the kinetic energy K� (a matrix having a small fraction of d2�
elements) is stored in sparse form. Constructing this matrix, formally expressed as

K D
X
a;b

tabc
�
acb; (8.49)

needs some care with the signs. Basically, two basis states jb� i and jb0
�i are

connected with this matrix if their binary representations differ at two positions a
and b. The matrix element is then .�1/Mab tab , whereMab is the number of occupied
sites between a and b, i.e. assuming a < b,

Mab D
b�1X

cDaC1
nc: (8.50)
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For instance, the two states .10010110/ and .10011100/ with L D 8 are connected
with the matrix elementCt46, where the sites are numbered from 0 to L� 1.

Calculating the Hubbard interaction is straightforward: a bit-wise AND is applied
to the up and down parts of a binary state (b" & b# in C or CCC) and the number of
set bits of the result is the number of doubly occupied sites in that basis state.

The above procedure is slightly more complicated if the Hamiltonian contains
one-body terms that mix up and down electrons, such as spin flip terms or a
superconducting pairing source term. Such terms arise in applying the VCA or the
C-DMFT with an ED solver.

8.4.2 The Lanczos Algorithm for the Ground State

Once we have a representation of the basis vectors and Hamiltonian H 0, we can
proceed to the ED by finding the ground state of H 0, using the Lanczos algorithm.
Generally, the Lanczos method [9] is used when one needs the extreme eigenvalues
of a matrix too large to be fully diagonalized (e.g., with the Householder algorithm).
The method is iterative and involves only multiply-add’s from the matrix. This
means in particular that the matrix does not necessarily have to be constructed
explicitly, since only its action on a vector is needed. In some extreme cases
where it is practical to do so, the matrix elements can be calculated “on the
fly,” and this allows us to save the memory associated with storing the matrix
itself.

The basic idea behind the Lanczos method is to build a projection H of the full
Hamiltonian matrixH 0 onto a Krylov subspace. Starting with a (random) state j�0i,
a Krylov subspace is spanned by the iterated application of H 0:

K D span
˚j�0i;H 0j�0i;H 02j�0i; � � � ;H 0M j�0i

�
(8.51)

the generating vectors above are not mutually orthogonal, but a sequence of
mutually orthogonal vectors can be built from the following recursion relation

j�nC1i D H 0j�ni � anj�ni � b2nj�n�1i; (8.52)

where

an D h�njH j�nih�nj�ni b2n D
h�nj�ni
h�n�1j�n�1i b0 D 0 (8.53)

and we set the initial conditions b0 D 0, j��1i D 0. At any given step, only three
state vectors are kept in memory (�nC1, �n and �n�1). On the basis of normalized
states jni D j�ni=

ph�nj�ni, the projected Hamiltonian has the tridiagonal form
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0
BBBBB@

a0 b1 0 0 � � � 0
b1 a1 b2 0 � � � 0
0 b2 a2 b3 � � � 0
:::
:::
:::
:::
: : :

:::

0 0 0 0 � � � aN

1
CCCCCA
: (8.54)

Such a matrix is readily diagonalized by fast methods special to tridiagonal
matrices. Many in-house implementations of the method stop the iterations when
the lowest eigenvalue E0 changes by less than some tolerance (e.g., 10�14) from
one iteration to the next. However, a much safer convergence criterion is to
stop when the estimated Ritz residual jH 0j˝i � E0j˝ij is smaller than a preset
tolerance [9].

The ground state energy E0 and wave-function j˝i are very well approximated
by the lowest eigenvalue and the corresponding eigenvector of the tridiagonal
matrix, which are obtained by standard methods. This provides us with the ground
state j˝i in the reduced basis fj�nig. But we need the ground state in the original
basis, and this requires retracing the Lanczos iterations a second time – for the j�ni
are not stored in memory – and constructing the ground state progressively at each
iteration from the known coefficients h˝j�ni.

The Lanczos procedure is simple and efficient. The convergence is fast if the
lowest eigenvalue E0 is well separated from the next one (E1). It slows down if
E1 � E0 is small. If the ground state is degenerate (E1 D E0), the procedure will
converge to a vector of the ground state subspace, a different one each time the
initial state j�0i is changed. The number M of iterations required varies between a
few tens and �200, depending on the system size and on E1 �E0.

Note that the sequence of Lanczos vectors j�ni is in principle orthogonal, as
this is guaranteed by the three-way recursion relation (8.52). However, numerical
error will introduce “orthogonality leaks,” and after a few tens of iterations the
Lanczos basis will become over-complete in the Krylov subspace. This will translate
in multiple copies of the ground state eigenvalue in the tridiagonal matrix (8.54),
which should not be taken as a true degeneracy. However, as long as one is only
interested in the ground state and not in the multiplicity of the lowest eigenvalues,
this is not a problem.

8.4.3 The Lanczos Algorithm for the Green Function

We will first describe a Lanczos algorithm for calculating the Green function (8.30),
that provides a continued-fraction representation of its frequency dependence. In
the next subsection, we will instead present an alternate method based on the Band
Lanczos algorithm, that provides a Lehmann representation of the Green function
and that is both faster and more memory intensive.
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Consider first the functionG0
aa;e.!/. One needs to know the action of .!�H 0C

E0/
�1 on the state j�ai D c�aj˝i, and then to calculate

G0
aa;e D h�aj

1

! �H 0 C E0 j�ai: (8.55)

As with any generic function of H 0, this one can be expanded in powers of H 0:

1

z �H 0 D
1

z
C 1

z2
H 0 C 1

z3
H 02 C � � � (8.56)

and the action of this operator can be evaluated exactly at order H 0M in a Krylov
subspace (8.51). Thus we again resort to the Lanczos algorithm: A Lanczos
sequence is calculated from the initial, normalized state j�0i D j�ai=b0, where
b20 D h�aj�ai. This sequence generates a tridiagonal representation of H 0, albeit in
a different Hilbert space sector: that with N" C 1 up-spin electrons and N# down-
spin electrons. Once the preset maximum number of Lanczos steps, or a near zero
value of bn, has been reached, the tridiagonal representation (8.54) may then be
used to calculate (8.55). This is the matrix element b20Œ.! � H 0 C E0/�1�00 (the
first element of the inverse of a tridiagonal matrix), which has a simple continued
fraction form [10]:

G0
aa;e.!/ D

b20

! � a0 �
b21

! � a1 �
b22

! � a2 � � � �

: (8.57)

Once the arrays fang and fbng are known, evaluating the Green function reduces to
the calculation of a truncated continued fraction, which can be done recursively in
M steps, starting from the bottom floor of the fraction.

Consider next the case a ¤ b. The continued fraction representation applies only
when the same state j�i appears on the two sides of (8.55). If a ¤ b we may instead
use the following trick: we define the combination

G0C
ab;e.!/ D h˝j.ca C cb/

1

! �H 0 C E0 .ca C cb/
�j˝i: (8.58)

Using the symmetry G0
ab;e.!/ D G0

ba;e.!/, this leads to

G0
ab;e.!/ D

1

2
.G0C

ab;e.!/ �G0
aa;e.!/ �G0

bb;e.!//; (8.59)

whereG0C
ab;e can be calculated in the same way asG0

aa;e , i.e. with a simple continued

fraction. We proceed likewise for G0C
ab;h.!/. The cluster Green function is thus
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encoded in L.LC 1/ continued fractions, whose coefficients are stored in memory,
so that G 0.!/ can be computed on demand for any complex frequency !.

8.4.4 The Band Lanczos Algorithm for the Green Function

An alternate way of calculating the cluster Green function is to apply the band
Lanczos procedure [11]. This is a generalization of the Lanczos procedure where
the Krylov subspace is spanned not by one, but by many states. Let us assume that
up and down spins are decoupled, so that the Green function isL�L block diagonal.
The L states j�ai D c

�
aj˝i are first constructed, and then one builds the projection

H of H 0 on the Krylov subspace spanned by

n
j�1i; : : : ; j�Li;H 0j�1i; : : : ;H 0j�Li; : : : ;H 0M j�1i; : : : ;H 0M j�Li

o
: (8.60)

A Lanczos basis fjnig is constructed by the successive application of H 0 and
orthonormalization with respect to the previous 2L basis vectors. In principle,
each new basis vector jni is already automatically orthogonal to basis vectors j1i
through jn � 2L � 1i, although “orthogonality leaks” arise eventually and may
be problematic. A practical rule of thumb to avoid these problems is to control
the number M of iterations by the convergence of the lowest eigenvalue of H .
Independently of this, one must be careful about potential redundant basis vectors
in the Krylov subspace, which must be properly “deflated” [11]. The number of
states R in the Krylov subspace at convergence is typically between 100 and 300,
depending on the system size. The R � R matrix H , which has a tridiagonal
structure in the ordinary Lanczos method, now has a band structure made of L
diagonals around the central diagonal. It is then a simple matter to obtain a Lehmann
representation of the Green function in the Krylov subspace (see Sect. 8.3) by
calculating the projectionsQar of j�ai on the eigenstates of H (the inner products
of the j�ai’s with the Lanczos vectors are calculated as the latter are constructed).
The Green function can then be expressed in a Lehmann representation (8.36). The
two contributions G0

ab;e and G0
ab;h to the Green function are computed separately,

and the corresponding matrices Q and � are simply concatenated to form the
complete Q- and �-matrices, which are then stored and allow again for a quick
calculation of the Green function as a function of the complex frequency !. The
L �R matrixQ has the property

QQ� D 1L�L: (8.61)

This holds even if the Lehmann representation is obtained from a subspace and
not the full space, and is simply a consequence of the anti-commutation relations
fca; c�bg D ıab .
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The band Lanczos method requires more memory than the usual Lanczos
method, since 2L C 1 vectors must simultaneously be kept in memory, compared
to 3 for the simple Lanczos method. On the other hand, it is faster since all pairs
.a; b/ are covered in a single procedure, compared to L.LC 1/=2. Thus, we gain a
factor L2 in speed at the cost of a factor L in memory. Another advantage is that it
provides a Lehmann representation of the Green function.

8.4.5 Cluster Symmetries

The exact diagonalization procedure may be optimized by taking advantage of the
symmetries of the cluster Hamiltonian, in particular those coming from cluster
geometry. If the Hamiltonian is invariant under a discrete group G of symmetry
operations and jGj denotes the number of such elements (the order of the group), the
dimension of the largest Hilbert space needed can be reduced by a factor of almost
jGj, and the number of state vectors needed in the band Lanczos method reduced
by the same factor. The corresponding speed and memory gain are appreciable. The
price to pay is a higher complexity in coding the basis states. Since calculating
matrix elements “on the fly” becomes then more time consuming, it is reasonable to
store the Hamiltonian in memory. It is assumed here that open boundary conditions
are used, and therefore there is no translation symmetry within the cluster; thus we
are concerned with point groups, not space groups.

Let us start with a simple example: a cluster invariant with respect to a single
inversion or a single rotation by � . One may think of a one-dimensional cluster,
for instance, with a left–right inversion. The corresponding symmetry group is C2,
with two elements: the identity e and the inversion �. The group C2 contains two
irreducible representations, noted A and B , containing states that are respectively
even and odd with respect to �. Because the Hamiltonian is invariant under inversion:
H 0 D ��1H 0�, eigenvectors of H 0 will be either even or odd, i.e., belong either to
the A or to the B representation. Likewise, the Hamiltonian will have no matrix
elements between states belonging to different representations. In order to take
advantage of this fact, one needs to construct a basis containing only states of a given
representation. The occupation number basis states jbi introduced above (or binary
states, as we will call them) are no longer adequate. For the simple group C2, one
should rather consider the even and odd combinations jbi˙ �jbi (and some of these
combinations may vanish). Yet we still need a scheme to label the different basis
states and have a quick access to their occupation number representation, which
allows us to compute matrix elements. We will now briefly describe how this can be
done (a more detailed discussion can be found, e.g., in [12]).

We will restrict the discussion to groups generated by a finite number of Z2
operations. Such groups are Abelian and their irreducible representations, all strictly
one-dimensional, are labelled by the parity (˙) of each generator. For instance, this
includes the group C2v, generated by a reflexions about the x and y axes, with the
four irreducible representations:
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A1 D .C;C/ A2 D .�;�/ B1 D .C;�/ B2 D .�;C/: (8.62)

In this class of groups, the number of group elements jGj coincides with the number
of irreducible representations (there is an isomorphism between the two), and group
multiplication coincides with tensor products. Each group element forms its own
conjugacy class and the group character �.˛/g of element g in the representation
˛ is either 1 or �1. Under the action of the group G, each binary state generates
an “orbit” of binary states, whose length is the order jGj of the group or a
divisor thereof. To such an orbit corresponds at most one state in the irreducible
representation labelled ˛, given by the corresponding projection operator:

j i D 1

jGj
X
g

�.˛/g gjbi (8.63)

(this state may vanish). We can then select a representative binary state for each
orbit (e.g., the one associated with the smallest binary representation) and use it as
a label for the state j i. We still need an index function B.i/ which provides the
representative binary state for each consecutive label i . The reverse correspondence
i D I.b/ is stored in a tree structure, such as the one provided by the STL map
container.

Once the basis has been constructed, one needs to construct a matrix represen-
tation of the Hamiltonian in that representation. Given two states j 1i and j 2i,
represented by the binary states jb1i and jb2i, it is a simple matter to show that the
matrix element is

h 2jH 0j 1i D 1

jGj
X
g

�
.˛/

h �g.b/hgb2jH 0jb1i; (8.64)

where the phase �g.b/ is defined by the relation

gjbi D �g.b/jgbi: (8.65)

In the above relation, jgbi is the binary state obtained by applying the symmetry
operation g to the occupation numbers forming b, whereas the phase �g.b/ is the
product of signs collected from all the permutations of creation operators needed to
go from b to gb. Equation (8.64) is used as follows to construct the Hamiltonian
matrix: First, the Hamiltonian can be written as H 0 D P

r H
0
r , where H 0

r is a
hopping term between specific sites, or a diagonal term like the interaction. One then
loops over all b1’s. For each b1, and each term H 0

r , one constructs the single binary
state H 0

r jb1i. One then finds the representative b2 of that binary state, by applying
on it all possible symmetry operations until g is found such that jgb2i D H 0

r jb1i.
During this operation, the phase �g.b/ must also be collected. Then the matrix
element (8.64) is added to the list of stored matrix elements. Since each term H 0

r

individually is not invariant under the group, there will be more matrix elements
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generated than there should be, i.e. there will be cancellations between different
matrix elements associated with the same pair (b1, b2) and produced by the different
H 0
r ’s. For this reason, it is useful to first store all matrix elements associated with

a given b1 in an intermediate location in order for the cancellations to take effect,
and then to store the cleaned up “column” labelled by b1 to its definitive storage
location. Needless to say, one should only store the row and column indices of each
element of a given value.

8.4.6 Green Functions Using Cluster Symmetries

Most of the time, the ground state lies in the trivial (symmetric) representation.
However, taking advantage of symmetries in the calculation of the Green function
requires all the irreducible representations to be included in the calculation. The
Green function matrix G 0 will be block-diagonal in a basis of states belonging to
representations of G. To calculate it, one should use symmetry eigen-operators

c.˛/� D
X
a

M .˛/
�a ca (8.66)

such that c.˛/� transforms under representation ˛, and � labels the different possibil-
ities. For instance, for a linear cluster of length 4 and an inversion symmetry that
maps the sites .1234/ into .4321/, these operators are

c
.A/
1 D c1 C c4
c
.A/
2 D c2 C c3

c
.B/
1 D c1 � c4
c
.B/
2 D c2 � c3

: (8.67)

For each representation, one may use the Band Lanczos procedure and obtain a
Lehmann representation Q.˛/

�r for the associated Green function G.˛/
�� .!/. If the

ground state is in representation ˛ and the operators c.ˇ/� of representation ˇ are
used, the Hilbert space sector to work with will be the tensor product representation
˛ ˝ ˇ, which poses no problem at all when all irreps are one-dimensional, but
would bring additional complexity if the ground states were in a multi-dimensional
representation. Finally, one may bring together the different pieces, by building
a L � L matrix M�a that is the vertical concatenation of the various rectangular

matricesM.˛/
�a , and returning to the usualQ-matrix representation

Qar D .M�1/a�Q�r : (8.68)

Using cluster symmetries for the Green function saves a factor jGj in memory
because of the reduction of the Hilbert space dimension, and an additional factor of
jGj since the number of input vectors in the band Lanczos procedure is also divided
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by jGj. Typically then, most of the memory will be used to store the Hamiltonian
matrix.

It might appear at this stage that a better way to proceed would be to start the
whole diagonalization procedure (including the coding of basis states) with the help
of the proper symmetric orbitals labelled by the irreducible representation .�; ˇ/
instead of site indices a. The problem comes from the interaction term in H 0

1: it is
much simpler when expressed in terms of the ca’s and c�a’s; using any other basis
would lead to a proliferation of matrix elements in such a large number that it would
dominate memory and computing time requirements.

8.4.7 Other Solvers

A problem with the Lanczos method is the breakdown of orthogonality between
Lanczos vectors due to numerical errors. This is not a problem when computing the
ground state, but affects the accuracy of the Green function in both the Lanczos and
band Lanczos methods.

A way out of this is the Kernel polynomial method (KPM) [13]. Like the
Lanczos and band Lanczos methods, it is an iterative procedure using matrix vector
multiplications that can yield a representation of the Green function, this time
in terms of Chebyshev polynomials. Its advantage lies in its numerical stability:
orthogonality at each iteration is not important, and, therefore, the accuracy of the
spectral function thus calculated increases safely with the number of iterations. Its
disadvantage is that it provides the Green function at real frequencies only, whereas
the Lanczos method provides a representation for the whole complex plane of
frequencies. Since integrals of the Green function are routinely performed along
the imaginary axis in order to compute physical quantities, the KPM is less useful
in this context. However, it is the most accurate method for obtaining the spectral
function. See [13] for a detailed description of the method and for an example of
its application to the spectral function of the one-dimensional Hubbard model using
CPT.

Nothing in CPT is specific to the ED solver. A Quantum Monte Carlo (QMC)
solver could be used just as well, with the usual caveats that the cluster Green
function would be affected by statistical errors and available as a function of
imaginary time only (or a finite number of Matsubara frequencies). Thus, using
a QMC solver is not the most natural one to compute the spectral function, lest one
is comfortable with using the maximum entropy method to perform an approximate
analytic continuation towards real frequencies. This was accomplished in [14, 15]
and applied to a monolayer ofC60 molecules. A first attempt at using the more recent
continuous-time quantum Monte Carlo (CTQMC) method in the more general
context of VCA was carried out in [16]. We refer the reader to these works for a
detailed discussion.
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8.5 Periodization

The CPT Green function (8.4) breaks translation invariance on the original lattice  .
This means that it is not diagonal when expressed in terms of full wavevectors:
G ! G.k;k0/. Because of the residual superlattice translation invariance, k0 and
k must map to the same wavevector of the superlattice Brillouin zone (or reduced
Brillouin zone) and differ by an element of the reciprocal superlattice: k0�k 2 � �.

A periodization procedure is an ad hoc prescription to recover a Green function
diagonal in k. The most direct periodization procedure, the so-called G-scheme,
was proposed in [4]. It simply discards the off-diagonal piece of the Green function
when expressed in the k D .K ; Qk/ basis. This is done as follows: In the .K ; Qk/
basis, the matrix G has the following form (see (8.12)):

GKK 0. Qk; !/ D 1

L

X
a;b

e�i.K �ra�K 0�rb/Gab. Qk; !/: (8.69)

This form can be further converted to the full wavevector basis .k D K C Qk/ by the
use of the unitary matrix � of (8.25):

G. QkCK ; QkCK 0/ D
�
�. Qk/G��. Qk/

	
KK 0

D 1

L2

X

a;b;K 1;K
0

1

e�i.QkCK�K1/�raei.QkCK 0�K 0

1/�rbGK 1K
0

1

D 1

L

X
a;b

e�i.QkCK /�raei.QkCK 0/�rbGab. Qk; !/:

(8.70)

Now let us set K D K 0. We can also freely replace Qk by k D QkCK in Gab. Qk; !/,
since V . Qk/ is unchanged when Qk is shifted by a reciprocal superlattice vector,
because of translation invariance on the superlattice. We end up with the following
simple formula:

Gper.k; !/ D 1

L

X
a;b

e�ik�.ra�rb /Gab.k; !/ (G-scheme) (8.71)

which has the straightforward appearance of a residual Fourier transform.
The G-scheme is natural, as the density of states N.!/ is the trace of the

imaginary part of the Green function:

N.!/ D � 2
N

Im trG .!/ D � 2
N

Im
X
i

Gi i .!/

D � 2
N

Im
X
k

G.k; !/; (8.72)
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and the spectral functionA.k; !/, as a partial trace, involves only the diagonal part.
Indeed, it is a simple matter to show from the anti-commutation relations that the
frequency integral of the Green function is the unit matrix:

� 2 Im
Z

d!

2�
G .!/ D 1: (8.73)

This being representation independent, it follows that the frequency integral of the
imaginary part of the off-diagonal components of the Green function vanishes.

Another possible prescription is the so-called ˙-scheme, which periodizes the
self-energy˙ instead of the Green function [17, 18]. In other words, one computes
the momentum dependent self-energy

˙per.k; !/ D 1

L

X
a;b

e�ik�.ra�rb/˙ab.!/ (8.74)

and recovers the Green function (and the spectral function) with Dyson’s equation:

Gper.k; !/
�1 D ! � t.k/�˙per.k; !/ (˙-scheme); (8.75)

where t.k/ is the dispersion relation. This is appealing since ˙ is an irreducible
quantity, as opposed to G . However, as shown in Fig. 8.2, the ˙-scheme leads to
unphysical results in the spectral function. For instance, it leads to non-zero spectral
weight within the Mott gap in the one-dimensional Hubbard model, for all values of
U (the Mott transition occurs at U !1 instead of U D 0, the correct result).

Yet another prescription is the M-scheme, in which the first lattice cumulant of
the Green function is periodized [19]. In practice, this proceeds as follows: The
matrix of one-body terms is split into diagonal and off-diagonal parts:

t. Qk/ D tdiag. Qk/C toff. Qk/: (8.76)

We then proceed exactly like in the G-scheme, but without the off-diagonal piece
of t. In other words, we periodize the quantity

G diag. Qk; !/ D
�
! � tdiag. Qk/ �˙ .!/

	�1
(8.77)

as in (8.71) and (8.74) and obtain Gdiag
per .k; !/. We then express toff. Qk/ in the full

Fourier representation (toff.k/) and finally construct the periodized Green function

Gper.k; !/ D
h
Gdiag

per .k; !/
�1 � toff.k/

i�1
(M-scheme): (8.78)

The three periodization schemes described above are compared in Fig. 8.2, which
shows the spectral function of the one-dimensional Hubbard model computed from
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Fig. 8.2 CPT spectral function of the one-dimensional, half-filled Hubbard model with U D 4,
t D 1, in various periodization schemes, from a 16-site cluster. See text for comments

the G, ˙ and M-schemes. The bottom panel also shows the effect of periodizing
only the cluster Green function G 0.!/, without applying CPT (what we call the
C-scheme). As we can see, the G-scheme reproduces the expected feature of the
spectral function, with a direct Mott gap at k D �=2. The ˙-scheme has a
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substantial spectral weight dispersing across the Mott gap and is completely wrong
in this case. The M-scheme is not so different from the G-scheme, except that the
minimum in the dispersion of the main spectral feature is not precise at k D �=2, as
if the Mott gap as indirect. Finally, the C-scheme shows no dispersion of any of the
peaks, just a modulation of their weight as a function of wavevector, as expected. We
conclude that the G-scheme is preferable, as well as the simplest and most natural
periodization scheme.

Note, however, that expectation values of one-body operators and other thermo-
dynamic quantities can (and should) be computed from the CPT Green function
(8.4) without periodization.

The periodized Green functions have the correct analytic properties and lead to a
positive and normalized spectral weight. Indeed, let us consider any matrix function
Gab.!/ with a Lehmann representation:

Gab.!/ D
X
r

QarQ
�
br

! � !r (8.79)

that we periodize in the way of (8.71):

G.k; !/ D 1

L

X
a;b

e�ik�.ra�rb/Gab

D 1

L

X
˛;ˇ

X
r

e�ik�raQareik�rbQ�
br

1

! � !r

D
X
r

j r.k/j2
! � !r ;

(8.80)

where

 r.k/ D 1

L

X
a

e�ik�raQar : (8.81)

The above expression manifestly leads to a positive spectral weight, since all
residues are real and all poles on the real axis (periodization only affects the
residues, not the location of the poles). Moreover, since the matrix Q is affected by
a unitary transformation (the discrete Fourier transform), the trace is not affected:

X
r

j r.k/j2 D
X
a;r

jQar j2 DQQ� D 1 (8.82)

and the normalization of the spectral function is not affected. If Gab is the cluster
Green function, this corresponds to the C-scheme; if it is the CPT Green function
(8.4), this corresponds to the G-scheme; if it is the cluster self-energy ˙ab , then
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the resulting periodized self-energy also has the correct analytic properties and so
does the˙-scheme Green function. Last, the M-scheme too has the correct analytic
properties, since removing and reinserting later the off-diagonal part toff. Qk/ do not
affect the analytic properties of the Green function.

8.6 Computing Physical Quantities

In many applications that use the CPT Green function, whether in VCA or C-DMFT,
it is necessary to compute various physical quantities, which often can be expressed
as the expectation value of a one-body operator of the general form

O D s˛ˇc�˛cˇ: (8.83)

In the simple case of the number of electrons, the matrix s is diagonal:

si�;j� 0 D ıij ı�� 0 (8.84)

but one could be interested in the expectation value of the kinetic energy, or some
order parameter.

We will show in this section how to practically calculate the density NO D
s˛ˇhc�˛cˇi=N with the help of a Green function defined along the imaginary
axis, as obtained for instance from the ED solver and the CPT (we assume zero
temperature).

From the Lehmann representation of the Green function, we see that hc�˛cˇi is
given by the integral of the Green function along a contour C< surrounding the
negative real frequency axis counterclockwise:

hc�ˇc˛i D
Z

C<

dz

2�i
G˛ˇ.z/: (8.85)

Therefore, the expectation value we are looking for is

NO D 1

N
sˇ˛hc�ˇc˛i D

1

N

Z

C<

dz

2�i
tr ŒsG .z/� : (8.86)

The trace includes a sum over lattice sites, spin and band. In the .a; Qk/ basis, this
becomes

NO D 1

N

X
Qk

Z

C<

dz

2�i
tr
h
s. Qk/G . Qk; z/

i
; (8.87)
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where we assumed that the matrix s is diagonal in Qk (translation invariance over the
superlattice).

Next, let us consider the asymptotic behavior of the Green function as z ! 1:
G .z/! 1=z. This allows us to modify (8.87) as follows:

NO D 1

N

X
Qk

Z

C<

dz

2�i

(
tr
h
s. Qk/G . Qk; z/

i
� tr s. Qk/

z� p

)
; (8.88)

where p > 0 (in practice, we use p � 1). The term we added does not contribute,
since its unique pole lies outside the contour. However, it modifies the asymptotic
behavior of the integrand, which now decays as 1=z2. This allows us to replace the
contour C< by an integral along the imaginary axis, plus an infinite semi-circle that
does not contribute, since the integrand falls faster than 1=z.

Consider next the part of the contour C< that lies above the real axis, and let
us follow this contour clockwise and call it C . Let C 0 be the mirror image of C
below the real axis, followed counterclockwise. To each z and dz of C correspond
the mirror images z� and dz� on C 0, so that

I ŒC 0� D
Z

C 0

dzf .z/ D
Z

C

dz�f .z�/: (8.89)

If, in addition, the integrand is such that f .z�/ D f �.z/, then

I ŒC 0� D
Z

C

dz�f �.z/ D
�Z

C

dzf .z/

��
D I�ŒC �: (8.90)

The integral of f .z/ along the counterclockwise contour C< would then be

I ŒC<� D I ŒC 0� � I ŒC � D I�ŒC � � I ŒC � D �2i Im I ŒC �: (8.91)

One of the properties of the Green function is its hermiticity:G˛ˇ.z�/ D G�̌
˛.z/. In

the mixed Fourier representation, this is rather expressed asG . Qk; z�/ D G �.�Qk; z/.
We also assume that s is Hermitian: s. Qk/ D s�.�Qk/ so that the expectation value is
real. This means that the integrand of the expectation value respects the condition
f .z�/ D f �.z/.

Finally, the expectation value becomes

NO D 1

N

X
Qk

Z 1

0

d!

�
Re

(
tr
h
s. Qk/G . Qk; i!/

i
� tr s. Qk/
i! � p

)
: (8.92)

This expression can be used in practice (i.e. numerically) to compute the desired
quantity.
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Let us make an important remark on the computation of expectation values with
the periodized Green functions described in the previous section. The result (8.86)
is quite general and could formally be expressed as

NO D Tr .sG /; (8.93)

where the trace ( Tr ) stands for a functional trace, i.e. includes an integral over
frequency as well as a trace over site and band indices. The above expression
is basis-independent; in the full wavevector basis of one-particle states (see, e.g.,
(8.70)), the frequency summand would take the following form:

1

N

X

Qk;Qk0

;K ;K 0

Re
n
s. QkCK ; Qk0 CK 0/G. Qk0 CK 0; QkCK ; i!/

o
: (8.94)

If the operator O is translation invariant, as it usually is, then

s. QkCK ; Qk0 CK 0/ D ıKK 0ıQkQk0s.k/ D ıkk0s.k/ (8.95)

and the above reduces to

X
k

Re
˚
s.k/Gper.k; i!/

�
; (8.96)

where Gper.k; i!/ is the Green function (8.71), periodized in the G-scheme.
This means that expectation values of translation invariant, one-body operators,
computed in the G-scheme of periodization, coincide with those computed without
periodization, i.e. with (8.92). This does not hold for the other periodization
schemes, as it crucially depends on our discarding the off-diagonal elements of
G in the full wavevector basis, which is possible because we take the trace of
G against a matrix s that is itself diagonal in that basis. The G-scheme is therefore
the best periodization scheme, in the sense of expectation values of one-body
operators.

8.7 Results on the Hubbard Model

The CPT was devised at first to be applied on the Hubbard model, in partic-
ular to calculate an approximate spectral function that could be compared with
ARPES data. The main advantage of CPT in this context is that it provides
momentum-resolved spectral information. This is particularly useful in investigating
the pseudogap observed in high-temperature superconductors in their normal phase,
as was done in [20] with a one-band Hubbard model appropriate to cuprates (in
particular YBCO). Figure 8.3, borrowed from [20], shows the spectral function
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Fig. 8.3 Spectral weight for wavevectors along the high-symmetry directions shown in the inset.
The band parameters are t D 1, t 0 D �0:3 and t 00 D 0:2. (a): CPT calculations on a 3� 4 cluster
with 10 electrons on the cluster (17% hole doped). (b): the same, with 14 electrons (17% electron
doped). From [20]

obtained from CPT for the hole- and electron-doped one-band Hubbard model, at
various values of U , on a 3 � 4 cluster. The separation of the two Hubbard bands
as U increases is clearly visible, as well as the suppression of the quasi-particle
weight along the X–H direction in the hole-doped case, and along the diagonal in the
electron-doped case. This weight suppression constitutes the pseudogap, i.e., a gap
that opens only along a certain portion of the Fermi surface. The pseudogap is also
clearly seen from plots of the spectral function as a function of wavevector (Fig. 8.4).
The intersection of the anti-ferromagnetic zone boundary (white diagonal) with
the non-interacting Fermi surface (black curve) defines “hot spots” where the
scattering of quasi-particles by short-range anti-ferromagnetic fluctuations depletes
the spectral weight. This compares well with ARPES results for electron-doped
(Fig. 3 of [21]) and hole-doped (Fig. 8 of [22]) cuprates.
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Fig. 8.4 Density plot of the spectral function at the Fermi level, in the first quadrant of the
Brillouin zone, for an electron doped system at weak coupling (left), and a hole-doped system
at stronger coupling (right). The non-interacting Fermi surface is shown in black, and the anti-
ferromagnetic zone boundary in white. A 4� 4 cluster was used

Comparisons with the known results from the one-dimensional Hubbard model
are particularly instructive. We have shown the spectral function in various
periodization schemes for the half-filled, one-dimensional Hubbard model on
Fig. 8.2. On that figure (top panel), the spin charge separation is clearly visible,
especially far from kF, where the energy difference between the holon and spinon
is largest. Access to a continuum of wavevectors by CPT allows for a natural
smoothing of the computed density of states (DoS), compared to the same quantity
obtained from the cluster Green function alone. Figure 8.5 shows results for clusters
of sizes 4 and 16. The CPT density of states, when extrapolated to zero Lorenzian
broadening �, display a set of (sometimes overlapping) bands that correspond to the
dispersing poles of the CPT Green function. Overall, the CPT DoS, when calculated
with a natural value of �, is less spiky than the corresponding cluster DoS. Non-zero
spectral weights at the tails of the distribution and within the Mott gap are due to
the finite value of �.

Let us now consider the spectral gap at half-filling. Estimates of this gap from a
12-site cluster, and extrapolations to infinite size are shown in Fig. 8.6 (see caption
for details). We see that the CPT provides a better estimate of the gap than the
cluster alone, even more so when an infinite-size extrapolation can be computed.
The behavior as U ! 0 merits attention: cluster data alone, at a fixed cluster
size, do not show the vanishing of the gap, but the CPT result does. However,
both the raw cluster and CPT gaps tend to 0 as U ! 0 when an extrapolation is
performed, although the gap does not go to zero nearly as fast as it should, from
the exact solution. Long-range fluctuations (much longer than the cluster size) are
likely important to set the correct gap value in this regime.
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Fig. 8.5 Density of States (DoS) for the half-filled, one-dimensional Hubbard model
(U D 4; t D 1). Top panel: results for the 4-site cluster; the DoS on the cluster is shown with a
Lorenzian broadening � D 0:1, as well as the DoS from the CPT Green function with the same �.
In addition, an extrapolation to � ! 0 is shown. Bottom panel: same, for the 16-site cluster (no
extrapolation shown)

8.8 Applications to Other Models

8.8.1 Multi-Band Hubbard Models

Hubbard models with more than one band can be treated with CPT just like the
one-band model. Of course, the computational burden depends on the total number
of orbitals on the cluster, and therefore a three-band model on a 4-site cluster will
require the same resources as a one-band model on a 12-site cluster, everything else
being equal. The CPT was first applied to the three-band Hubbard model for high-
temperature superconductors in [24] and [2]. The three-band Hubbard model was
studied more recently using VCA [25]. The periodic Anderson model (or Kondo
lattice) studied in [26] with the VCA can be viewed as a two-band Hubbard model in
which only one band is correlated. Likewise, the CPT was applied in [27] to a two-
band Hubbard model used to model an organic polymer coupled to a quantum wire:
one (uncorrelated) band describing the wire and the other (correlated) describing
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Fig. 8.6 Mott gap of the half-filled, one-dimensional Hubbard model, as a function of U . The
open blue circles are obtained by looking at the lowest energy level of a 12-site cluster, in the
sectors with 12 and 13 electrons respectively. The filled blue circles are obtained by extrapolating
this estimate to L ! 1 from L D 4; 6; 8; 10 and 12. The open red circles are obtained from the
Lehmann representation (8.41) of the CPT Green function based on a 12-site cluster, at k D �=2.
The filled red circles are obtained by extrapolating this estimate to L ! 1 from L D 4; 6; 8; 10

and 12. The dashed line is the known exact result from the Lieb and Wu solution [23]

the polymer, the goal of this work being to explore the possibility of a spintronics
device in which spin channels could be controlled by a gate instead of an external
magnetic field.

8.8.2 t–J or Spin Models

The basic assumption behind CPT is that the interaction part of the Hamiltonian
does not have any inter-cluster terms (8.1). This excludes, among others, the
t � J model, which has exchange-like interaction and correlated hopping, and
the extended Hubbard model with its nearest-neighbor interactions. Of course
this is only a restriction if we insist on the strong-coupling perturbation theory
character of the basic formula (8.3). However, that formula, considered as a ad hoc
approximation, may provide a good approximation to the lattice Green function
even if the Hamiltonian does not have the form (8.1), especially considering that
CPT is not controlled by computing higher orders in strong-coupling perturbation
theory, but rather by increasing the cluster size.

For instance, the t�J model is a strong-coupling effective model for the Hubbard
model, with J D 4t2=U . Therefore the cluster Green function of the t � J model
is expected to be close to that of the Hubbard model if J � t . In [28,29], the t � J
model was used in conjunction with CPT to calculate the spectral function in the
presence of stripes, with J D 0:4t . The advantage of the t � J model lies in its
smaller Hilbert space, following the trace over states with doubly occupied sites.
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Purely spin models, like the Heisenberg model, are not covered by the strong
perturbation theory of [1]. But CPT has recently been extended to such models [30]
by generalizing to CPT techniques used in spin systems.

8.8.3 Extended Hubbard Models

Treating extended interactions in CPT is possible provided an additional approxi-
mation is made, in the form of a mean-field treatment of the interactions residing
on inter-cluster bonds. Sometimes there are no inter-cluster bonds: this is the case
of monolayers of fullerene molecules (C12 and C20) studied in [15]. There, the
extended interaction is treated exactly within the fullerene molecule which makes up
the cluster, whereas the inter-molecular hybridization is treated by CPT. A similar
path is followed in [31], where the spectral functions of a j D 5

2
multiplet of 5f

atomic states are computed using CPT. The cluster is then made of a single lattice
site, with 6 atomic states and the Coulomb repulsion between states attached to
different sites is neglected. Likewise, the inter-band Coulomb interaction introduced
in the electron–hole Hubbard model [32] fits perfectly the standard CPT framework.

The studies of stripes carried out in [29,33] using CPT did not involve an explicit
treatment of the Coulomb interaction, as the stripes were supposed static. On the
other hand, [34] did carry out such a mean-field decomposition to study charge
ordering in the extended Hubbard model with the help of the VCA. Let us discuss
how such a mean-field decomposition can be carried out. The extended interaction
for the whole lattice may be written as

Hext D
X
.ij /

Vij ni nj ; (8.97)

where the sum is carried of pairs .i; j / of sites and ni D ni" C ni# is the electron
density at site i (we suppose a one-band model for simplicity). Let us write the
Coulomb matrix Vij as a sum of an intra-cluster part V .1/

ij and an inter-cluster part

V
.2/
ij . The latter is then treated in the Hartree approximation and factorized:

HMF
ext D

X
.ij /

V
.1/
ij ninj C

X
.ij /

V
.2/
ij

�
ni Nnj C nj Nni � Nni Nnj

�
; (8.98)

where the Weiss fields Nni can be set by the self-consistency condition Nni D hni i.
Since the matrix V .2/ is real and symmetric, it can be diagonalized by an orthogonal
matrix: V .2/ D O�OT . One then defines eigen-operators Oa D P

j Oaj nj and
eigen-fields ha D �aPj Oaj Nnj such that

HMF
ext D

X
.ij /

V
.1/
ij ni nj C

X
a

�
haOa � h2a

2�a


: (8.99)

The self-consistency condition is then ha D �ahOai.
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Some of the operatorsOa break spatial symmetries, and their introduction hints at
the possibility of treating broken symmetry states within CPT itself. But the VCA or
DMFT approaches are much better approaches to broken symmetries and should be
pursued instead. In particular, the mean-field decomposition described above applies
just as well to VCA and C-DMFT.

8.8.4 Phonons

The CPT can also be applied to phonon-mediated interactions, again provided that
the phonon interaction be local, which restricts us to the Holstein or the Holstein–
Hubbard model. Zhao et al. [35] applies CPT to the one-dimensional Holstein
model, which involves dispersionless phonons only:

H D �t
X
i

�
c
�
i� ci� C H:c:

	
C !0

X
i

b
�
i bi � 

X
i

ni .b
�
i C bi /; (8.100)

where bi annihilates a phonon at site i , !0 is the phonon frequency and  the
electron–phonon coupling. From a computational point of view, the difficulty with
phonons is that they require an infinite-dimensional Hilbert space, and thus some
truncation is needed. Zhao et al. [35] uses an optimized phonon approach [36–38]
for that purpose. At fixed !0, this systems undergoes a transition from a normal
state to a charge-density state wave (CDW) at a certain critical coupling gc. The
CDW state has a gap clearly visible in the CPT spectrum [35]. This is a case of
spontaneous breaking of a discrete symmetry that occurs at the same time in the
phonon and electron system.

Adding a Hubbard interaction to (8.100) yields the Holstein–Hubbard model. As
shown in [39], the electron–phonon interaction has a sizeable effect on the electron
spectral function, eventually suppressing the holon peak visible in the absence
of phonons, while keeping the spin peak relatively intact. The authors argue that
the ARPES spectra of the quasi-one-dimensional organic conductor TTF-TCNQ
reported in [40] cannot be correctly interpreted with the Hubbard model alone, but
requires the introduction of phonons.
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Chapter 9
Dynamical Cluster Approximation

H. Fotso, S. Yang, K. Chen, S. Pathak, J. Moreno, M. Jarrell, K. Mikelsons,
E. Khatami, and D. Galanakis

Abstract The dynamical cluster approximation (DCA) is a method which system-
atically incorporates nonlocal corrections to the dynamical mean-field approxima-
tion. Here we present a pedagogical discussion of the DCA by describing it as
a ˚-derivable coarse-graining approximation in k-space, which maps an infinite
lattice problem onto a periodic finite-sized cluster embedded in a self-consistently
determined effective medium. We demonstrate the method by applying it to the
two-dimensional Hubbard model. From this application, we show evidences of
the presence of a quantum critical point (QCP) at a finite doping underneath the
superconducting dome. The QCP is associated with the second-order terminus of a
line of first order phase separation transitions. This critical point is driven to zero
temperature by varying the band parameters, generating the QCP. The effect of the
proximity of the QCP to the superconducting dome is also discussed.

9.1 Introduction

Some of the most exotic properties of materials, including high-temperature super-
conductivity, colossal magnetoresistance, and heavy Fermion and non-Fermi liquid
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behaviors, are due to strong electronic correlations. The materials which display
these properties are characterized by either narrow electronic bands or compact
orbitals with large angular momentum in the valence shell. In either case, the
potential energy associated with some of these electronic degrees of freedom is
comparable to or larger than their electronic kinetic energy (bandwidth), which
invalidates conventional perturbative approaches. Thus, we resort to mean-field
approximations, which we solve numerically so that diagrams to all orders are
included, and we use them to study simplified models representing these systems.

For example, the Hubbard model [1–3] is the simplest model of a correlated
electronic lattice system. Together with the t � J model, they are thought to at least
qualitatively describe some of the properties of transition metal oxides, and high-
temperature superconductors [4]. The periodic Anderson model along with various
Kondo lattice models has been proposed to describe both the actinide and lanthanide
heavy fermion systems and the Kondo insulators. The Holstein model incorporates
the essential physics of strongly interacting electrons and phonons. All of these
model Hamiltonians contain at least two major ingredients: a local interaction term
and a nonlocal hopping term. For example, the Hubbard model Hamiltonian (see
Fig. 9.1) is

H D � t
X

hj;ki�
.c
�
j�ck� C c�k�cj�/C �

X
j

.nj" C nj#/

C U
X
j

.nj" � 1=2/.nj# � 1=2/ ; (9.1)

where c�j� (cj� ) creates (destroys) an electron at a site j with a spin � , ni� D c�i� ci� ,
t is the nearest neighbor hopping which sets the unit of energy and U is the on-site
Coulomb repulsion between the electrons.

However, except for special limits, even such a simplified model like (9.1) cannot
be solved exactly. For example, for the Hubbard model, no exact solutions exist
except in one dimension, where the knowledge is in fact rather complete [5–7]. The
periodic Anderson model is only solvable in the limit where the orbital degeneracy
diverges [8], and the Holstein model is only solvable in the Eliashberg–Migdal limit
where vertex corrections may be neglected. Clearly a new approach to these models
is needed if nontrivial exact solutions are desired.

Metzner and Vollhardt [9, 10], Kuramoto [11, 12], and Müeller-Hartmann [13]
suggested such a new approach based on a mean-field theory which becomes
exact when the dimensionality d D1. The resulting formalism neglects dynamical

Fig. 9.1 Cartoon of the Hubbard model, characterized by a single band with near-neighbor
hopping t , and local repulsion U
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Fig. 9.2 Quantum cluster
approaches, like the DMFA
and DCA, map the infinite
lattice problem onto a
self-consistently embedded
cluster problem

intersite correlations while retaining the important local dynamical correlations. The
resulting formalism is called the dynamical mean field approximation (DMFA) since
it may be employed in any dimension, but is only exact on infinite-dimensional
lattices. In finite dimensions, the dynamical cluster approximation (DCA) is used to
systematically study nonlocal corrections to the DMFA [14, 15]. Quantum cluster
approaches, such as the DMFA and DCA, work by mapping an infinite periodic
lattice onto a self-consistently embedded cluster problem, as illustrated in Fig. 9.2.
Correlations up to the cluster size are treated explicitly, while those at longer length
scales are treated in a mean-field level. The DMFA/DCA cluster problem may be
solved by a variety of methods; however, quantum Monte Carlo (QMC) has been
the first numerically exact solver employed [16] and remains the most powerful and
adaptable method.

In this article, we will present a pedagogical discussion of the DCA and its
relationship to the DMFA. In Sect. 9.2 we will first derive the DMFA as a coarse-
graining approximation, extend this logic to derive the DCA and also provide a
derivation from the ˚ functional. In Sect. 9.3, we describe how physical quantities
are calculated in this formalism. In Sect. 9.4 we will discuss applications of the
DCA showing how it is used to find evidence for a quantum critical point (QCP)
underneath the superconducting dome and to investigate the nature of this QCP and
finally to study the relationship between superconductivity and the QCP.

9.2 The Dynamical Mean Field and Cluster Approximations

9.2.1 The Dynamical Mean-Field Approximation

The DCA algorithm can be derived in analogy with the DMFA. The DMFA is a
local approximation which was used by Kuramoto in perturbative calculations as a
simplification of the k-summations which render the problem intractable [11, 12].
But it was after the work of Metzner and Vollhardt [9] and Müller-Hartmann
[13], who showed that this approximation becomes exact in the limit of infinite
dimensions, that it received extensive attention. In this approximation, one neglects
the spatial dependence of the self-energy, retaining only its variation with time. See
the reviews by Pruschke et al. [17] and Georges et al. [18] for a more extensive
treatment.
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In this section, we will show that it is possible to re-interpret the DMFA as a
coarse-graining approximation. The DMFA consists of mapping the original lattice
problem to a self-consistent impurity problem. This is equivalent to averaging the
Green functions used to calculate the irreducible diagrammatic insertions over the
Brillouin zone. An important consequence of this averaging is that the self-energy
and the irreducible vertices of the lattice are independent of the momentum. Hence,
they are those of the impurity.

Müller-Hartmann [13] showed that this coarse-graining becomes exact in the
limit of infinite dimensions. For Hubbard-like models, the properties of the bare
vertex are completely characterized by the Laue function � which expresses the
momentum conservation at each vertex. In a conventional diagrammatic approach

�.k1;k2;k3;k4/ D
X

r

exp Œir � .k1 C k2 � k3 � k4/�

D Nık1Ck2;k3Ck4 ; (9.2)

where k1 and k2 (k3 and k4) are the momenta entering (leaving) each vertex through
its Green function legs. However, as the dimensionalityD !1 Müller-Hartmann
showed that the Laue function reduces to [13]

�D!1.k1;k2;k3;k4/ D 1CO.1=D/. (9.3)

The DMFA assumes the same Laue function, �DMFA.k1;k2;k3;k4/ D 1, even
in the context of finite dimensions. Thus, the conservation of momentum at internal
vertices is neglected and we may freely sum over the internal momentum labels
of each Green function leg. This leads to a collapse of the momentum dependent
contributions and only local terms remain.

This argument may then be applied to the generating functional ˚ , which is
the sum over all closed connected compact graphs constructed from the dressed
Green’s functionG and the bare interaction.The second-order contribution to ˚ for
a Hubbard-like model is illustrated in Fig. 9.3. The self-energy ˙ may be obtained
from a functional derivative of ˚ with respect to the Green’s function G, which
effectively removes one of the Green’s function lines (Fig. 9.4).

The perturbative series for ˚ , ˙ and the irreducible vertices � in the DMFA
are identical to those of the corresponding impurity model, so that conventional

Fig. 9.3 The second-order contribution to the generating functional ˚ . As we apply the DMFA
coarse-graining approximation, (9.3), ˚ becomes a functional of the local Green’s function and
interaction
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Fig. 9.4 The DMFA
self-energy contains only
local corrections. See, e.g.,
the third graph. To prevent
overcounting these
contributions, the local
self-energy must be excluded,
cf. (9.4), from the Green’s
function line used in most
cluster solvers

X=0 X=0

X=0

X=0

X=0 X=0

X=0

X=0
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impurity solvers may be used. However, since most impurity solvers can be viewed
as methods that sum all the graphs, not just the skeletal ones, it is necessary to
exclude ˙ from the local propagator input, G, to the impurity solver, in order
to avoid overcounting local self-energy contributions. Therefore, in Matsubara
frequencies

G.i!n/�1 D G.i!n/�1 C˙.i!n/; (9.4)

where i!n D .2n C 1/�T , ˙.i!n/ is the self-energy and G.i!n/ the full local
Green’s function. Hence, in the local approximation, the Hubbard model has the
same diagrammatic expansion as an Anderson impurity with a bare local propagator
G.i!nI˙/, which is determined self-consistently.

An algorithm constructed from this approximation is the following: (1) An initial
guess for ˙.i!n/ is chosen (usually from the perturbation theory). (2) ˙.i!n/ is
used to calculate the corresponding local Green’s function

G.i!n/ D
Z

d�
�0.�/

i!n � .� � 
/ �˙.i!n/ ; (9.5)

where �0 is the noninteracting density of states, and 
 is the chemical potential.
(3) Starting from G.i!n/ and ˙.i!n/ used in the second step, the host Green’s
function G.i!n/�1 D G.i!n/

�1 C ˙.i!n/ is calculated, which serves as the bare
Green’s function of the impurity model. (4) Starting with G.i!n/, the local Green’s
function G.i!n/ is obtained using the QMC method (or another technique). (5)
Using the QMC output for the cluster Green’s functionG.i!n/ and the host Green’s
function G.i!n/ from the third step, a new ˙.i!n/ D G.i!n/�1 � G.i!n/�1 is
calculated, which is then used in step (2) to reinitialize the process. Steps (2)–(5)
are repeated until convergence is reached. If in step (4) the QMC algorithm of
Hirsch and Fye [19,20] is used to compute the local Green’s functionG.�/ or other
physical quantities in imaginary time, local dynamical quantities are then calculated
by analytically continuing the corresponding imaginary-time quantities using the
maximum-entropy method (MEM) [21].
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9.2.2 The Dynamical Cluster Approximation

Like the DMFA, the DCA may be intuitively motivated with a coarse-graining
transformation. In the DMFA, the propagators used to calculate˚ and its derivatives
were coarse-grained over the entire Brillouin zone, leading to local (momentum
independent) irreducible quantities. In the DCA, we wish to relax this condition,
and systematically restore momentum conservation and nonlocal corrections. Thus,
in the DCA, the reciprocal space of the lattice which contains N points is divided
into Nc cells of identical linear size �k. The coarse-graining transformation is set
by averaging the Green function within each cell. If Nc D 1 the original lattice
problem is mapped to an impurity problem (DMFA). If Nc is larger than one, then
nonlocal corrections of length � �=�k to the DMFA are introduced. Provided
that the propagators are sufficiently weakly momentum dependent, this is a good
approximation. If Nc is chosen to be small, the cluster problem can be solved using
conventional techniques such as the QMC, the non-crossing approximation (NCA)
or the fluctuation exchange approximation (FLEX). This averaging process also
establishes a relationship between the systems of size N and Nc. A simple choice,
which will be discussed in Sect. 9.2.3, is to equate the irreducible quantities (self-
energy, irreducible vertices) of the cluster to those in the lattice.

This coarse-graining procedure and the relationship of the DCA to the DMFA
is illustrated by a microscopic diagrammatic derivation of the DCA. The DCA
systematically restores the momentum conservation at internal vertices relinquished
by the DMFA. The Brillouin zone is divided into Nc D LD cells of linear size
�k D 2�=L (cf. Fig. 9.5 for Nc D 8). Each cell is represented by a cluster
momentum K in the center of the cell. We require that momentum conservation
be (partially) observed for momentum transfers between cells, i.e., for momentum
transfers larger than �k, but neglected for momentum transfers within a cell, i.e.,
less than �k. This requirement can be established by using the Laue function [15]

�DCA.k1;k2;k3;k4/ D NcıM.k1/CM.k2/;M.k3/CM.k4/, (9.6)

Fig. 9.5 Coarse-graining
cells for Nc D 8

(differentiated by alternating
fill patterns) that partition the
first Brillouin zone (dashed
line). Each cell is centered on
a cluster momentum K (filled
circles). To construct the
DCA cluster, we map a
generic momentum in the
zone such as k to the nearest
cluster point K D M.k/ so
that Qk D k � K remains in
the cell around K

kx

ky

~

k
k

K

( ,0)

(  ,  )
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where M.k/ is a function which maps k onto the momentum label K of the
cell containing k (see Fig. 9.5). This choice for the Laue function systematically
interpolates between the exact result, (9.2), which it recovers when Nc ! N and
the DMFA result, (9.3), which it recovers when Nc D 1. With this choice of the
Laue function the momenta of each internal leg may be freely summed over the
cell.

This is illustrated for the second-order term in the generating functional in
Fig. 9.6. Each internal legG.k/ in a diagram is replaced by the coarse-grained Green
function NG.M.k//, defined by

NG.K/ 	 Nc

N

X
Qk
G.KC Qk/, (9.7)

whereN is the number of points of the lattice, Nc is the number of cluster K points,
and the Qk summation runs over the momenta of the cell about the cluster momentum
K (see Fig. 9.5). The diagrammatic consequences for the generating functional and
its derivatives are unchanged; however, the complexity of the problem is greatly
reduced since Nc � N .

9.2.3 ˚ Derivability

The coarse-graining approximation can be applied to the generating functional ˚ .
The generating functional is the sum over all of the closed connected compact
diagrams, such as the one shown in Fig. 9.6. It is defined as

˚ .G/ D
X
l;�

pl t r
�
˙l
�G�

�
: (9.8)

The trace indicates summation over frequency, momentum and spin. Here, ˙l
� is

the set of irreducible self-energy diagrams of l th order in the interaction, G� is the
dressed Green function related to ˙� by the Dyson equation G�1

� D G0�1
� � ˙� ,

Fig. 9.6 A second-order term in the generating functional of the Hubbard model. Here the
undulating line represents the interaction U , and on the LHS (RHS) the solid line the lattice
(coarse-grained) single-particle Green functions. When the DCA Laue function is used to describe
momentum conservation at the internal vertices, the momenta collapse onto the cluster momenta
and each lattice Green function is replaced by the coarse-grained result
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where G0 is the noninteracting Green function, pl is a counting factor equal to the
number of occurrences of G� in each term (for Hubbard-like models, pl D 1=l).
The free energy F can be expressed as

F D �kBT .˚ .G/ � tr Œ˙�G� � � tr ln Œ�G��/ : (9.9)

With the above definition, it holds that ˙� D ı˚=ıG� , as required for a “˚-
derivable” theory, and the free energy is stationary under variations of G. In
addition, the irreducible vertex function is obtained by a second variation of ˚ ,
��� 0 D ı2˚=ıG�ıG� 0 D ı˙�=ıG� 0 .

The DCA can be microscopically motivated by the choice of the Laue function
�DCA (1.6). Within this formalism, the effect of the chosen Laue function is
the replacement of the self-energy ˙� and the irreducible vertex ��;� 0 by the
corresponding coarse-grained quantities (indicated here by the bars). Consider for
example the Schwinger–Dyson equation relating the self-energy to the two-particle
reducible vertex T .2/, ˙ D GGGT .2/. The vertices connecting the Green function
to T .2/ do not preserve momentum conservation within the cells about the cluster
momentum due to the DCA Laue function. Consequently, the lattice Green function
G� is replaced by the coarse-grained Green function NG� . The external momentum
label .k/ of the self-energy is in principle still a lattice momentum; however, the
self-energy will only depend on k through the function M.k/. If we use this self-
energy in the calculation of its contribution to the ˚ functional, the Laue function
on the vertices will “reduce” both the self-energy as well as the closing Green
function to their corresponding coarse-grained expressions. Consequently, the DCA
˚ functional reads

˚DCA .G/ D
X
l

pl t r
� Ṅ l

�
NG�
�
: (9.10)

In correspondence to the lattice system,

ı˚DCA

ı NG�
D Ṅ� D ı˚DCA

ıG�
; (9.11)

where the second equality follows since the variation ı=ıG� corresponds to cutting
a Green function line , so that ı NG�K=ıG

0
�k0 D ıK;M.k0/ı�;� 0 . It follows that the DCA

estimate of the free energy is

FDCA D �kBT .˚DCA � tr Œ˙�G� � � tr ln Œ�G��/ ; (9.12)

FDCA is stationary with respect to G� when

�1
kBT

ıFDCA

ıG�.k/
D Ṅ� .M.k// �˙�.k/ D 0; (9.13)
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which means that˙.k/D Ṅ� .M.k// is the proper approximation for the lattice self-
energy corresponding to ˚DCA. The corresponding lattice single-particle propagator
is then given by

G.k; z/ D 1

z � .�k � 
/ � Ṅ .M.k/; z/
; (9.14)

where �k is the quasiparticle energy, and 
 the chemical potential. A similar
procedure is used to construct the two-particle quantities needed to determine the
phase diagram or the nature of the dominant fluctuations that can eventually destroy
the high-temperature ground state. This procedure is a generalization of the method
of calculating response functions in the DMFA [16, 22].

The introduction of the momentum dependence in the DCA self-energy allows
one to detect some precursors to transitions which are absent in the DMFA; but for
the actual determination of the nature of the instability, one needs to compute the
response functions. These susceptibilities are thermodynamically defined as second
derivatives of the free energy with respect to external fields. ˚DCA.G/ and Ṅ� , and
hence FDCA depend on these fields only through G� and the bare G0

� . Following
Baym and Kadanoff [23], it is easy to verify that, the approximation

��;� 0 � N��;� 0 	 ı Ṅ�=ıG� 0 (9.15)

yields the same estimate that would be obtained from the second derivative of
FDCA with respect to the applied field. For example, the first derivative of the free
energy with respect to a spatially homogeneous external magnetic field h is the
magnetization,

m D Tr Œ�G� � : (9.16)

The susceptibility is given by the second derivative,

� D @m

@h
D Tr



�
@G�

@h

�
: (9.17)

We substitute G� D
�
G0�1
� � Ṅ�

��1
, and evaluate the derivative,

� D Tr



�
@G�

@h

�
D Tr

"
G2
�

 
1C � @

Ṅ
�

@G� 0

@G� 0

@h

!#
: (9.18)

We can generalize this argument to include the staggered susceptibility by identify-
ing ��;� 0 D �

@G�0

@h
, and �st D T rŒ��;�� � and �0� D G2

� . By collecting all the terms
within both traces, and sum over the cell momenta Qk, we obtain the two-particle
Dyson’s equation

2
� N��;� � N��;��

�

D 2 N�0� C 2 N�0�
� N��;� � N��;��

�
. N��;� � N��;�� / : (9.19)
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We see that again it is the irreducible quantity, i.e., the vertex function, for which
the cluster and lattice quantities are equal.

9.2.4 Algorithm

A variety of techniques may be used to sum the cluster diagrams in order to calculate
the cluster self-energy, ˙c, and the cluster vertex function, �c. In the past, we
have used the QMC [24], the non-crossing approximation [25] or the Fluctuation-
Exchange approximation [26]. Here, we will mainly use QMC techniques. Since
QMC is systematically exact; i.e., it effectively sums all diagrams to all orders, care
must be taken when defining the initial Green function (the solid lines in Fig. 9.6) to
avoid overcounting diagrams on the cluster. For example, to fourth order and higher
in perturbation theory for the self-energy, nontrivial self-energy corrections enter in
the diagrammatic expansion for the cluster self energy of the Hubbard model. To
avoid overcounting these contributions, we must first subtract off the self-energy
corrections on the cluster from the Green function line used to calculate ˙c and its
functional derivatives. This cluster-excluded Green function is given by

1

G.K; z/ D
1

NG.K; z/ C˙c.K; z/ (9.20)

which is the coarse-grained Green function with correlations on the cluster
excluded. Since ˙c.K; z/ is not known a priori, it must be determined self-
consistently, starting from an initial guess, usually from the perturbation theory.
This guess is used to calculate NG from (9.7). G.K; z/ is then calculated with (9.20),
and it is used to initialize the QMC calculation. The QMC estimate for the cluster
self energy is then used to calculate a new estimate for NG.K/ using (9.7). The
corresponding G.K/ is used to reinitialize the procedure which continues until
Gc D NG and the self-energy converges to the desired accuracy.

One of the difficulties encountered in earlier attempts to include nonlocal
corrections to the DMFA was that these methods were not causal [27, 28]. The
spectral weight was not conserved and the imaginary parts of the one-particle
retarded Green functions and self-energies were not negative definite as required
by causality. The DCA algorithm presented in this subsection does not present these
problems. This algorithm is fully causal as shown by Hettler et al. [15]. They analyze
the different steps of the self-consistent loop and found that none of them breaks the
causality of the Green functions. Starting from the QMC block, one can see that
if the input G is causal, since the QMC algorithm is essentially exact, the output
Gc will also be causal. Then the corresponding ˙c.K; i!n/ is causal. This in turn
ensures that the coarse-grained Green function NG.K; i!n/ also fulfills causality. The
only nontrivial operation which may break causality is the calculation of G.K; i!n/.
Hettler et al. [15] used a geometric proof to show that even this part of the loop
respects causality.
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9.3 Physical Quantities

Most experiments measure quantities which can be expressed as reducible one
or two-particle Green’s functions. As discussed above, the appropriate way to
calculate these quantities is to first extract the corresponding irreducible quantity
from the cluster calculation, and then use it to calculate the reducible quantity.
For example, to calculate the single-particle Green’s function (relevant for angle-
resolved photoemission spectroscopy) we first extract the cluster self-energy and use
the Dyson equation to construct the lattice Green’s function. To calculate the phase
diagram, we calculate the irreducible vertices in the different scattering channels � ,
and insert them into the Bethe–Salpeter equations for the lattice. In this subsection
we will provide more details about the relationship between the lattice and cluster
two-particle Green’s functions and describe how a lattice susceptibility may be
calculated efficiently.

9.3.1 Particle–Hole Channel

As a specific example, we will describe the calculation of the two-particle particle–
hole Green’s function

��;� 0.q; k; k0/ D
Z ˇ

0

Z ˇ

0

Z ˇ

0

Z ˇ

0

d�1d�2d�3d�4

� ei..!nC	n/�1�!n�2C!n0 �3�.!n0 C	n/�4/

� hT�c�kCq� .�1/ck� .�2/c
�

k0� 0
.�3/ck0Cq� 0.�4/i,

where we adopt the conventional notation [29] k D .k; i!n/, k0 D .k; !0
n/, q D

.q; 	n/ and T� is the time ordering operator.
��;� 0 .q; k; k0/ and ��;� 0.q; k; k0/ are related to each other through the Bethe–

Salpeter equation (Fig. 9.7):

��;� 0.q; k; k0/ D �0�;� 0.q; k; k
0/C �0�;� 00.q; k; k

00/

��� 00;� 000.q; k00; k000/�� 000 ;� 0.q; k000; k0/; (9.21)

where frequency labels have been suppressed, and ��;� 0.q; k; k0/ is the two-particle
irreducible vertex which is the analogue of the self-energy, �0�;� 0 .q; k; k

00/ is the
noninteracting susceptibility constructed from a pair of fully dressed single-particle
Green’s functions. As usual, a summation is to be made for repeated indices.

We now make the DCA substitution ��;� 0.q; k; k0/! �c�;� 0 .q;M.k/;M.k0// in
(9.21). We ultimately want to sum over all k and k0 to calculate the susceptibility
at q. Note that after the DCA substitution only the bare and dressed two-particle
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Fig. 9.7 The Bethe–Salpeter equation in the DCA. We approximate the lattice irreducible vertex
� 	 by the � 	

c from the DCA cluster and coarse-grain over the momentum Qk. The remaining
equation is a function only of the cluster momenta K and may be solved by inversion

Green’s functions � depend upon the momenta Qk within a cell. Since � and �0 in
the product on the RHS of (9.21) share no common momentum labels, we may now
freely sum over the momenta Qk within a cell, yielding

N��;� 0 .q;K;K 0/ D N�0�;� 0 .q;K;K
0/C N�0�;� 00.q;K;K

00/

��c� 00;� 000.q;K 00; K 000/ N�� 000 ;� 0.q;K 000; K 0/: (9.22)

By coarse-graining the Bethe–Salpeter equation, we have greatly reduced its
complexity; each of the matrices above is sufficiently small that they may be easily
manipulated using standard techniques.

In contrast with the single-particle case where the coarse-grained quantities are
identical to those of the cluster, �c�;� 0.q;K;K 0/ is not equal to N��;� 0.q;K;K 0/.
This is because the self-consistency is made only at the single-particle level.
Unlike the single-particle case where both ˙.K/ and NG.K/ are directly calcu-
lated, only the cluster susceptibility is calculated by the cluster solver, neither
��;� 0.q;K;K 0/ nor the coarse-grained susceptibility N��;� 0 .q;K;K 0/ is calculated
during the self-consistency. Instead, the coarse-grained noninteracting susceptibility
N�0
�;� 0.q;K;K

0/ is calculated in a separate program after the DCA converges using
the following relation

N�0�;� 0 Œ.q; i	n/I .K; i!n/I .K0; i!0
n/� D ı�;� 0ıK;K0ı!n;!0

n

Nc

N

X
Qk
G�.KC Qk; i!n/

�G�.KC QkC q; i!n C 	n/. (9.23)

The vertex function is extracted by inverting the cluster two-particle Bethe–
Salpeter equation

�c�;� 0.q;K;K 0/ D �c
0
�;� 0.q;K;K

0/C �c
0
�;� 00.q;K;K

00/

��c� 00;� 000.q;K 00; K 000/�c� 000;� 0.q;K
000; K 0/ : (9.24)
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If we combine (9.24) and (9.22), then the coarse-grained susceptibility may be
obtained after the elimination of � .q;K;K0/ between the two equations. It reads

N��1 D ��1
c � �0

�1

c C N�0�1

;

where, for example, N� is the matrix formed from N��;� 0 .q;K;K0/ for fixed q. The
charge (ch) and spin (sp) susceptibilities �ch;sp.q; T / are deduced from N�

�ch;sp.q; T / D .kBT /
2

N 2
c

X
KK0�� 0

��� 0 N��;� 0.q;K;K 0/, (9.25)

where ��� 0 D 1 for the charge channel and ��� 0 D �� 0 for the spin channel.

9.3.2 Particle–Particle Channel

The calculation of susceptibilities in the particle–particle channel is essentially
identical to the above equation. The exception to this rule occurs when we calculate
susceptibilities for transitions to states of lower symmetry than the lattice symmetry.
For example, in order to obtain the pairing susceptibility of the desired symmetry
(s; p; d ), the two-particle Green’s function must be multiplied by the corresponding
form factors g.k/ and g.k0/. In the study of the Hubbard model below, we will
be particularly interested in g.k/ D 1 (s wave), g.k/ D cos.kx/ C cos.ky/
(extended s wave) and g.k/ D cos.kx/� cos.ky/ (dx2�y2 wave). These symmetries
have been evoked as possible candidates for the superconducting ground state of
cuprate superconductors (Fig. 9.8).

These factors modify the Bethe–Salpeter equations

g.k/�.q; k; k0/g.k0/ D g.k/�0.q; k; k0/g.k0/C g.k/�0.q; k; k00/

�� .q; k00; k000/ � �.q; k000; k0/g.k0/; (9.26)

where

�.q; k; k0/ D
Z ˇ

0

Z ˇ

0

Z ˇ

0

Z ˇ

0

d�1d�2d�3d�4

� ei..!nC	n/�1�!n�2C!n0�3�.!n0 C	n/�4/

� hT�c�kCq� .�1/c
�
�k�� .�2/c�k0�� .�3/ck0Cq� .�4/i. (9.27)

On the LHS, we have dropped the spin indices since we will consider only
opposite-spin pairing. Equation (9.26) cannot be easily solved if it is coarse-grained,
since this will partially convolve �.q; k; k0/ with two factors of g on the LHS and
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Fig. 9.8 Calculation of particle–particle projected susceptibilities. Often we want to calculate a
projected particle–particle susceptibility (e.g., d -wave, with gk D cos.kx/ � cos.ky/). Here the
Bethe–Salpeter equation is rewritten in terms of the reducible vertex F . We approximate the lattice
irreducible vertex � 	 by the � 	

c from the DCA cluster and coarse-grain over the Qk. Then the
projected bare bubbles are calculated, and the remaining equation is a function of the cluster K
only and may be solved by inversion

one factor on the RHS. Hence for the pairing susceptibilities, or for any situation
where nontrivial form factors must be used, we use the equivalent equation involving
the reducible vertex F (instead of the irreducible vertex � )

g.k/�.q; k; k0/g.k0/ D g.k/�0.q; k; k0/g.k0/

Cg.k/�0.q; k; k00/

�F.q; k00; k000/�0.q; k000; k0/g.k0/; (9.28)

where

F.q; k; k0/ D � .q; k; k0/

C� .q; k; k00/�0.q; k00; k000/� .q; k000; k0/C � � � (9.29)

We define

˘g;g.q; k; k
0/ D g.k/�.q; k; k0/g.k0/ (9.30)

˘0
g;g.q; k; k

0/ D g.k/�0.q; k; k0/g.k0/ (9.31)

˘0
g.q; k; k

0/ D g.k/�0.q; k; k0/ : (9.32)

The remaining steps of the calculation are similar to the particle–hole case. We
invert the cluster particle–particle Bethe–Salpeter equation with g D 1 for the
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cluster, in order to extract �c. We then coarse-grain (9.29) and use �c to calculate
the coarse-grained NF D �c

�
1 � N�0�c

��1
. We then coarse-grain (9.28), and use the

coarse-grained NF to calculate the coarse-grained N̆g;g
N̆
g;g.q;K;K

0/ D N̆ 0g;g.q;K;K 0/

C N̆ 0g .q;K;K 00/ NF .q;K 00; K 000/ N̆ 0g .q;K 000; K 0/ : (9.33)

The pairing susceptibility of a desired symmetry is given by

Pg.q; T / D .kBT /
2

N 2
c

X
K;K0

N̆
gg.q;K;K

0/. (9.34)

9.4 DCA and Quantum Criticality in the Hubbard Model

9.4.1 Evidence of the Quantum Critical Point at Optimal Doping

The phase diagram of the hole-doped cuprates exhibits some unusual properties
including a pseudogap (PG) at low doping and unusual metallic behavior at higher
doping. This has lead researchers to postulate the existence of a QCP at optimal
doping in the cuprates phase diagram. Some investigators have also argued that the
PG is related with the establishment of order [30–35], and the optimal doping is in
the proximity of the QCP associated to this order. Others have argued that the QCP
is located at the transition from the non-Fermi liquid (NFL) to the Fermi liquid
(FL) ground state with no order established in the PG region [36]. We use the DCA
to explore the presence of this QCP in the two-dimensional Hubbard model [37].
Investigating the single-particle properties, we find further evidence for the QCP
and determine that it is the terminus of a V-shaped marginal Fermi liquid (MFL)
region separating the NFL PG region from the FL region at high doping.

In this section we analyze several physical quantities using the known forms
of the self-energy in the MFL and the FL regions, as well as an ansatz in the
region beyond but near the QCP, when the system crosses over from MFL to
FL. Within the DCA we can evaluate Z0.k/ D .1 � Im˙.k; i!0/=!0/

�1, where
!0 D �T is the lowest Fermion Matsubara frequency. For a well behaved self-
energy, limT!0 Z0.k/ D Z.k/ is the quasiparticle renormalization factor. In this
problem, the relevant low energy scales are the antiferromagnetic exchange energy
J near half-filling, the PG temperature T � in the PG region, and the effective Fermi
energy TX at higher doping. From the previously described analysis [38], we find
that Jeff � 0:44t for n D 0:95 and n D 1. We extract T � and TX from fits to the
data[37], as presented in the figures below, where data for T � Jeff are included
in each case. T � can be also determined from the peak in the susceptibility (see
Fig. 9.9).
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Fig. 9.9 (Taken from [37]) The single-particle density of states in the pseudogap region for various
temperatures with n D 0:95, U D 6t D 1:5, W D 8t D 2. The unit of energy is set to 4t D 1.
Inset: The bulk, Q D 0, cluster susceptibility for the same parameters. The PG in the DOS begins
to develop at roughly the same temperature T � which identifies the peak susceptibility

The quasiparticle fraction is calculated with k on the Fermi surface (FS) as
defined by the maximum along the .1; 1/ and .0; 1/ directions of jrn.k/j. This
FS is slightly different from the one identified using the spectral function A.k;
! D 0/ [39] when n > 0:85. However, the quasiparticle weights Z ! 0

everywhere on both Fermi surfaces (and shows a similar anisotropy on both). So, our
conclusions do not depend on whether jrn.k/j or A.k; ! D 0/ is used to identify
the FS. Since we are interested in the crossover from PG to FL behavior, and the
PG is stronger along the .0; 1/ direction, we present detailed results and analysis for
the .0; 1/ direction only. The quasiparticle fraction along the .0; 1/ direction, Z001,
is shown in the main panel in Fig. 9.10 for different fillings.

As the filling n increases through n D 0:85, the low-temperature Matsubara
quasiparticle data changes its behavior. The data have a negative curvature at all
T for n > 0:85; while for n < 0:85, the data have a negative curvature at high
T and develops a weak positive curvature at lower T . The change in curvature of
the low temperature data for n < 0:85 is easily understood as a crossover to an
FL region. On the other hand, the MFL always has a negative curvature. So at the
transition between FL and MFL, a region of positive curvature is found at T � TX .
The ratio of the quasiparticle fraction at the FS along the (01) and the (11) direction,
Z011=Z001, plotted in the inset of Fig. 9.10 as a function of temperature for different
fillings shows that the conclusions from the above analysis are not specific to the
direction .0; 1/. The ratio is seen to be essentially the same for all fillings at the QCP,
indicating that Z is essentially isotropic at the QCP, and becomes progressively more
anisotropic as we dope into the PG region. Furthermore, Z calculated at k D .0; �/
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Fig. 9.10 (Taken from [37]) Matsubara quasiparticle fraction Z0.k/ versus temperature T evalu-
ated with k on the Fermi surface along the .0; 1/ direction for different fillings n when U D 6t

and the bandwidth W D 8t . The unit of energy is such that 4t D 1. The lines represent fits in
the region T < 0:3 to either the MFL form, for n 	 0:85, or the crossover form (X), for n < 0:85.
The arrows indicate the values TX extracted from the crossover fit or T � (cf. Figs. 9.9 and 9.11).
Note that the data for n D 0:85 fit the MFL nearly perfectly, while the data for n > 0:85 are poorly
fit by the MFL for T < T � because, due to the formation of the pseudogap, the MFL temperature
dependence is too slow to provide a good fit. The data for n D 0:75 were also fit by the FL
form; however, the fit is clearly worse than that obtained by the crossover form. Inset : The ratio,
Z011=Z001, is plotted as a function of temperature for different fillings. The ratio is essentially the
same for all fillings at the QCP, indicating that Z is essentially isotropic, and becomes progressively
more anisotropic as we dope into the PG region

(not shown) is qualitatively the same as that calculated along the 01 direction on the
FS. Therefore, the QCP, which separates the low-temperature FL phase from the PS
region, cannot be an artifact of the interpolation nor due to the change of the Fermi
wavevector with filling. Rather, it is due to a dramatic change in the nature of the
self-energy for momenta near the FS.

The PG region, n > 0:85, is further characterized by exploring the temperature
dependence of the density of states (DOS) and the bulk, Q D 0, spin susceptibility of
the cluster, as shown in Fig. 9.9 and its inset, respectively. A concomitant depression
appears in the low energy DOS at temperatures below the energy, T �, of the peak
in the susceptibility. The corresponding Z001.T / is well fit with the MFL form for
T > T �, while it fits poorly for T < T � (Fig. 9.10) due to the formation of the PG.

In Fig. 9.11, we show the relevant temperatures near the QCP, TX and T �. TX is
determined from the fits while T � is determined from the peak in the susceptibility
and the initial appearance of the PG in the DOS as shown in Fig. 9.9. Here, Tc is the
superconducting critical temperature determined in [40] from the divergence of the
pairing susceptibilities as discussed in Sect. 9.3.2.

Further evidence of the presence of the QCP separating the FL region from the
NFL PG region can be obtained by studying the thermodynamics of the system [41].
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Fig. 9.11 (Taken from [37]) The pseudogap temperature T �, identified from the peak in the
susceptibility and the emergence of the PG in the DOS shown in Fig. 9.9. The FL to MFL
crossover temperature identified by fits to the Matsubara quasiparticle data shown in Fig. 9.10. Tc

is the superconducting critical temperature determined in [40] from the divergence of the pairing
susceptibilities as discussed in Sect. 9.3.2. The unit of energy is set to 4t D 1

The Hubbard model can be rewritten as:

H D
X
k�

�0kc
�
k�ck� C U

X
i

ni"ni#; (9.35)

where �0k D �2t
�
coskx C cosky

�
is the tight binding dispersion. The quadratic

part of the Hamiltonian, referred to as the kinetic energy, and the potential energy
may be calculated as [42]

Ek D T

N

X
!n;k;�

�0kG�.k; i!n/ (9.36)

Ep D T

2N

X
!n;k;�

˙�.k; i!n/G�.k; i!n/ ; (9.37)

Both Ek and Ep are expected to exhibit a leading T 2 low temperature behavior
in the FL region and T 2 ln T behavior [43] in the MFL region. continuous
time quantum Monte Carlo (CTQMC) is used to solve the cluster problem and
the energies are calculated using (9.36) and (9.37). CTQMC avoids systematic
errors and prevents them from accumulating between different temperatures in the
calculation of the entropy given by partial integration:

S.ˇ; n/ D S.0; n/C ˇE.ˇ; n/ �
Z ˇ

0

E.ˇ0; n/dˇ0; (9.38)
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where S.0; n/ D �n ln n
2
� .2 � n/ ln

�
1 � n

2

�
, n is the filling, ˇ D 1=T and E is

the total energy obtained by summing up Ep and Ek [44]. Since DCA preserves
thermodynamical consistency [45], our entropy results also satisfy the Maxwell
relation

�
@S

@n

�

T;U

D �
�
@


@T

�

U;n

; (9.39)

where 
 is the chemical potential.
The behavior of the numerically calculated potential energy (Ep) and kinetic

energy (Ek) is consistent with the analytical expressions in the FL and MFL regions.
However, we find that the characteristic energy scales of the FL and PG vanish at the
QC doping where the MFL behavior persists to the lowest accessible temperature.
This is consistent with the existence of a QCP at zero temperature between the FL
and PG regions. To illustrate this we fit the total energy away from half-filling to the
form:

E.T / D E.0/C Af .T /T 2 C B .1 � f .T // T 2 ln
T

˝
; (9.40)

where f .T / D 1= .exp ..T � TX/=�/C 1/ describes the crossover from the MFL
to the quadratic behavior, characteristic of an FL or presumably a PG region. A, B ,
� , TX and ˝ are the fitting parameters of the QMC energy data, as shown in
Fig. 9.12. The fit is indistinguishable from the data for all fillings at low T . In
agreement with the previous estimates, these fits indicate that TFL � 0:15t for
n D 0:70 and T � � 0:24t for n D 0:95.

Fig. 9.12 (Taken from [41]) Total energy per site,E , versus temperature for different fillings. The
data are fit to a crossover form of the energy, (9.40) (dashed lines). The values of TX determined
from the fit are indicated as TFL for n D 0:70 and T � for n D 0:95. In the inset, the specific heat
calculated from the fit is plotted versus temperature
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Fig. 9.13 (Taken from [41]) Left panel: filling dependence of S=T showing emergence of a peak
at n D 0:85 at low temperatures. Right panel: Chemical potential versus temperature for a range
of fillings with PG and FL energy scales shown as T � and TFL for n D 0:95 and n D 0:70,
respectively. Note that the position of the maximum of entropy in the left panel corresponds to
@
=@T D 0 in the right panel. As the temperature is lowered, the maximum of entropy shifts
towards lower n, causing a local particle–hole symmetry for n D 0:85 at low T (see text)

The calculation of the specific heat is known to be a very difficult problem. It
usually involves a fit of E.T / to a regularized (smooth) functional form [46, 47]. In
the present case, we already have an excellent fit, so C=T is simply obtained from
a derivative of the fit divided by temperature. For n D 0:70, at low temperatures,
C=T is flat in T , as one expects for an FL. The data in the PG region, n D 0:95,
also show this behavior, but, at the critical filling, n D 0:85, the data show a weak
divergence at low T consistent with quantum critical behavior [41].

The behavior of the entropy per site near the critical filling as the system is
cooled confirms the physics seen in C=T with no need for a fit or a numerical
derivative. With decreasing T , the entropy is more strongly quenched in the FL and
PG regions than in the MFL region, creating a maximum in S=T at n D 0:85 and
low temperature (see Fig. 9.13a). The persistent rise of S=T at critical doping as
T ! 0 is consistent with the increase to C=T . The near overlap for n < 0:85 of the
low temperature S=T at different temperatures also agrees with the constant C=T
indicative of a FL.

Equation (9.39) indicates that a local maximum in S=T versus n corresponds
to a flat chemical potential as a function of temperature. For this reason, the critical
filling at low T can be identified from the temperature dependence of
 for different
fillings. This is shown in Fig. 9.13b, where one can see that the near temperature
independence of 
 at n D 0:90 for 0:25t < T < 0:50t evolves into a broad
maximum centered around T D 0:15t for n D 0:87 which presumably moves to
n D 0:85 at low enough temperatures. These observations are consistent with the
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evolution of the maximum in S=T versus n as the temperature is lowered from 0:50t

to 0:08t (see Fig. 9.13a). A stationary chemical potential can be the signature of a
local particle–hole symmetry, in analogy with the half-filled case. This is consistent
with the observation of near particle–hole symmetry in the cuprates in the proximity
of optimal doping [36].

9.4.2 Nature of the Quantum Critical Point
in the Hubbard Model

A systematic study of the phase diagram of the Hubbard model as a function of
additional control parameters allows us to identify the nature of the QCP in the
cuprates. We use an extended Hubbard model where the tight binding dispersion is
modified to include t 0, the hopping between next-nearest neighbors. The dispersion
is then �0k D �2t

�
coskx C cosky

� � 4t 0 �cos kx cosky � 1
�

. Our results suggest
that the QCP is the zero-temperature limit of a line of second-order phase separation
transition as shown schematically in Fig. 9.14 [48]. The control parameter for this
transition is t 0.

To illustrate this, we calculate the filling, n, versus 
 and the compressibility (or
bulk charge susceptibility), dn=d
, by taking its numerical derivative. To connect
with previous results, simulations were performed with U D 6t (Fig. 9.15a), but,
as discussed previously [48], the region of divergent charge fluctuations is larger
and more accessible for U D 8 and cluster size Nc D 8. For this reason, we also
present results for these parameters where additional studies have been conducted

T

t'

QCP

1st order

2nd order

T*

TFL

Fig. 9.14 (Taken from [48]) Schematic phase diagram of the 2D Hubbard model in the tem-
perature (T ), chemical potential (
) and next-near-neighbor hopping .t 0) space. For t 0 > 0 the
first-order phase separation transition terminates at a second-order critical point at doping nc and
temperature Tps. The line of second-order critical points .Tps; nc/ approaches the QCP on the
t 0 D 0 plane. This is the critical point separating the pseudogap (PG) from the Fermi liquid (FL)
region
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Fig. 9.15 (Taken from [48]) Filling, n (solid lines), and compressibility, dn=d
 (dashed lines),
plotted versus chemical potential, 
, for various values of t 0 for (a) U D 6, Nc D 16 and T D
0:077 and (b) U D 8, Nc D 8 at different temperatures. The unit of energy is t . The critical filling,
where the compressibility peaks, is plotted in the corresponding inset. In (a), when t 0 ! 0, the
peak in the charge susceptibility is located at the QCP identified previously [37]

(cf. Fig. 9.15b). Figure 9.15a shows n versus 
 for U D 6t , T D 0:077t and t 0
ranging from 0:0 to 0:4. The filling n increases monotonically with 
 and shows
a pronounced flat region associated with the Mott gap, especially for t 0 < 0:4.
An inflection appears in n.
/ at finite doping and becomes more pronounced as
t 0 increases. It translates into a peak in the susceptibility that becomes sharper and
moves closer to half-filling as t 0 is increased. The peak in the susceptibility and the
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plateau in n.
/ near half-filling disappear for t 0 > 0:3. In the inset, we plot nc,
the value of the critical filling at the peak as a function of t 0. For t 0 D 0, nc D
0:86 is in agreement with the filling of the QCP (nc D 0:85) found previously for
these parameters [37,41]. These results suggest an association between the QCP and
charge fluctuations.

For temperatures below a critical temperature Tc, the filling is observed to
develop a hysteresis as a function of 
. As mentioned before, the DCA equations
are solved self-consistently starting with an initial guess for the self-energy, usually
zero, the result from a higher temperature or that of perturbation theory. The solution
is generally unique and independent from the initial guess for doping away from a
critical doping ıc, such as 0 or 10% doping. However, we find that for a critical
chemical potential 
c, if the initial self-energy is that corresponding to the undoped
solution (n D 1), then n versus 
 will look as the upper curve (squares) in Fig. 9.16,
whereas if it is that of a large doping solution (n < 1), n versus 
 will be described
by the lower curve (circles) in Fig. 9.16. The fully converged self-energy from a
previous point is used to initialize the calculation in both cases.

To further investigate the association between the QCP and charge fluctuations,
we study the behavior of the bulk charge susceptibility, �c.Q D 0; T /, and its
divergence as t 0 ! 0. We follow the line of second order critical points of these first
order transitions as t 0 changes using �c as shown in Fig. 9.17. We plot the inverse

Fig. 9.16 (Taken from [49]) Filling n versus chemical potential for t 0 D 0:3t at T D 0:071 t and
Nc D 8. Two solutions describing a hysteresis are found, one incompressible with n � 1 (squares)
and other a doped one (circles). Inset : stability of the two solutions versus DCA iterations when

 D 2:96t (middle of the hysteresis, corresponding to the dotted line in the main figure)
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Fig. 9.17 (Taken from [48]) Inverse bulk charge susceptibility versus temperature when U D 8t ,
Nc D 8 for several values of t 0. The unit of energy is t . The values of the critical filling nc shown in
the legend correspond to the maximum of the low temperature compressibility, or the filling where
it first diverges

charge susceptibility at nc as a function of temperature for different values of t 0 and
U D 8t , Nc D 8. The critical filling nc shown in the legend is the filling where the
compressibility either diverges or is peaked at the lowest accessible temperature.
The temperature of the second-order critical point is found to increase and move
towards half-filling as t 0 is increased. However, in these results, unlike those of
U D 6t (Fig. 9.15a), the critical point seems to avoid half-filling even for t 0 D 0:4t .
As can be seen in the persistence of the flat region in n.
/ near n D 1 for t 0 D 0:4t ,
the stronger Coulomb interaction U D 8t also appears to strengthen the Mott gap
for this value of t 0 (Fig. 9.15b).

The evidence discussed here strongly favors an interpretation involving a QCP as
opposed to a simple crossover from the FL to an NFL as the filling increases towards
one. The fits to the quasiparticle fractionZ0.k/, the behavior of the DOS, the T 2lnT
behavior of the kinetic and potential energies, the peak in S=T which sharpens as
T falls, and the logarithmic behavior of the specific heat are clear signatures of
quantum criticality. The results also show that the QCP is the terminal point of
a line of second-order critical points associated with first-order phase separation
transitions. The critical temperature is driven to zero as t 0 ! 0.

9.4.3 Relationship Between Superconductivity and the Quantum
Critical Point

The critical doping at which the QCP is identified appears to be in close proximity
to the optimal superconducting doping, as found in the Hubbard model [48] or in



9 Dynamical Cluster Approximation 295

the t�J model [50]. Although this proximity might indicate that the QCP enhances
pairing, the mechanism of such an enhancement remains unclear. Using DCA, we
attempt to separate two different scenarios about the role of the QCP in the super-
conducting mechanism [40]. The first, the quantum critical BCS (QCBCS) proposed
by She and Zaanen [51], argues that the presence of the QCP leads to a replacement
of the BCS logarithmic divergence of the pairing bubble by an algebraic divergence,
resulting in a stronger pairing instability and a higher critical temperature compared
to the BCS result for the same pairing interaction. The second scenario suggests that
the pairing interaction is mediated by remnant fluctuations [52, 53]. This would be
translated into a strongly enhanced pairing interaction in the vicinity of the QCP.
We find that near the QCP, the pairing interaction depends monotonically on the
doping and shows no special feature, whereas the pairing susceptibility acquires an
algebraic dependence on the temperature. These findings are consistent with the first
scenario.

The superconducting transition temperature Tc for a conventional BCS supercon-
ductor is determined by the condition V�0

0.! D 0/ D 1, where �0
0 is the real part of

the q D 0 bare pairing susceptibility and V is the strength of the pairing interaction.
The transition is driven by the divergence of �0

0.! D 0/ which for a FL is given
by �0

0.T / / N.0/ ln.!D=T /, where N.0/ is the single-particle DOS at the Fermi
surface and !D is the phonon Debye cutoff frequency. This leads to the well-known
BCS superconducting transition formula, Tc D !D exp Œ�1=.N.0/V /�. We will use
the same Tc equation V�0

0.! D 0/ D 1 to analyze our results for the Hubbard model
and look for the possibility that �0

0.! D 0/ � 1=T ˛ .
This analysis starts with the Bethe–Salpeter equation for the pairing channel:

�.Q/P;P 0 D �0.Q/P ıP;P 0 C
X
P 00

�.Q/P;P 00� .Q/P 00;P 0�0.Q/P 0 ; (9.41)

where � is the dynamical susceptibility, �0.Q/P [D �G.P C Q/G.�P/] is the
bare susceptibility, which is constructed from G, the dressed one-particle Green’s
function, � is the vertex function, and indices P Œ:::� and external index Q denote
both momentum and frequency as discussed in Sect. 9.3.1. The divergence of the
susceptibility is detected by solving the eigenvalue equation � �0� D �� [54] for
fixedQ. By decreasing the temperature the leading eigenvalue � increases reaching
one at a temperature Tc, where the system undergoes a phase transition.

In order to be able to identify whether �0 or � dominates at the phase transition,
we will make a BCS approximation and project them onto the d -wave pairing
channel, which was found to be dominant [55,56]. For �0, the d -wave projection is
given by

�0d .!/ D
P

k �0.!; q D 0/kgd .k/2P
k gd .k/

2
; (9.42)

where gd .k/ D .cos.kx/ � cos.ky// is the d -wave form factor. For the pairing
strength we use the d -wave projection:
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Vd D
P

k;k0 gd .k/�k;k0gd .k
0/P

k gd .k/
2

(9.43)

using � at the lowest Matsubara frequency [57].
We further explore the different contributions to the strength of the pairing vertex

Vd by performing an exact decomposition of � into its different cross-channels and
projecting out the d -wave contribution of each contribution [57, 58]. The cross-
channels include the fully irreducible vertex �, the charge channel .S D 0/

contribution ˚c and the spin channel .S D 1/ contribution ˚s. This follows from
the fact that the vertex can be written as

� D �C ˚c C ˚s: (9.44)

The d -wave projection as described above then gives

Vd D V �
d C V c

d C V m
d : (9.45)

We use U D 6t (4t D 1) for both the Nc D 12 and Nc D 16 clusters. For these
clusters, as found in the previous section, evidences of the QCP are observed around
a doping of ı � 0:15. In Fig. 9.18, we show the eigenvalues � for different channels
(magnetic, charge, and pairing) at the critical doping as a function of temperature.
The results, for both cluster sizes, indicate a superconducting transition around Tc D
0:007 and an enhancement of the charge susceptibility with decreasing temperatures
as can be expected from the QCP that arises as a terminus of a line of second-order
phase separation transitions.

In Fig. 9.19, we present the strength of Vd as a function of doping for a range
of temperatures. Here it is found that Vd decreases monotonically with increasing

Fig. 9.18 (Taken from [40]) Plots of leading eigenvalues for different channels at the critical
doping for Nc D 12 and Nc D 16 site clusters. The energy is set to 4t D 1
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Fig. 9.19 (Taken from [40]) Plots of Vd , the strength of the d -wave pairing interaction, for various
temperatures withU D 6t and Nc D 16, where 4t D 1. Vd decreases monotonically with doping,
and shows no feature at the critical doping. In the inset are plots of the contributions to Vd from
the charge V c

d and spin V s
d cross-channels and from the fully irreducible vertex V �

d versus T at the
critical doping. As the temperature is lowered, T 
 J � 0:11 D 0:44t , the contribution to the
pairing interaction from the spin channel is clearly dominant

Fig. 9.20 (Taken from [40]) Plots of �0

0d .! D 0/, the real part of the bare d -wave pairing
susceptibility at zero frequency, versus temperature at three characteristic values of the doping.
The solid lines are fits to �0

0d .! D 0/ D B=
p
T C A ln.!c=T / for T < J . In the underdoped

case (ı D 0:05), �0

0d .! D 0/ does not grow with decreasing temperature. At the critical doping
(ı D ıc D 0:15), �0

0d .! D 0/ shows power-law behavior with B D 0:04 for the 12 site and
B D 0:09 for the 16-site clusters (in both A D 1:04 and !c D 0:5). In the overdoped region
(ı D 0:25), a log divergence is found, with B D 0 obtained from the fit

doping as seen in a previous study [59]. Vd does not show any feature at the
critical doping ıc D 0:15. This effectively rules out the second scenario mentioned
above. The different components in the inset suggest that Vd at the QCP originates
predominantly from the spin channel. This behavior is similar to what was found
previously while studying the pairing interaction [59].
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Fig. 9.21 (Taken from [40]) Plots of T 1:5�00

0d .!/=! versus !=T at the QC doping (ı D 0:15)
for Nc D 16. The arrow denotes the direction of decreasing temperature. The curves coincide
for !=T > 9 � .4t=J / defining a scaling function H.!=T /, corresponding to a contribution
to �0

0d .T / D 1
�

R
d!�00

0d .w/=w / 1=
p
T as found in Fig. 9.20. For !=T > 9 � .4t=J /,

H.!=T / � .!=T /�1:5 (dashed line). On the x-axis, we add the label Ts=T � .4t=J /, where
Ts represents the energy scale where curves start deviating from H . The inset shows the unscaled
zero-frequency result �00

0d .!/=!
ˇ̌
!D0

plotted versus inverse temperature

Unlike the pairing strength Vd , the d -wave pairing susceptibility �0d exhibits
significantly different behaviors in the different doping regions around the QCP
(Fig. 9.20). In the underdoped region (ı D 0:05), also known as the pseudogap
or NFL region, �0

0d .! D 0/ saturates to a finite value at low temperatures. At
the critical doping, however, it diverges quickly when the temperature decreases,
roughly following a 1=

p
T power-law behavior. The overdoped or FL region shows

the expected log divergence.
To further understand the temperature-dependence of the d -wave pairing sus-

ceptibility at the quantum critical filling, we investigate T 1:5�00
0d .!/=! and plot it

in Fig. 9.21 as a function of !=T . Scaled to this form, the curves from different
temperatures collapse on each other so that

T 1:5�00
0d .!/

!
D H

�!
T

	
�
�!
T

	�1:5
(9.46)

for !=T & 9 � 4t=J , J � 0:44t . For 0 < !=T < 4t=J , the BCS behavior
appears and the curves deviate fromH.x/ with �00

0d .!/=!
ˇ̌
!D0 weakly sublinear in

1=T as shown in the inset. Away from critical doping, the curves do not show such
a collapse (not shown). �00

0d .!/=! goes to zero with decreasing temperature (inset)
in the underdoped region (ı D 0:05) while it develops a narrow peak at low ! of
width ! � TX and height / 1=T in the FL region (inset).
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Fig. 9.22 (Top) Dependence of the density of states N.!/ with frequency ! for various fillings,
where U D 6t , 4t D 1, Nc D 16, and T D 1=58. The peak in N.!/ moves through ! D 0 at the
quantum critical filling and exhibits particle hole symmetry for small energies. (Bottom) Single-
particle dispersion around the Fermi vector kF along the antinodal direction .�; 0/. As the filling is
increased, the saddle point in the dispersion moves through the Fermi level at the quantum critical
filling, consistent with the density of states picture

Our results for �0d and Vd provide some understanding of the previously
found [48] superconducting dome. As the doping increases, the pairing vertex
Vd falls monotonically whereas �0

0d .T / is strongly suppressed in the low doping
or pseudogap region and enhanced at the critical and higher doping. These facts
alone could lead to a dome-shaped region of superconductivity. Additionally, the
algebraic divergence of the pairing susceptibility �0

0d .T /, as seen in Fig. 9.20, causes
superconductivity to be strongly enhanced near the QCP so that one might expect
Tc / .VdB/

2, with B D 1
�

R
dxH.x/, to replace the conventional BCS form in

the FL region. This evidence supports the QCBCS scenario proposed by She and
Zaanen [51].

Another interesting feature of the QCP is the proximity to the Fermi level of
a van Hove singularity (vHS) in the single-particle dispersion. Many authors have
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suggested that a vHS in the single-particle DOS at the Fermi level will enhance
the superconducting transition temperature [60–63]. In an early DMFA study of the
Hubbard model by Majumdar and Krishnamurthy [64], it was found that if the bare
dispersion is modified such that the vHS is at the Fermi level for the noninteracting
case, it remains pinned to the Fermi level for the interacting case. The noninteracting
model studied here with t 0 D 0 has a vHS at the Fermi energy at half filling. The
new finding, using the DCA method, is that the interactions produce a self-energy
with sufficient momentum dependence so that the renormalized dispersion yields a
vHS at the Fermi level at a finite filling. The interacting model has a gap at half-
filling and as the filling is increased through the QCP, a vHS crosses the Fermi level
near the QCP filling. This can be seen both in the DOS (top) and flat region in the
energy dispersion (bottom) of Fig. 9.22. Unfortunately, the momentum dependence
of the self-energy alone is not sufficient to reproduce the scaling of �00

0d .!/ found
in Fig. 9.21. This scaling points towards a deeper origin of the enhanced divergence
of the bare pairing polarization, such as that suggested by She and Zaanen in their
quantum critical BCS scenario[51].

9.5 Conclusion

We have presented a pedagogical introduction to the DCA. We have described how
coarse-graining methods can be used to derive both the DMFA and the DCA, which
map the lattice to a self-consistently embedded cluster problem. We also showed
how DMFA and DCA can be derived from a ˚ functional. The DMFA is a local
approximation while the DCA incorporates systematic nonlocal corrections. We
have showed how the DCA is used to study the Hubbard model and the evidence
it provides for the presence of a QCP underneath the superconducting dome. This
QCP is the terminus of a line of second order phase separation transitions. Finally
we have seen that the QCP may explain the relatively high superconducting critical
temperature through an enhancement of the pairing susceptibility at the critical dop-
ing. In brief, the DCA provides an efficient tool to study correlated electron systems.
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Chapter 10
Self-Energy-Functional Theory

Michael Potthoff

Abstract Self-energy-functional theory is a formal framework which allows us
to derive non-perturbative and thermodynamically consistent approximations for
lattice models of strongly correlated electrons from a general dynamical variational
principle. The construction of the self-energy functional and the corresponding
variational principle is developed within the path-integral formalism. Different
cluster mean-field approximations, such as the variational cluster approximation
and cluster extensions of dynamical mean-field theory, are derived in this context
and their mutual relationship and internal consistency are discussed.

10.1 Motivation

The method of Green’s functions and diagrammatic perturbation theory [1] repre-
sents a powerful approach to study systems of interacting electrons in the thermody-
namical limit. Several interesting phenomena, such as spontaneous magnetic order,
correlation-driven metal–insulator transitions or high-temperature superconductiv-
ity, however, emerge in systems where electron correlations are strong. Rather than
starting from the non-interacting Fermi gas as the reference point around which
the perturbative expansion is developed, a local perspective appears to be more
attractive for strongly correlated electron systems, in particular for prototypical
lattice models with local interaction, such as the famous Hubbard model [2–4]:

H D
X
ij�

tij c
�
i� cj� C

U

2

X
i�

ni�ni�� : (10.1)
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The local part of the problem, i.e., the Hubbard atom, can be solved easily since
its Hilbert space is small. It is, therefore, tempting to start from the atomic limit
and to treat the rest of the problem, the “embedding” of the atom into the lattice,
in some approximate way. The main idea of the so-called Hubbard-I approximation
[2] is to calculate the one-electron Green’s function from the Dyson equation where
the self-energy is approximated by the self-energy of the atomic system. This is
one of the most simple embedding procedures. It already shows that the language
of diagrammatic perturbation theory, Green’s functions and diagrammatic objects,
such as the self-energy, can be very helpful to construct an embedding scheme.

The Hubbard-I approach turns out to be a too crude approximation to describe
the above-mentioned collective phenomena. One of its advantages, however, is that
it offers a perspective for systematic improvement: Nothing prevents us to start with
a more complicated “atom” and employ the same trick: We consider a partition
of the underlying lattice with L sites (where L ! 1) into L=Lc disconnected
clusters consisting of Lc sites each. If Lc is not too large, the self-energy of a single
Hubbard cluster is accessible by standard numerical means [5] and can be used as an
approximation in the Dyson equation to get the Green’s function of the full model.
This leads to the cluster perturbation theory (CPT) [6, 7].

The CPT can also be motivated by treating the Hubbard interaction U and the
inter-cluster hopping V as a perturbation of the system of disconnected clusters with
intra-cluster hopping t 0. The CPT Green’s function is then obtained by summing
the diagrams in perturbation theory to all orders in U and V but neglecting vertex
corrections which intermix U and V interactions.

While these two ways of deriving CPT are equivalent, one aspect of the former
is interesting: Taking the self-energy from some reference model (the cluster)
is reminiscent of dynamical mean-field theory (DMFT) [8–10], where the self-
energy of an impurity model approximates the self-energy of the lattice model. This
provokes the question whether both, the CPT and the DMFT, can be understood in
single unifying theoretical framework.

This question is one motivation for the topic of this chapter on self-energy-
functional theory (SFT) [11–14]. Another one is that there are certain deficiencies of
the CPT. While CPT can be seen as a cluster mean-field approach since correlations
beyond the cluster extensions are neglected, it not self-consistent, i.e., there is
no feedback of the resulting Green’s function on the cluster to be embedded
(some ad hoc element of self-consistency is included in the original Hubbard-I
approximation). In particular, there is no concept of a Weiss mean field and,
therefore, the CPT cannot describe different phases of a thermodynamical system
nor phase transitions. Another related point is that the CPT provides the Green’s
function only but no thermodynamical potential. Different ways to derive e.g., the
free energy from the Green’s function [1, 15, 16] give inconsistent results.

To overcome these deficiencies, a self-consistent cluster-embedding scheme
has to be set up. Ideally, this results from a variational principle for a general
thermodynamical potential which is formulated in terms of dynamical quantities
as e.g., the self-energy or the Green’s function. The variational formulation should
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ensure the internal consistency of corresponding approximations and should make
contact with the DMFT. This sets the goals of SFT and also the plan of this chapter.

10.2 Self-Energy Functional

10.2.1 Hamiltonian, Grand Potential and Self-Energy

We consider a system of electrons in thermodynamical equilibrium at a temperature
T and chemical potential 
. The Hamiltonian of the system H D H.t;U / D
H0.t/CH1.U / consists of a non-interacting part specified by one-particle param-
eters t and an interaction part with interaction parameters U :

H0.t/ D
X
˛ˇ

t˛ˇ c
�
˛cˇ;

H1.U / D 1

2

X
˛ˇı

U˛ˇı c
�
˛c
�

ˇccı: (10.2)

The index ˛ refers to an arbitrary set of quantum numbers labelling an orthonormal
basis of one-particle states j˛i. As is apparent from the form ofH , the total particle
numberN is conserved.

The grand potential of the system is given by ˝t;U D �T lnZt;U , where

Zt;U D tr�t;U with �t;U D exp

�
� .H.t;U /� 
N/

T

�
(10.3)

is the partition function. The dependence of the partition function (and of other
quantities discussed below) on the parameters t and U is made explicit through the
subscripts.

The one-particle Green’s function G˛ˇ.!/ 	 hhc˛I c�ˇii of the system is the
main object of interest. It will provide the static expectation value of the one-
particle density matrix c�˛cˇ and the spectrum of one-particle excitations related to
a photoemission experiment [17]. The Green’s function can be defined for complex
! via its spectral representation:

G˛ˇ.!/ D
Z 1

�1
dz
A˛ˇ.z/

! � z
; (10.4)

where the spectral densityA˛ˇ.z/ D
R1

�1 dt exp.izt/A˛ˇ.t/ is the Fourier transform
of

A˛ˇ.t/ D 1

2�
hŒc˛.t/; c�ˇ.0/�Ci; (10.5)
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which involves the anticommutator of an annihilator and a creator with a Heisenberg
time dependenceO.t/ D exp.i.H � 
N/t/O exp.�i.H � 
N/t/.

Due to the thermal average, hOi D Tr.�t;UO/=Zt;U , the Green’s function
depends on t and U and is denoted by Gt;U ;˛ˇ.!/. For the diagram technique
employed below, we need the Green’s function on the imaginary Matsubara
frequencies i!n 	 i.2nC 1/�T with integer n [1]. In the following the elements
Gt;U ;˛ˇ.i!n/ are considered to form a matrix Gt;U , which is diagonal with respect
to n.

The “free” Green’s function Gt;0 is obtained for U D 0, and its elements are
given by:

Gt;0;˛ˇ.i!n/ D
�

1

i!n C 
 � t
�

˛ˇ

: (10.6)

Therewith, we can define the self-energy via Dyson’s equation

Gt;U D 1

G�1
t;0 �˙t;U

; (10.7)

i.e.,˙t;U D G�1
t;0 �G�1

t;U . The full meaning of this definition becomes clear within
the context of diagrammatic perturbation theory [1].

Here, we like to list some important properties of the self-energy only: (1) via
Dyson’s equation, it determines the Green’s function. (2) The self-energy has a
spectral representation similar to (10.4). (3) In particular, the corresponding spectral
function (matrix) is positive definite, and the poles of˙t;U are on the real axis [18].
(4)˙˛ˇ.!/ D 0 if ˛ or ˇ refers to one-particle orbitals that are non-interacting, i.e.,
if ˛ or ˇ does not occur as an entry of the matrix of interaction parametersU . Those
orbitals or sites are called non-interacting. This property of the self-energy is clear
from its diagrammatic representation. (5) If ˛ refers to the sites of a Hubbard-type
model with local interaction, the self-energy can generally be assumed to be more
local than the Green’s function. This is corroborated e.g., by explicit calculations
using the weak-coupling perturbation theory [19–21] and by the fact that the self-
energy is purely local on infinite-dimensional lattices [8, 22].

10.2.2 Luttinger–Ward Functional

We would like to distinguish between dynamic quantities, like the self-energy,
which is frequency-dependent and related to the (one-particle) excitation spectrum,
on the one hand, and static quantities, like the grand potential and its derivatives
with respect to 
, T , etc. which are related to the thermodynamics, on the other.
A link between static and dynamic quantities is needed to set up a variational
principle which gives the (dynamic) self-energy by requiring a (static) thermody-
namical potential to be stationary. There are several such relations [1, 15, 16]. The



10 Self-Energy-Functional Theory 307

Luttinger–Ward (LW) functional b̊U ŒG � provides a special relation with several
advantageous properties [23]:

1. b̊
U ŒG � is a functional. FunctionalsbA D bAŒ� � � � are indicated by a hat and should

be distinguished clearly from physical quantities A.

2. The domain of the LW functional is given by “the space of Green’s functions.”
This has to be made more precise later.

3. If evaluated at the exact (physical) Green’s function, Gt;U , of the system with
HamiltonianH D H.t;U /, the LW functional gives a quantity

b̊
U ŒGt;U � D ˚t;U ; (10.8)

which is related to the grand potential of the system via:

˝t;U D ˚t;U C Tr lnGt;U � Tr.˙t;UGt;U /: (10.9)

Here the notation TrA 	 T
P

n

P
˛ ei!n0C

A˛˛.i!n/ is used. 0C is a positive
infinitesimal.

4. The functional derivative of the LW functional with respect to its argument is:

1

T

ıb̊U ŒG �
ıG

D ḃ
U ŒG �: (10.10)

Clearly, the result of this operation is a functional of the Green’s function again.
This functional is denoted by ḃ since its evaluation at the physical (exact)
Green’s function Gt;U yields the physical self-energy:

ḃ ŒGt;U � D ˙t;U : (10.11)

5. The LW functional is “universal”: The functional relation b̊U Œ� � � � is completely
determined by the interaction parameters U (and does not depend on t). This
is made explicit by the subscript. Two systems (at the same chemical potential

 and temperature T ) with the same interaction U but different one-particle
parameters t (on-site energies and hopping integrals) are described by the
same Luttinger–Ward functional. Using (10.10), this implies that the functional
ḃ
U ŒG � is universal, too.

6. Finally, the LW functional vanishes in the non-interacting limit:

b̊
U ŒG � 	 0 for U D 0: (10.12)
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Fig. 10.1 Original definition of the Luttinger–Ward functional b̊U ŒG �, see [23]. Double lines:
fully interacting propagator G . Dashed lines: interaction U

10.2.3 Diagrammatic Derivation

In the original paper by Luttinger and Ward [23] it is shown that b̊U ŒG � can be
constructed order by order in diagrammatic perturbation theory. The functional is
obtained as the limit of the infinite series of closed renormalized skeleton diagrams,
i.e., closed diagrams without self-energy insertions and with all free propagators
replaced by fully interacting ones (see Fig. 10.1). There is no known case where this
skeleton-diagram expansion could be summed up to get a closed form for b̊U ŒG �.
Therefore, the explicit functional dependence is unknown even for the most simple
types of interactions like the Hubbard interaction.

Using the classical diagrammatic definition of the LW functional, the properties
(1)–(6) listed in the previous section are easily verified: By construction, b̊U ŒG � is
a functional ofG which is universal (properties (1), (2) and (5)). Any diagram in the
series depends on U and on G only. Particularly, it is independent of t. Since there
is no zeroth-order diagram, b̊U ŒG � trivially vanishes for U D 0, this proves (6).

Diagrammatically, the functional derivative of b̊U ŒG � with respect to G corre-
sponds to the removal of a propagator from each of the ˚ diagrams. Taking care of
topological factors [1, 23], one ends up with the skeleton-diagram expansion of the
self-energy (4). Therefore, (10.11) is obtained in the limit of this expansion.

Equation (10.9) can be derived by a coupling-constant integration [23]. Alterna-
tively, it can be verified by integrating over 
: We note that the 
 derivatives of
the l.h.s and of the r.h.s of (10.9) are equal for any fixed interaction strength t, U
and T , namely, .@=@
/.˚t;UCTr lnGt;U �Tr˙t;UGt;U / D TrG�1

t;U .@Gt;U =@
/�
TrGt;U .@˙t;U =@
/ D �Tr Gt;U D �hN it;U D @˝t;U =@
. Here, we have
used (10.3) in the last step and (10.7), (10.8) and (10.10) before. hN it;U is the
grand-canonical average of the total particle-number operator. Integration over 

then yields (10.9). Note that the equation holds trivially for 
 ! �1, i.e., for
hN it;U ! 0 since˙t;U D 0 and ˚t;U D 0 in this limit.

10.2.4 Derivation Using the Path Integral

For the diagrammatic derivation it has to be assumed that the skeleton-diagram
series is convergent. It is, therefore, interesting to see how the LW functional can
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be defined and how its properties can be verified within a path-integral formulation.
This is non-perturbative. The path-integral construction of the LW functional was
first given in [24].

Using Grassmann variables [16] �˛.i!n/ D T 1=2
R 1=T
0

d� ei!n� �˛.�/ and

� �̨.i!n/ D T 1=2
R 1=T
0

d� e�i!n� � �̨.�/, the elements of the Green’s function are
given by Gt;U ;˛ˇ.i!n/ D �h�˛.i!n/� �̌.i!n/it;U . The average

Gt;U ;˛ˇ.i!n/ D �1
Zt;U

Z
d�d���˛.i!n/� �̌.i!n/ exp

�
At;U ;���

�
(10.13)

is defined with the help of the action At;U ;��� D At;��� C AU ;��� , where

At;U ;��� D
X
n;˛ˇ

� �̨.i!n/..i!n C 
/ı˛ˇ � t˛ˇ/�ˇ.i!n/C AU ;��� (10.14)

and

AU ;��� D �1
2

X
˛ˇı

U˛ˇı

Z 1=T

0

d� � �̨.�/� �̌.�/� .�/�ı.�/: (10.15)

This is the standard path-integral representation of the Green’s function [16].
The action can be considered as the physical action that is obtained when

evaluating the functional

bAU ;��� ŒG�1
0 � D

X
n;˛ˇ

� �̨.i!n/G�1
0;˛ˇ.i!n/�ˇ.i!n/C AU ;��� (10.16)

at the (matrix inverse of the) physical free Green’s function, i.e.,

At;U ;��� D bAU ;��� ŒG�1
t;0 � : (10.17)

Using this, we define the functional

b̋
U ŒG

�1
0 � D �T lnbZU ŒG�1

0 � (10.18)

with

bZU ŒG�1
0 � D

Z
d�d�� exp

�bAU ;��� ŒG�1
0 �
	
: (10.19)

The functional dependence of b̋U ŒG�1
0 � is determined byU only, i.e., the functional

is universal. Obviously, the physical grand potential is obtained when inserting the
physical inverse free Green’s functionG�1

t;0 :
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b̋
U ŒG

�1
t;0 � D ˝t;U : (10.20)

The functional derivative of (10.18) leads to another universal functional:

1

T

ı b̋U ŒG�1
0 �

ıG�1
0

D � 1

bZU ŒG�1
0 �

ıbZU ŒG�1
0 �

ıG�1
0

	 �bGU ŒG�1
0 � ; (10.21)

with the property

bGU ŒG�1
t;0 � D Gt;U : (10.22)

This is easily seen from (10.13).
The strategy to be pursued is the following:bGU ŒG�1

0 � is a universal (t indepen-
dent) functional and can be used to construct a universal relation ˙ D ḃ

U ŒG �

between the self-energy and the one-particle Green’s function – independent from
the Dyson equation (10.7). Using this and the universal functional b̋U ŒG�1

0 �, a
universal functional b̊U ŒG � can be constructed, the derivative of which essentially
yields ḃU ŒG � and that also obeys all other properties of the diagrammatically
constructed LW functional.

To start with, consider the equation

bGU ŒG�1 C˙ � D G : (10.23)

This is a relation between the variables ˙ and G , which for a given G may be
solved for ˙ . This defines a functional ḃU ŒG �, i.e.

bGU ŒG�1 � ḃU ŒG �� D G : (10.24)

For a given Green’s function G , the self-energy ˙ D ḃ
U ŒG � is defined to be the

solution of (10.23). From the Dyson equation (10.7) and (10.22) it is obvious that the
relation (10.23) is satisfied for the physical˙ D ˙t;U and the physical G D Gt;U

of the system with HamiltonianHt;U :

ḃ
U ŒGt;U � D ˙t;U : (10.25)

This construction simplifies the original presentation in [24]. The discussion on the
existence and the uniqueness of possible solutions of the relation (10.23) given there
applies accordingly to the present case.

With the help of the functionals b̋U ŒG�1
0 � and ḃ

U ŒG �, the Luttinger–Ward
functional is obtained as:

b̊
U ŒG � D b̋

U ŒG
�1 C ḃ

U ŒG �� � Tr lnG C Tr.ḃU ŒG �G / : (10.26)
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Let us check property (4). Using (10.21) one finds for the derivative of the first term:

1

T

ı b̋U ŒG�1 C ḃ
U ŒG ��

ıG˛ˇ
D �

X
ı

bGU ;ıŒG�1 C ḃ
U ŒG ��

 
ıG�1

ı

ıG˛ˇ
C ı ḃU ;ıŒG �

ıG˛ˇ

!

(10.27)
and, using (10.24),

1

T

ı b̋U ŒG�1 C ḃ
U ŒG ��

ıG˛ˇ
D �

X
ı

Gı

 
ıG�1

ı

ıG˛ˇ
C ı ḃU ;ıŒG �

ıG˛ˇ

!
: (10.28)

Therewith,

1

T

ıb̊U ŒG �
ıG˛ˇ

D G�1
ˇ˛ �

X
ı

Gı
ı ḃU ;ıŒG �
ıG˛ˇ

C 1

T

ı

ıG˛ˇ

�
�Tr lnG C Tr.ḃU ŒG �G /

	

(10.29)

and, finally,

1

T

ıb̊U ŒG �
ıG˛ˇ.i!n/

D ḃ
U ;ˇ˛.i!n/ŒG � ; (10.30)

where, as a reminder, the frequency dependence has been reintroduced.
The other properties are also verified easily. (1) and (2) are obvious. (3) follows

from (10.20), (10.22) and (10.25) and the Dyson equation (10.7). The universality of
the LW functional (5) is ensured by the presented construction. It involves universal
functionals only. Finally, (6) follows from bGUD0ŒG�1� D G which implies (via
(10.24)) ḃUD0ŒG � D 0, and with b̋UD0ŒG�1� D Tr lnG we get b̊UD0ŒG � D 0.

10.2.5 Variational Principle

The functional ˙U ŒG � can be assumed to be invertible locally provided that the
system is not at a critical point for a phase transition (see also [11]). This allows us
to construct the Legendre transform of the LW functional:

bF U Œ˙ � D b̊
U ŒbGU Œ˙ �� � Tr.˙bGU Œ˙ �/ : (10.31)

Here, bGU ŒḃU ŒG �� D G . With (10.30) we immediately find

1

T

ıbF U Œ˙ �
ı˙

D �bGU Œ˙ � : (10.32)
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We now define the self-energy-functional:

b̋
t;U Œ˙ � D Tr ln

1

G�1
t;0 �˙

C bF U Œ˙ � : (10.33)

Its functional derivative is easily calculated:

1

T

ı b̋ t;U Œ˙ �
ı˙

D 1

G�1
t;0 �˙

� bGU Œ˙ � : (10.34)

The equation

bGU Œ˙ � D 1

G�1
t;0 �˙

(10.35)

is a (highly non-linear) conditional equation for the self-energy of the system H D
H0.t/CH1.U /. Equations (10.7) and (10.25) show that it is satisfied by the physical
self-energy˙ D ˙t;U . Note that the l.h.s of (10.35) is independent of t but depends
on U (universality of bGU Œ˙ �), while the r.h.s is independent of U but depends on
t via G�1

t;0 . The obvious problem of finding a solution of (10.35) is that there is no

closed form for the functional bGU Œ˙ �. Solving (10.35) is equivalent to a search for
the stationary point of the grand potential as a functional of the self-energy:

ı b̋t;U Œ˙ �
ı˙

D 0 : (10.36)

This is the starting point for the SFT.

10.2.6 Approximation Schemes

Up to this point we have discussed exact relations only. It is clear, however, that it
is generally impossible to evaluate the self-energy-functional (10.33) for a given˙
and that one has to resort to approximations. Three different types of approximation
strategies may be distinguished:

In a type-I approximation one derives the Euler equation ı b̋ t;U Œ˙ �=ı˙ D
0 first and then chooses (a physically motivated) simplification of the equation
afterwards to render the determination of ˙t;U possible. This is most general but
also questionable a priori, as normally the approximated Euler equation no longer
derives from some approximate functional. This may result in thermodynamical
inconsistencies.

A type-II approximation modifies the form of the functional dependence,
b̋
t;U Œ� � � � ! b̋.1/

t;U Œ� � � �, to get a simpler one that allows for a solution of the
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resulting Euler equation ı b̋.1/
t;U Œ˙ �=ı˙ D 0. This type is more particular and

yields a thermodynamical potential consistent with ˙t;U . Generally, however, it is
not easy to find a sensible approximation of a functional form.

Finally, in a type-III approximation one restricts the domain of the functional
which must then be defined precisely. This type is most specific and, from a
conceptual point of view, should be preferred as compared to type-I or type-II
approximations as the exact functional form is retained. In addition to concep-
tual clarity and thermodynamical consistency, type-III approximations are truly
systematic since improvements can be obtained by an according extension of the
domain.

Examples for the different cases can be found e.g., in [14]. The classification
of approximation schemes is hierarchical: Any type-III approximation can always
be understood as a type-II one, and any type-II approximations as type-I, but not
vice versa. This does not mean, however, that type-III approximations are superior
as compared to type-II and type-I ones. They are conceptually more appealing
but do not necessarily provide “better” results. One reason to consider self-energy
functionals instead of functionals of the Green’s function (see [25,26], for example)
is to derive the DMFT as a type-III approximation.

10.3 Variational Cluster Approach

The central idea of SFT is to make use of the universality of (the Legendre
transform of) the Luttinger–Ward functional to construct type-III approximations.
Consider the self-energy-functional (10.33). Its first part consists of a simple explicit
functional of ˙ while its second part, i.e., bF U Œ˙ �, is unknown but depends on U
only.

10.3.1 Reference System

Due to this universality of bF U Œ˙ �, one has

b̋
t 0;U Œ˙ � D Tr ln

1

G�1
t0 ;0 �˙

C bF U Œ˙ � (10.37)

for the self-energy-functional of a so-called “reference system.” As compared to
the original system of interest, the reference system is given by a Hamiltonian
H 0 D H0.t

0/CH1.U / with the same interaction part U but modified one-particle
parameters t 0. The reference system has different microscopic parameters but is
assumed to be in the same macroscopic state, i.e., at the same temperature T and the
same chemical potential 
. By a proper choice of its one-particle part, the problem
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posed by the reference system H 0 can be much simpler than the original problem
posed by H . We assume that the self-energy of the reference system ˙t 0;U can be
computed exactly, e.g., by some numerical technique.

Combining (10.33) and (10.37), one can eliminate the unknown functional
bF U Œ˙ �:

b̋
t;U Œ˙ � D b̋

t0 ;U Œ˙ �C Tr ln
1

G�1
t;0 �˙

� Tr ln
1

G�1
t0;0 �˙

: (10.38)

It appears that this amounts to a shift of the problem only as the self-energy-
functional of the reference system again contains the full complexity of the problem.
In fact, except for the trivial case U D 0, the functional dependence of b̋ t0;U Œ˙ �
is unknown – even if the reference system is assumed to be solvable, i.e., if the
self-energy ˙t0;U , the Green’s function Gt 0;U and the grand potential ˝t0;U of the
reference system are available.

However, inserting the self-energy of the reference system ˙t0;U into the self-
energy-functional of the original one, and using b̋

t0;U Œ˙t0;U � D ˝t0;U and the
Dyson equation of the reference system, we find:

b̋
t;U Œ˙t 0;U � D ˝t0;U C Tr ln

1

G�1
t;0 �˙t0 ;U

� Tr lnGt0;U : (10.39)

This is a remarkable result. It shows that an exact evaluation of the self-energy-
functional of a non-trivial original system is possible, at least for certain self-
energies. This requires us to solve a reference system with the same interaction
part.

10.3.2 Domain of the Self-Energy-Functional

Equation (10.39) provides an explicit expression of the self-energy-functional
b̋
t;U Œ˙ �. This is suitable to discuss the domain of the functional precisely. Take

U to be fixed. We define the space of t-representable self-energies as

SU D f˙ j 9t W ˙ D ˙t;U g: (10.40)

This definition of the domain is very convenient since it ensures the correct
analytical and causal properties of the variable˙ .

We can now formulate the result of the preceeding section in the following
way. Consider a set of reference systems with U fixed but different one-particle
parameters t 0, i.e., a space of one-particle parameters T 0. Assume that the reference
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Fig. 10.2 Schematic illustration for the construction of consistent approximations within the SFT.
The grand potential is considered as a functional of the self-energy which is parametrized by
the one-particle parameters t of the Hamiltonian (U is fixed). At the physical self-energy, ˝ is
stationary (filled red circles). The functional dependence of ˝ on ˙ is not accessible in the entire
space of self-energies (˙ space) but on a restricted subspace of “trial” self-energies parametrized
by a subset of one-particle parameters t 0 (solid red lines) corresponding to a “reference system,”
i.e., a manifold of systems with the same interaction part but a one-particle part given by t 0 which
renders the solution possible. The grand potential can be evaluated exactly on the submanifold of
reference systems. A stationary point on this submanifold represents the approximate self-energy
and the corresponding approximate grand potential (open circle)

system with H 0 D Ht0;U can be solved exactly for any t 0 2 T 0. Then, the self-
energy-functional b̋ t;U Œ˙ � can be evaluated exactly on the subspace

S 0
U D f˙ j 9t 0 2 T 0 W ˙ D ˙t0;U g � SU : (10.41)

This fact can be used to construct type-III approximations, see Fig. 10.2.

10.3.3 Construction of Cluster Approximations

A certain approximation is defined by a choice of the reference system or actu-
ally by a manifold of reference systems specified by a manifold of one-particle
parameters T 0. As an example consider Fig. 10.3. The original system is given by
the one-dimensional Hubbard model with nearest-neighbor hopping t and Hubbard
interaction U . A possible reference system is given by switching off the hopping
between clusters consisting of Lc D 2 sites each. The hopping within the cluster
t 0 is arbitrary, this defines the space T 0. The self-energies in S 0, the corresponding
Green’s functions and grand potentials of the reference system can obviously be
calculated easily since the degrees of freedom are decoupled spatially. Inserting
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Fig. 10.3 Variational cluster approximation (VCA) for the Hubbard model. Top: representation
of the original one-dimensional Hubbard model H with nearest-neighbor hopping t and Hubbard
interaction U . Bottom: reference system H 0 consisting of decoupled clusters of Lc D 2 sites each
with intra-cluster hopping t 0 as a variational parameter

these quantities in (10.39) yields the SFT grand potential as a function of t 0:

˝.t 0/ 	 b̋
t;U Œ˙t0;U � : (10.42)

This is no longer a functional but an ordinary function of the variational parameters
t 0 2 T 0. The final task then consists in finding a stationary point t 0opt of this function:

@˝.t 0/
@t 0

D 0 for t 0 D t 0opt : (10.43)

In the example considered this is a function of a single variable t 0 (we assume
t 0 to be the same for all clusters). Note that not only the reference system (in the
example the isolated cluster) defines the final result but also the lattice structure and
the one-particle parameters of the original system. These enter ˝.t0/ via the free
Green’s function Gt;0 of the original system. In the first term on the r.h.s of (10.39)
we just recognize the CPT Green’s function 1=.G�1

t;0 �˙t0;U /. The approximation
generated by a reference system of disconnected clusters is called variational cluster
approximation (VCA).

An example for the results of a numerical calculation is given in Fig. 10.4, see
also [27]. The calculation has been performed for the one-dimensional particle–hole
symmetric Hubbard model at half-filling and zero temperature. The figure shows
the numerical results for the optimal nearest-neighbor intra-cluster hopping t 0 as
obtained from the VCA for a reference system with disconnected clusters consisting
of Lc D 10 sites each. The hopping t 0 is assumed to be the same for all pairs
of nearest neighbors. In principle, one could vary all one-particle parameters that
do not lead to a coupling of the clusters to get the optimal result. In most cases,
however, it is necessary to restrict oneself to a small number of physically motivated
variational parameters to avoid complications arising from a search for a stationary
point in a high-dimensional parameter space. For the example discussed here, the
parameter space T 0 is one-dimensional only. This is the most simple choice but
more elaborate approximations can be generated easily. The flexibility to construct
approximations of different quality and complexity must be seen as one of the
advantages of the VCA and of the SFT in general.
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Fig. 10.4 (Taken from [27].)
SFT ground-state energy per
site, i.e., .˝.t 0/C 
hN i/=L,
as a function of the intra-
cluster nearest-neighbour
hopping t 0 for Lc D 10 and
different U (
 D U=2) at
zero temperature. Arrows
indicate the respective
optimal t 0. The energy scale
is fixed by t D 1
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As can be seen from the figure, a non-trivial result, namely t 0opt ¤ t D 1, is
found for the optimal value of t 0opt. We also notice that topt > t . The physical
interpretation is that switching off the inter-cluster hopping, which generates the
approximate self-energy, can partially be compensated for by enhancing the intra-
cluster hopping. The effect is the more pronounced the smaller is the cluster size Lc.
Furthermore, it is reasonable that in the case of a stronger interaction and thus more
localized electrons, switching off the inter-cluster hopping is less significant. This
can be seen in Fig. 10.4: The largest optimal hopping t 0opt is obtained for the smallest
U .

On the other hand, even a “strong” approximation for the self-energy (measured
as a strong deviation of t 0opt from t) becomes irrelevant in the weak-coupling limit
because the self-energy must vanish for U D 0. Generally, we note that the VCA
becomes exact in the limit U D 0: In (10.38) the first and the third terms on the r.h.s
cancel each other and we are left with

b̋
t;UD0Œ˙ � D Tr ln

1

G�1
t;0 �˙

: (10.44)

Since the trial self-energy has to be taken from a reference system with the same
interaction part, i.e., U D 0 and thus ˙ D 0, the limit becomes trivial. For weak
but finite U , the SFT grand potential becomes flatter and flatter until for U D 0 the
t 0 dependence is completely irrelevant.

The VCA is also exact in the atomic limit or, more general and again trivial, in
the case that there is no restriction on the trial self-energies: S 0 D S. In this case,
t 0opt D t solves the problem, i.e., the second and the third term on the r.h.s of (10.39)

cancel each other and b̋ t;U Œ˙t0;U � D ˝t0;U for t 0 D t.
Cluster-perturbation theory (CPT) can be understood as being identical with the

VCA provided that the SFT expression for the grand potential is used and that no
parameter optimization at all is performed. As can be seen from Fig. 10.4, there is
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Fig. 10.5 (Taken from [27]).
Optimal VCA ground-state
energy per site for U D 4 for
different cluster sizes Lc as a
function of 1=Lc compared to
the exact (BA) result and the
direct cluster approach
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a gain in binding energy due to the optimization of t 0, i.e., ˝.t 0opt/ < ˝.t/. This
means that the VCA improves on the CPT result.

Figure 10.5 shows the ground-state energy (per site), i.e., the SFT grand potential
at zero temperature constantly shifted by 
N at the stationary point, as a function
of the inverse cluster size 1=Lc. The dependence turns out to be quite regular and
allows us to recover the exact Bethe-Ansatz result (BA) [28] by extrapolation to
1=Lc D 0. The VCA result represents a considerable improvement as compared to
the “direct” cluster approach where E0 is simply approximated by the ground-state
energy of an isolated Hubbard chain (with open boundary conditions). Convergence
to the exact result is clearly faster within the VCA. Note that the direct cluster
approach, opposed to the VCA, is not exact for U D 0.

In the example discussed so far a single variational parameter was taken
into account only. More parameters can be useful for different reasons. For
example, the optimal self-energy provided by the VCA as a real-space cluster
technique artificially breaks the translational symmetry of the original lattice
problem. Finite-size effects are expected to be the most pronounced at the cluster
boundary. This suggests us to consider all intra-cluster hopping parameters as
independent variational parameters or at least the hopping at the edges of the
chain.

The result is shown in Fig. 10.6. We find that the optimal hopping varies between
different nearest neighbours within a range of less than 10%. At the chain edges
the optimal hopping is enhanced to compensate the loss of itinerancy due to the
switched-off inter-cluster hopping within the VCA. With increasing distance to the
edges, the hopping quickly decreases. Quite generally, the third hopping parameter
is already close to the physical hopping t . Looking at the Lc D 10 results where all
(five) different hopping parameters have been varied independently (orange circles),
one can see the hopping to slightly oscillate around the bulk value reminiscent of
surface Friedel oscillations.
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Fig. 10.6 (Taken from [27].) Optimized hopping parameters for the reference systems shown in
Fig. 10.3 but for larger clusters with Lc sites each as indicated. VCA results for U D 4, t D 1

at half-filling and temperature T D 0. Black: hopping assumed to be uniform. Red: two hopping
parameters varied independently, the hopping at the two cluster edges and the “bulk” hopping.
Blue: hopping at the edges, next to the edges and bulk hopping varied. Green: four hopping
parameters varied. Orange: five hopping parameters varied

The optimal SFT grand potential is found to be lower for the inhomogeneous
cases as compared to the homogeneous (black) one. Generally, the more variational
parameters are taken into account the higher is the decrease of the SFT grand poten-
tial at optimal parameters. However, the binding-energy gain due to inhomogeneous
hopping parameters is much smaller compared to the gain obtained with a larger
cluster.

Considering an additional hopping parameter tpbc linking the two chain edges as
a variational parameter, i.e., clusters with periodic boundary conditions always give
a minimal SFT grand potential at tpbc D 0 (instead of a stationary point at tpbc D 1).
This implies that open boundary conditions are preferred (see also [13]).
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10.4 Consistency of Approximations

10.4.1 Analytical Structure of the Green’s Function

Constructing approximations within the framework of a dynamical variational prin-
ciple means that, besides an approximate thermodynamical potential, approximate
expressions for the self-energy and the one-particle Greens function are obtained.
This raises the question whether their correct analytical structure is respected in an
approximation. For approximations obtained from SFT this is easily shown to be
the case in fact.

The physical self-energy ˙˛ˇ.!/ and the physical Green’s function G˛ˇ.!/ are
analytical functions in the entire complex ! plane except for the real axis and have
a spectral representation (see (10.4)) with non-negative diagonal elements of the
spectral function.

This trivially holds for the SFT self-energy ˙t 0;U ;˛ˇ.!/ since by construction
˙t0;U ;˛ˇ.!/ is the exact self-energy of a reference system. The SFT Green’s function
is obtained from the SFT self-energy and the free Green’s function of the original
model via Dyson’s equation:

G D 1

G�1
t;0 �˙t0;U

: (10.45)

It is easy to see that it is analytical in the complex plane except for the real axis. To
verify that it has a spectral representation with non-negative spectral function, we
can equivalently consider the corresponding retarded quantity G ret.!/ D G .! C
i0C/ for real frequencies! and verify thatG ret D GR�iG I withGR,G I Hermitian
and G I non-negative:

We can assume that G 0;ret D G 0;R � iG 0;I with G 0;R, G 0;I Hermitian and G 0;I

non-negative. Since for Hermitian matrices A, B with B non-negative, one has
1=.A ˙ iB/ D X � iY with X , Y Hermitian and Y non-negative (see [12]), we
find G�1

0;ret D PRC iP I with PR, P I Hermitian andP I non-negative. Furthermore,
we have ˙ ret D ˙R � i˙ I with ˙R, ˙ I Hermitian and ˙ I non-negative.
Therefore,

G ret D 1

PR C iP I �˙ R C i˙ I
D 1

QR C iQI
(10.46)

withQR Hermitian andQI Hermitian and non-negative.
Note that the proof given here is simpler than corresponding proofs for cluster

extensions of the DMFT [29, 30] because the SFT does not involve a “self-
consistency condition” which is the main object of concern for possible causality
violations.
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10.4.2 Thermodynamical Consistency

An advantageous feature of the VCA and of other approximations within the SFT
framework is their internal thermodynamical consistency. This is due to the fact that
all quantities of interest are derived from an approximate but explicit expression for
a thermodynamical potential. In principle the expectation value of any observable
should be calculated by

hAi D @˝

@�A
; (10.47)

where ˝ 	 ˝.t0/ is the SFT grand potential (see (10.42)) at t 0 D t 0opt and �A is
a parameter in the Hamiltonian of the original system which couples linearly to A,
i.e., Ht;U D H0 C �AA. This ensures, for example, that the Maxwell relations

@hAi
@�B

D @hBi
@�A

(10.48)

are respected.
Furthermore, thermodynamical consistency means that expectation values of

arbitrary one-particle operators A D P
˛ˇ A˛ˇc

�
˛cˇ can consistently either be

calculated by a corresponding partial derivative of the grand potential on the one
hand, or by integration of the one-particle spectral function on the other. As an
example we consider the total particle number N D P

˛ c
�
˛c˛ . A priori it is not

guaranteed that in an approximate theory the expressions

hN i D �@˝
@


; (10.49)

and

hN i D
X
˛

Z 1

�1
f .z/A˛˛.z/dz (10.50)

with f .z/ D 1=.exp.z=T /C 1/ and the spectral function A˛ˇ.z/ will give the same
result.

To prove thermodynamic consistency, we start from (10.49). According to
(10.39), there is a two-fold 
 dependence of ˝ 	 ˝t;U Œ˙t0opt;U

�: (1) the explicit

 dependence due to the chemical potential in the free Green’s function of the
original model, G�1

t;0 D ! C 
 � t, and (2) an implicit 
 dependence due to the

 dependence of the self-energy˙t0opt;U

, the Green’s functionGt0opt;U
and the grand

potential˝t0opt;U
of the reference system:

hN i D � @˝

@
ex:
� @˝

@
im:
: (10.51)
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Note that the implicit 
 dependence is due to the chemical potential of the reference
system which, by construction, is in the same macroscopic state as the original
system as well as due to the 
 dependence of the stationary point t 0opt itself. The
latter can be ignored since

@˝

@t 0
� @t

0

@

D 0 (10.52)

for t 0 D t 0opt because of stationarity condition (10.43).
We assume that an overall shift of the one-particle energies "0 	 t 0̨ ˛ is included

in the set T 0 of variational parameters. Apart from the sign this is essentially the
“chemical potential” in the reference system but should be formally distinguished
from 
 since the latter has a macroscopic thermodynamical meaning and is the
same as the chemical potential of the original system which should not be seen as a
variational parameter.

The self-energy, the Green’s function and the grand potential of the reference
system are defined as grand-canonical averages. Hence, their 
 dependence due to
the grand-canonical Hamiltonian H0 D H 0 � 
N is (apart from the sign) the same
as their dependence on "0: Consequently, we have:

@˝

@
im:
D �@˝

@"0 D 0 (10.53)

due to the stationarity condition again.
We are then left with the explicit 
 dependence only:

@˝

@
ex:
D @

@
ex:
Tr ln

1

G�1
t;0 �˙t0opt;U

D �Tr
1

G�1
t;0 �˙t0opt;U

: (10.54)

Converting the sum over the Matsubara frequencies implicit in the trace Tr into
a contour integral in the complex ! plane and using Cauchy’s theorem, we can
proceed to an integration over real frequencies. Inserting into (10.51), this yields:

hN i D � 1
�

Im
Z 1

�1
f .!/ Tr

1

G�1
0;t �˙t0;U

ˇ̌
ˇ̌
ˇ
!Ci0C

d! (10.55)

for t 0 D t 0opt which is just the average particle number given by (10.50). This
completes the proof.

10.4.3 Symmetry Breaking

The above discussion has shown that besides intra-cluster hopping parameters it can
also be important to treat one-particle energies in the reference cluster as variational
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parameters. In particular, one may consider variational parameters which lead to a
lower symmetry of the Hamiltonian.

As an example consider the Hubbard model on a bipartite lattice as the system of
interest and disconnected clusters of size Lc as a reference system. The reference-
system Hamiltonian shall include, e.g., an additional a staggered magnetic-field
term:

H 0
fict D B 0X

i�

zi .ni" � ni#/ ; (10.56)

where zi D C1 for sites on sublattice 1, and zi D �1 for sublattice 2. The additional
term H 0

fict leads to a valid reference system as there is no change of the interaction
part. We include the field strength B 0 in the set of variational parameters, B 0 2 T 0.
B 0 is the strength of a ficticious field or, in the language of mean-field theory, the

strength of the internal magnetic field or the Weiss field. This has to be distinguished
clearly from an external physical field applied to the system with field strength B:

Hphys D B
X
i�

zi .ni" � ni#/ (10.57)

This term adds to the Hamiltonian of the original system.
We expect B 0

opt D 0 in the case of the paramagnetic state and B D 0 (and
this is easily verified numerically). Consider the B 0 and B dependence of the SFT
grand potential ˝.B 0; B/ D ˝BŒ˙B0 �. Here we have suppressed the dependencies
on other variational parameters t 0 and on t;U . Due to the stationarity condition,
@˝.B 0; B/=@B 0 D 0, the optimal Weiss field B 0 can be considered as a function
of B , i.e., B 0

opt D B 0.B/. Therefore, we also have:

d

dB

@˝.B 0.B/; B/
@B 0 D 0 : (10.58)

This yields:

@2˝.B 0.B/; B/
@B 02

dB 0.B/
dB

C @2˝.B 0.B/; B/
@B@B 0 D 0 : (10.59)

Solving for dB 0=dB we find:

dB 0

dB
D �



@2˝

@B 02

��1
@2˝

@B@B 0 : (10.60)

This clearly shows that B 0 D B 0
opt has to be interpreted carefully. B 0 can be much

stronger than B if the curvature @2˝=@B 02 of the SFT functional at the stationary
point is small, i.e., if the functional is rather flat as it is the case in the limit U ! 0,
for example.
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From the SFT approximation for the staggered magnetization,

m D
X
i�

zi h.ni" � ni#/i � d

dB
˝.B 0.B/; B/ D @˝.B 0.B/; B/

@B
; (10.61)

where the stationarity condition has been used once more, we can calculate the
susceptibility,

� D dm

dB
D @2˝.B 0.B/; B/

@B 0@B
dB 0.B/

dB
C @2˝.B 0.B/; B/

@B2
: (10.62)

Using (10.60),

� D @2˝

@B2
�
�
@2˝

@B 02

��1 �
@2˝

@B 0@B

�2
: (10.63)

We see that there are two contributions. The first term is due to the explicit B
dependence in the SFT grand potential while the second is due to the implicit B
dependence via the B dependence of the stationary point. Equation (10.63) also
demonstrates (see [31]) that for the calculation of the paramagnetic susceptibility
� one may first consider spin-independent variational parameters only to find
a stationary point. This strongly reduces the computational effort [32]. Once
a stationary point is found, partial derivatives according to (10.63) have to be
calculated with spin-dependent parameters � in a single final step.

Spontaneous symmetry breaking is obtained at B D 0 if there is a stationary
point with B 0

opt ¤ 0. Figure 10.7 gives an example for the particle–hole symmetric
Hubbard model on the square lattice at half-filling and zero temperature. As a refer-
ence system a cluster with Lc D 10 sites is considered, and the ficticious staggered

Fig. 10.7 (Taken from [33].) SFT grand potential as a function of the strength of a ficti-
cious staggered magnetic field B 0. VCA calculation using disconnected clusters consisting of
Lc D 10 sites each for the two-dimensional Hubbard model on the square lattice at half-filling,
zero temperature, U D 8 and nearest-neighbour hopping t D 1
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magnetic field is taken as the only variational parameter. There is a stationary point
at B 0 D 0, which corresponds to the paramagnetic phase. At B 0 D 0 the usual CPT
is recovered. The two equivalent stationary points at finite B 0 correspond to a phase
with spontaneous antiferromagnetic order – as expected for the Hubbard model in
this parameter regime. The antiferromagnetic ground state is stable as compared
to the paramagnetic phase. Its order parameter m is the conjugate variable to the
ficticious field. Since the latter is a variational parameter,m can either be calculated
by integration of the spin-dependent spectral density or as the derivative of the SFT
grand potential with respect to the physical field strength B with the same result.
More details are given in [33].

The possibility to study spontaneous symmetry breaking using the VCA with
suitably chosen Weiss fields as variational parameters has been exploited frequently
in the past. Besides antiferromagnetism [33–36], spiral phases [37], ferromagnetism
[32], d -wave superconductivity [38–44], charge order [45,46] and orbital order [47]
have been investigated. The fact that an explicit expression for a thermodynamical
potential is available allows us to study discontinuous transitions and phase
separation as well.

10.4.4 Non-perturbative Conserving Approximations

Continuous symmetries of a Hamiltonian imply the existence of conserved quan-
tities: The conservation of total energy, momentum, angular momentum, spin
and particle number is enforced by a not explicitly time-dependent Hamiltonian
which is spatially homogeneous and isotropic and invariant under global SU(2)
and U(1) gauge transformations. Approximations may artificially break symmetries
and thus lead to unphysical violations of conservation laws. Baym and Kadanoff
[48, 49] have analyzed under which circumstances an approximation respects
the mentioned macroscopic conservation laws. Within diagrammatic perturbation
theory it could be shown that approximations that derive from an explicit but
approximate expression for the LW functional ˚ (˚-derivable approximations) are
“conserving.” Examples for conserving approximations are the Hartree–Fock or the
fluctuation-exchange approximation [48, 50].

The SFT provides a framework to construct˚-derivable approximations for cor-
related lattice models which are non-perturbative, i.e., do not employ truncations of
the skeleton-diagram expansion. Like in weak-coupling conserving approximations,
approximations within the SFT are derived from the LW functional, or its Legendre
transform FU Œ˙ �. These are ˚-derivable since any type-III approximation can also
be seen as a type-II one, see Sect. 10.2.6.

For fermionic lattice models, conservation of energy, particle number and spin
have to be considered. Besides the static thermodynamics, the SFT concentrates
on the one-particle excitations. For the approximate one-particle Green’s function,
however, it is actually simple to prove directly that the above conservation laws are
respected. A short discussion is given in [51].
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At zero temperature T D 0 there is another non-trivial theorem which is satisfied
by any˚-derivable approximation, namely Luttinger’s sum rule [23,52]. This states
that at zero temperature the volume in reciprocal space that is enclosed by the
Fermi surface is equal to the average particle number. The original proof of the
sum rule by Luttinger and Ward [23] is based on the skeleton-diagram expansion
of ˚ in the exact theory and is straightforwardly transferred to the case of a ˚-
derivable approximation. This also implies that other Fermi-liquid properties, such
as the linear trend of the specific heat at low T and Fermi-liquid expressions for
the T D 0 charge and the spin susceptibility are respected by a ˚-derivable
approximation.

For approximations constructed within the SFT, a different proof has to be found.
One can start with (10.39) and perform the zero-temperature limit for an original
system (and thus for a reference system) of a finite size L. The different terms in the
SFT grand potential then consist of finite sums. The calculation proceeds by taking
the 
-derivative, for T D 0, on both sides of (10.39). This yields the following
result (see [51] for details):

hN i D hN i0 C 2
X
k

�.Gk.0// � 2
X
k

�.G0
k.0// : (10.64)

Here, hN i (hN i0) is the ground-state expectation value of the total particle number
N in the original (reference) system, andGk.0/ (G0

k.0/) is the diagonal elements of
the one-electron Green’s functionG at ! D 0. As Luttinger’s sum rule reads

hN i D 2
X
k

�.G0
k.0// ; (10.65)

this implies that, within an approximation constructed within the SFT, the sum rule
is satisfied if and only if it is satisfied for the reference system, i.e., if hN i0 D
2
P
k�.G

0
k.0//. This demonstrates that the theorem is “propagated” to the original

system irrespective of the approximation that is constructed within the SFT. This
propagation also works in the opposite direction. Namely, a possible violation of
the exact sum rule for the reference system would imply a violation of the sum rule,
expressed in terms of approximate quantities, for the original system.

There are no problems to take the thermodynamic limit L ! 1 (if desired)
on both sides of (10.64). The k sums turn into integrals over the unit cell of the
reciprocal lattice. For a D-dimensional lattice the D � 1-dimensional manifold
of k points with Gk.0/ D 1 or Gk.0/ D 0 form Fermi or Luttinger surfaces,
respectively. Translational symmetry of the original as well as the reference system
may be assumed but is not necessary. In the absence of translational symmetry,
however, one has to re-interprete the wave vector k as an index which refers to
the elements of the diagonalized Green’s function matrix G . The exact sum rule
generalizes accordingly but can no longer be expressed in terms of a Fermi surface
since there is no reciprocal space. It is also valid for the case of a translationally
symmetric original Hamiltonian where, due to the choice of a reference system with
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reduced translational symmetries, such as employed in the VCA, the symmetries of
the (approximate) Green’s function of the original system are (artificially) reduced.
Since with (10.64) the proof of the sum rule is actually shifted to the proof of the
sum rule for the reference system only, we are faced with the interesting problem
of the validity of the sum rule for a finite cluster. For small Hubbard clusters with
non-degenerate ground state this has been checked numerically with the surprising
result that violations of the sum rule appear in certain parameter regimes close to
half-filling, see [51]. This leaves us with the question where the proof of the sum
rule fails if applied to a system of finite size. This is an open problem that has been
stated and discussed in [51, 53] and that is probably related to the breakdown of the
sum rule for Mott insulators [54].

10.5 Bath Degrees of Freedom

10.5.1 Motivation and Dynamical Impurity Approximation

Within SFT, an approximation is specified by the choice of the reference system.
The reference system must share the same interaction part with the original model
and should be amenable to a (numerically) exact solution. These requirements
restrict the number of conceivable approximations. So far we have considered a
decoupling of degrees of freedom by partitioning a Hubbard-type lattice model into
finite Hubbard clusters of Lc sites each, which results in the VCA.

Another element in constructing approximation is to add degrees of freedom.
Since the interaction part has to be kept unchanged, the only possibility to do
that consists in adding new uncorrelated sites (or “orbitals”), i.e., sites where
the Hubbard U vanishes. These are called “bath sites.” The coupling of bath sites
to the correlated sites with finite U in the reference system via a one-particle term
in the Hamiltonian is called “hybridization.”

Figure 10.8 shows different possibilities. Reference system A yields a trial self-
energy which is local ˙ij� .!/ D ıij˙.!/ and has the same pole structure as the
self-energy of the atomic limit of the Hubbard model. This results in a variant of
the Hubbard-I approximation [2]. Reference systems B and C generate VCA. In
reference system D an additional bath site is added to the finite cluster. Reference
system E generates a local self-energy again but, as compared to A, allows to treat
more variational parameters, namely the on-site energies of the correlated and of the
bath site and the hybridization between them. We call the resulting approximation a
“dynamical impurity approximation” (DIA) with Lb D 1.

The DIA is a mean-field approximation since the self-energy is local which
indicates that non-local two-particle correlations, e.g., spin–spin correlations, do
not feed back to the one-particle Green function. It is, however, quite different
from static mean-field (Hartree–Fock) theory since even on the Lb D 1 level it
includes retardation effects that result from processes / V 2 where the electron
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Fig. 10.8 Different possible reference systems with the same interaction as the single-band
Hubbard model on a square lattice. Filled circles: correlated sites with U as in the Hubbard model.
Open circles: uncorrelated “bath” sites withU D 0. Lines: nearest-neighbour hopping. Big circles:
continuous bath consisting of Lb D 1 bath sites. Reference systems H 0

A, H 0

B and H 0

C generate
variational cluster approximations (VCA), H 0

E yields dynamical impurity approximation (DIA),
H 0

F the DMFT, and H 0

D an intermediate approximation (VCA with one additional bath site per
cluster)

hops from the correlated to the bath site and back. This improves, as compared
to the Hubbard-I approximation, the frequency dependence of the self-energy, i.e.,
the description of the temporal quantum fluctuations. The two-site (Lb D 1)
DIA is the most simple approximation which is non-perturbative, conserving,
thermodynamically consistent and which respects the Luttinger sum rule (see [51]).
Besides the “atomic” physics that leads to the formation of the Hubbard bands, it
also includes in the most simple form the possibility to form a local singlet, i.e.,
to screen the local magnetic moment on the correlated site by coupling to the local
moment at the bath site. The correct Kondo scale is missed, of course. Since the
two-site DIA is computationally extremely cheap, it has been employed frequently
in the past, in particular to study the physics of the Mott metal–insulator transition
[11, 12, 51, 55–59].

10.5.2 Relation to Dynamical Mean-Field Theory

Starting from E and adding more and more bath sites to improve the description of
temporal fluctuations, one ends up with reference system F where a continuum of
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bath sites (Lb D 1) is attached to each of the disconnected correlated sites. This
generates the “optimal” DIA.

To characterize this approximation, we consider the SFT grand potential given
by (10.39) and analyze the stationarity condition (10.43): Calculating the derivative
with respect to t 0, we get the general SFT Euler equation:

T
X
n

X
˛ˇ

 
1

G�1
t;0 .i!n/�˙t 0;U .i!n/

�Gt0;U .i!n/

!

ˇ˛

@˙t 0;U ;˛ˇ.i!n/

@t0 D 0 :

(10.66)

For the physical self-energy ˙t;U of the original system Ht;U , the equation was
fulfilled since the bracket would be zero. Vice versa, since Gt0 ;U D bGU Œ˙t 0;U �,
the physical self-energy of Ht;U is determined by the condition that the bracket
be zero. Hence, one can consider the SFT Euler equation to be obtained from the
exact conditional equation for the “vector” ˙ in the self-energy space SU through
projection onto the hypersurface of t0 representable trial self-energies S 0

U by taking
the scalar product with vectors @˙t 0;U ;˛ˇ.i!n/=@t0 tangential to the hypersurface.

Consider now the Hubbard model in particular and the trial self-energies
generated by reference system F. Actually, F is a set of disconnected single-impurity
Anderson models (SIAMs). Assuming translational symmetry, these impurity mod-
els are identical replicas. The self-energy of the SIAM is non-zero on the correlated
(“impurity”) site only. Hence, the trial self-energies are local and site-independent,
i.e., ˙ij� .i!n/ D ıij˙.i!n/, and thus (10.66) reads:
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X
n

X
i�

�
1

G�1
0 .i!n/ �˙ .i!n/

�G0.i!n/
�

i i�

@˙ii� .i!n/

@t0 D 0 ; (10.67)

where the notation has been somewhat simplified. The Euler equation would be
solved if one-particle parameters of the SIAM and therewith an impurity self-energy
can be found that, when inserted into the Dyson equation of the Hubbard model,
yields a Green’s function, the local element of which is equal to the impurity Green’s
function G 0. Namely, the bracket in (10.67), i.e., the local (diagonal) elements of
the bracket in (10.66), vanishes. Since the “projector” @˙ii� .i!n/=@t0 is local, this
is sufficient.

This way of solving the Euler equation, however, is just the prescription to obtain
the self-energy within DMFT [9], and setting the local elements of the bracket to
zero is just the self-consistency equation of DMFT. We, therefore, see that reference
system F generates the DMFT. It is remarkable that with the VCA and the DMFT
quite different approximations can be obtained in one and the same theoretical
framework.

Note that for any finite Lb, as for example, with reference system E, it is
impossible to satisfy the DMFT self-consistency equation exactly since the impurity
Green’s function G 0 has a finite number of poles while the lattice Green’s function
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.1=G�1
0 .i!n/�˙ .i!n//i i� has branch cuts. Nevertheless, with the “help” of the

projector, it is easily possible to find a stationary point topt of the self-energy-
functional and to satisfy (10.67).

Conceptually, this is rather different from the DMFT exact-diagonalization
(DMFT-ED) approach [60] which also solves a SIAM with a finite Lb but which
approximates the DMFT self-consistency condition. This means that within DMFT-
ED an additional ad hoc prescription is necessary which, opposed to the DIA, will
violate thermodynamical consistency. However, an algorithmic implementation via
a self-consistency cycle to solve the Euler equation is simpler within the DMFT-
ED as compared to the DIA [56, 59]. It has, therefore, been suggested to guide
improved approximations to the self-consistency condition within DMFT-ED by the
DIA [61]. The convergence of results obtained by the DIA to those of full DMFT
with increasing number of bath sites Lb is usually fast. With respect to the Mott
transition in the single-band Hubbard model, Lb D 3 is sufficient to get almost
quantitative agreement with DMFT–QMC results, for example [56].

Real-space DMFT for inhomogeneous systems [62–64] with a local but site-
dependent self-energy ˙ij� .i!n/ D ıij˙i .i!n/ is obtained from reference system
F if the one-particle parameters of the SIAMs at different sites are allowed to be
different. This enlarges the space of trial self-energies. In this case we get one
local self-consistency equation for each site. The different impurity models can be
solved independently from each other in each step of the self-consistency cycle
while the coupling between the different sites is provided by the Dyson equation of
the Hubbard model.

10.5.3 Cluster Mean-Field Approximations

As a mean-field approach, the DIA does not include the feedback of non-local
two-particle correlations on the one-particle spectrum and on the thermodynamics.
The DIA self-energy is local and takes into account temporal correlations only.
A straightforward idea to include short-range spatial correlations in addition is
to proceed to a reference system with Lc > 1, i.e., system of disconnected
finite clusters with Lc sites each. The resulting approximation can be termed a
cluster mean-field theory since despite the inclusion of short-range correlations, the
approximation is still mean-field-like on length scales exceeding the cluster size.

For an infinite number of bath degrees of freedom Lb ! 1 attached to each
of the Lc > 1 correlated sites the cellular DMFT [30, 65] is recovered, see
Fig. 10.9. Considering a single-band Hubbard model again, this can be seen from
the corresponding Euler equation:

T
X
n

0X
ij�

�
1

G�1
0 .i!n/ �˙ .i!n/

�G0.i!n/
�

ij�

@˙ji� .i!n/

@t0 D 0 ; (10.68)
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Fig. 10.9 Dynamical impurity and cluster approximations generated by different reference sys-
tems within SFT. Lc is the number of correlated sites in the reference cluster. ns D 1C Lb is the
number of local degrees of freedom where Lb denotes the number of additional bath sites attached
to each of the Lc correlated sites. The variational cluster approximation (VCA) is obtained for
finite clusters with Lc > 1 but without bath sites ns D 1. This generalizes the Hubbard-I-type
approximation obtained for Lc D 1. The dynamical impurity approximation (DIA) is obtained for
ns > 1 but for a single correlated site Lc D 1. A continuum of bath sites, ns D 1 generates
DMFT (Lc D 1) and cellular DMFT (Lc > 1). Lc D 1, irrespective of the number of local
degrees of freedom, corresponds to the exact solution

where the prime at the sum over the sites indicates that i and j must belong
to the same cluster of the reference system. Namely, ˙ij� .i!n/ D 0 and also
the “projector” @˙ji� .i!n/=@t0 D 0 if i and j belong to different clusters. This
stationarity condition can be fulfilled if

�
1

G�1
0 .i!n/�˙ .i!n/

�G0.i!n/
�

ij�

D 0 : (10.69)

Note that G0.i!n/ is a matrix which is labeled as G0
ij;kl .i!n/, where i; j D

1; : : : ; Lc refer to the correlated sites in the cluster while k; l D 1; : : : ; LbLc to the
bath sites.G0

ij .i!n/ are the elements of the cluster Green’s function on the correlated
sites. The condition (10.69) is just the self-consistency condition of the C-DMFT.

As is illustrated in Fig. 10.9, the exact solution can be obtained with increasing
cluster size Lc !1 either from a sequence of reference systems with a continuous
bath ns D 1CLb D1, corresponding to C-DMFT, or from a sequence with ns D 1,
corresponding to VCA, or with a finite, small number of bath sites (“cellular DIA”).
Systematic studies of the one-dimensional Hubbard model [13, 27] have shown
that the energy gain which is obtained by attaching a bath site is lower than the
gain obtained by increasing the cluster. This suggests that the convergence to the
exact solution could be faster on the “VCA axis” in Fig. 10.9. For a definite answer,
however, more systematic studies, also in higher dimensions, are needed.

In any case bath sites help to get a smooth dependence of physical quantities
when varying the electron density or the (physical) chemical potential. The reason
is that bath sites also serve as “charge reservoirs,” i.e., during a 
 scan the ground
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state of the reference cluster may stay in one and the same sector characterized
by the conserved total particle number in the cluster while the particle number
on the correlated sites and the approximate particle number in the original lattice
model evolve continuously [27, 32]. This is achieved by a 
-dependent charge
transfer between correlated and bath sites. In addition, (at least) a single bath
site per correlated site in a finite reference cluster is also advantageous to include
the interplay between local (Kondo type) and non-local (antiferromagnetic) singlet
formation. This has been recognized to be important in studies of the Mott transition
[66] in the two-dimensional and of ferromagnetic order in one-dimensional systems
[32]. For studies of spontaneous U.1/ symmetry breaking, e.g., d -wave supercon-
ductivity in the two-dimensional Hubbard model [38–41], doping dependencies can
be investigated without bath sites due to mixing of cluster states with different
particle numbers.

10.5.4 Translation Symmetry

For any cluster approximation formulated in real space there is an apparent problem:
Due to the construction of the reference system as a set of decoupled clusters,
the trial self-energies do not preserve the translational symmetries of the original
lattice. Trivially, this also holds if periodic boundary conditions are imposed for the
individual cluster. Transformation of the original problem to reciprocal space does
not solve the problem either since this also means to transform a local Hubbard-type
interaction into a non-local interaction part which basically couples all k points.

There are different ideas to overcome this problem. We introduce a “periodizing”
universal functional

bT Œ˙ �ij D 1

L

X
i 0j 0

ıi�j;i 0�j 0˙i 0j 0 ; (10.70)

which maps any trial self-energy onto translationally invariant one. In reciprocal
space this corresponds to the substitution˙k;k0 ! bT Œ˙ �k;k0 D ık;k0˙k. Using this,
we replace the self-energy-functional of (10.37) by

b̋.1/

t0 ;U Œ˙ � D Tr ln
1

G�1
t0;0 � bT Œ˙ �

C bF U Œ˙ � ; (10.71)

as suggested in [67]. This new functional is different from the original one. However,
as the physical self-energy is supposed to be a translational invariant, it is a
stationary point of both, the original and the modified functional. This means
that the modified functional can likewise be used as a starting point to construct
approximations. It turns out (see [68] for an analogous discussion in the case of
disorder) that for a reference system with Lc > 1 and ns D 1, the corresponding
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Euler equation reduces to the self-consistency equation of the so-called periodized
cellular DMFT (PC-DMFT) [69]. The same modified functional can also be used to
construct a periodized VCA, for example.

While the main idea to recover the PC-DMFT is to modify the form of the
self-energy-functional, the dynamical cluster approximation (DCA) [29, 70, 71] is
obtained with the original functional but a modified hopping term in the Hamiltonian
of the original system. We replace t !et and consider the functional e̋t;U Œ˙ �. To
ensure that the resulting approximations systematically approach the exact solution
for cluster size Lc ! 1, the replacement t !et must be controlled by Lc, i.e., it
must be exact up to irrelevant boundary terms in the infinite-cluster limit. This is the
case for

et D .V W /U �tU .V W /� ; (10.72)

where U , V , and W are unitary transformations of the one-particle basis. U is
the Fourier transformation with respect to the original lattice consisting of L sites
(L � L unitary matrix). W is the Fourier transformation on the cluster (Lc � Lc),
and V the Fourier transformation with respect to the superlattice consisting ofL=Lc

supersites given by the clusters (L=Lc �L=Lc). The important point is that for any
finite Lc the combined transformation is V W D W V ¤ U , while this becomes
irrelevant in the limit Lc !1. The detailed calculation (see [68] for the analogous
disorder case) shows that the DCA is recovered for a reference system with Lc > 1

and ns D1, if periodic boundary conditions are imposed for the cluster. The same
modified construction can also be used to a get simplified DCA-type approximation
without bath sites, for example. This “simplified DCA” is related to the periodized
VCA in the same way as the DCA is related to the PC-DMFT. The simplified DCA
would represent a variational generalization of a non-self-consistent approximation
(“periodic CPT”) introduced recently [72].

10.6 Systematics of Approximations

Since the SFT unifies different dynamical approximations within a single formal
framework, the question arises how to judge on the relative quality of two different
approximations resulting from two different reference systems. This, however, is
not straightforward for several reasons. First, it is important to note that a stationary
point of the self-energy-functional is not necessarily a minimum but rather a saddle
point in general (see [11] for an example). The self-energy-functional is not convex.
Actually, despite several recent efforts [26,73,74], there is no functional relationship
between a thermodynamical potential and time-dependent correlation functions,
Green’s functions, self-energies, etc. which is known to be convex.

Furthermore, there is no a priori reason why, for a given reference system, the
SFT grand potential at a stationary point should be lower than the SFT grand
potential at another one that results from a simpler reference system, e.g., a smaller
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cluster. This implies that the SFT does not provide upper bounds to the physical
grand potential. There is e.g., no proof (but also no counterexample) that the DMFT
ground-state energy at zero temperature must be higher than the exact one. On the
other hand, in practical calculations the upper-bound property is usually found to
be respected, as can be seen for the VCA in Fig. 10.5, for example. Nevertheless,
the non-convexity must be seen as a disadvantage as compared to methods based
on wave functions which via the Ritz variational principle are able to provide strict
upper bounds.

To discuss how to compare two approximations within SFT, we first have
to distinguish between “trivial” and “non-trivial” stationary points for a given
reference system. A stationary point is referred to as “trivial” if the one-particle
parameters are such that the reference system decouples into smaller subsystems.
If, at a stationary point, all degrees of freedom (sites) are still coupled to each other,
the stationary point is called “non-trivial.” It is possible to prove the following
theorem [75]: Consider a reference system with a set of variational parameters
t 0 D t 00 C V , where V couples two separate subsystems. For example, V could
be the inter-cluster hopping between two subclusters which completely decouples
the degrees of freedom for V D 0 and all t 00. Then

˝t;U Œ˙t00CV � D ˝t;U Œ˙t00C0�CO.V 2/ ; (10.73)

provided that the functional is stationary at ˙t00;U when varying t 00 only (this
restriction makes the theorem non-trivial). This means that going from a more
simple reference system to a more complicated one with more degrees of freedom
coupled should generate a new non-trivial stationary point with V ¤ 0 while the
“old” stationary point with V D 0 being still a stationary point with respect to the
“new” reference system. Coupling more and more degrees of freedom introduces
more and more stationary points, and none of the “old” ones is “lost.”

Consider a given reference system with a non-trivial stationary point and a
number of trivial stationary points. An intuitive strategy to decide between two
stationary points would be to always take the one with the lower grand potential
˝t;U Œ˙t 0;U �. A sequence of reference systems (e.g.H 0

A,H 0
B,H 0

C, ...) in which more
and more degrees of freedom are coupled and which eventually recovers the original
system H itself shall be called a “systematic” sequence of reference systems.
For such a systematic sequence, the suggested strategy trivially produces a series
of stationary points with monotonously decreasing grand potential. Unfortunately,
however, the strategy is useless because it cannot ensure that a systematic sequence
of reference systems generates a systematic sequence of approximations as well, i.e.,
one cannot ensure that the respective lowest grand potential in a systematic sequence
of reference systems converges to the exact grand potential. Namely, the stationary
point with the lowest SFT grand potential could be a trivial stationary point (like the
one associated with a very simple reference system only as H 0

A or H 0
B in Fig. 10.8,

for example). Such an approximation must be considered as poor since the exact
conditional equation for the self-energy is projected onto a very low-dimensional
space only.
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Fig. 10.10 Possible trends of the SFT grand potential˝ as a function of a variational parameter V
coupling two subsystems of a reference system. V D 0 corresponds to the decoupled case and must
always represent a “trivial” stationary point. Circles show the stationary points to be considered.
The point V D 0 has to be disregarded in all cases except for (a). The arrow marks the respective
optimum stationary point according to the rules discussed in the text

Therefore, one has to construct a different strategy which necessarily approaches
the exact solution when following up a systematic sequence of reference systems.
Clearly, this can only be achieved if the following rule is obeyed: A non-trivial
stationary point is always preferred as compared to a trivial one (R0). A non-
trivial stationary point at a certain level of approximation, i.e., for a given reference
system, becomes a trivial stationary point on the next level, i.e., in the context
of a “new” reference system that couples at least two different units of the “old”
reference system. Hence, by construction, the rule R0 implies that the exact result
is approached for a systematic series of reference systems.

Following the rule (R0), however, may lead to inconsistent thermodynamic
interpretations in case of a trivial stationary point with a lower grand potential
as a non-trivial one. To avoid this, R0 has to be replaced by: Trivial stationary
points must be disregarded completely unless there is no non-trivial one (R1). This
automatically ensures that there is at least one stationary point for any reference
system, i.e., at any approximation level.

To maintain a thermodynamically consistent picture in case that there are more
than a single non-trivial stationary points, we finally postulate: Among two non-
trivial stationary points for the same reference system, the one with lower grand
potential has to be preferred (R2).

The rules are illustrated by Fig. 10.10. Note that the grand potential away from
a stationary point does not have a direct physical interpretation. Hence, there is no
reason to interpret the solution corresponding to the maximum in Fig. 10.10c) as
“locally unstable.” The results of [12, see Figs. 2 and 4 therein] nicely demonstrate
that with the suggested strategy (R1, R2) one can consistently describe continuous
as well as discontinuous phase transitions.

The rules R1 and R2 are unambiguously prescribed by the general demands for
systematic improvement and for thermodynamic consistency. There is no acceptable
alternative to this strategy. The strategy reduces to the standard strategy (always
taking the solution with lowest grand potential) in the case of the Ritz variational
principle because here a non-trivial stationary point does always have a lower grand
potential as compared to a trivial one.
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There are also some consequences of the strategy which might be considered as
disadvantageous but must be tolerated: (1) For a sequence of stationary points that
are determined by R1 and R2 from a systematic sequence of reference systems,
the convergence to the corresponding SFT grand potentials is not necessarily
monotonous. (2) Given two different approximations specified by two different
reference systems, it is not possible to decide which one should be regarded as
superior unless both reference systems belong to the same systematic sequence of
reference systems. In Fig. 10.8, one has H 0

A < H 0
B < H 0

C < H
0
D, where “<” stands

for “is inferior compared to.” Furthermore,H 0
E < H

0
F and H 0

A < H
0
E but there is no

relation between H 0
B andH 0

E, for example.

10.7 Summary

The above discussion has shown that SFT provides a general framework which
allows us to construct different dynamical approximations for lattice models of
strongly correlated electrons. These approximations derive from a fundamental
variational principle, formulated in terms of the grand potential expressed as a
functional of the self-energy, by restricting the domain of the functional. This leads
to non-perturbative and thermodynamically consistent approximations. The SFT
unifies different known approximations in a single theoretical frame and provides
new dynamical impurity (DIA) and variational cluster approximations (VCA).

The essential step in the numerical evaluation consists in the calculation of the
Green’s function or the self-energy of a reference system with the same interaction
part as the original model but with spatially decoupled degrees of freedom. Details
of the numerical procedure can be found in [11, 12, 27, 32, 76], for example.
Typically, exact diagonalization or the (band) Lanczos approach [77, 78] but also
quantum Monte–Carlo techniques may be used [79] as a reference-system solver.
Since bath sites can be integrated out within Green-function based QMC schemes,
QMC as an impurity/cluster solver is the method of choice for finite-temperature
DMFT or cluster DMFT approaches, i.e., for reference systems with a continuum of
bath sites. At zero temperature, and using reference systems without bath sites or a
few bath degrees of freedom only, the SFT provides computationally fast techniques
which complement the (cluster) DMFT methods.

Besides applications to Hubbard-type model systems, the VCA has recently been
employed to study the correlated electronic structure of real materials, such as
NiO [80], CoO, MnO [81], LaCoO3 [31], TiOCl [82], CrO2 [83], TiN [84] and
NiMnSb [85]. Furthermore, the theory has been extended to study Bose systems
[67, 86] and the Jaynes–Cummings lattice [87, 88], electron-phonon systems [55],
systems with non-local interactions [89], systems with quenched disorder [68] and
more.
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Chapter 11
Cluster Dynamical Mean Field Theory

David Sénéchal

Abstract Cluster dynamical mean-field theory is an extension of dynamical mean-
field theory (DMFT) where the single-site impurity is replaced with a cluster of
sites with open boundary conditions. Compared with single-site DMFT, this takes
into account short-range correlations exactly and can probe the presence of broken-
symmetry phases such as d -wave superconductivity and antiferromagnetism. This
chapter reviews the basic CDMFT procedure, as well as issues related to the use
of an exact diagonalization solver for the impurity problem. The QMC solvers are
also briefly reviewed, as well as results on the Mott transition and on models for the
cuprates.

Cluster dynamical mean-field theory [1, 2] (also called cellular dynamical mean-
field theory and abbreviated CDMFT) is an extension of dynamical mean field
theory (DMFT) where the single “impurity” site is replaced by a finite cluster of
lattice sites. The extension of single-site DMFT to clusters is motivated by the
importance of short-range antiferromagnetic fluctuations in Hubbard models and
the possible existence of d -wave pairing. It allows DMFT to take into account short-
range spatial correlations into account; this has an effect even on properties that are
not directly related to broken symmetry phases, such as the Mott transition.

In this chapter, we first review the general principles behind DMFT, in a language
adapted to the use of clusters. CDMFT, like single-site DMFT, can be understood
in the framework of the self-energy functional approach (SFA) (see Chap. 9.5). This
will be particularly useful in Sect. 11.2, where issues related to the use of an exact-
diagonalization solver for the impurity problem are discussed. In Sect. 11.3 we
briefly describe the use of quantum Monte Carlo (QMC) solvers (the Hirsch-Fye
and continuous-time methods) for the impurity problem. We then review results
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on the Mott transition and on the physics of high-temperature superconductors. We
conclude with some remarks on the differences between CDMFT and the dynamical
cluster approximation (DCA), reviewed in Chap. 8.8.

11.1 The CDMFT Procedure

We shall not provide a full introduction to DMFT, as this is very well reviewed in
Chap. 7 of this volume. Let us simply summarize the main points while introducing a
notation adapted to the use of clusters. We will follow the notation used in Chap. 7.9
as far as kinematics is concerned.

11.1.1 The Effective Hamiltonian

Let us consider a general interacting electron Hamiltonian

H D
X
˛;ˇ

t˛ˇc
�
˛cˇ C

1

2

X
˛;ˇ;;ı

U˛ˇı c
�
˛c
�

ˇccı; (11.1)

where c˛ annihilates an electron in the one-particle state ˛. The composite index ˛ is
an aggregation of site, spin and band indices. By convention, the chemical potential
will be included in the matrix t of one-body terms. In a functional integral language,
the corresponding partition function is

Z D
Z Y

˛

Œdc˛dc�̨� exp�SŒc; c��; (11.2)

where the imaginary-time action S is

SŒc; c�� D
Z ˇ

0

d�

8
<
:
X
˛;ˇ

c�̨.ı˛ˇ@� C t˛ˇ/cˇ CH1.c; c
�/

9
=
; (11.3)

andH1 is the interaction Hamiltonian.
The starting point of CDMFT is a cluster decomposition of the lattice, as

described in Chap. 7.9. The lattice action then takes the form

S D
X
m2�

S.m/ C
X
m;n2�

S.m;n/; (11.4)
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where S.m/ is the restriction of S to the cluster labelled m, and S.m;n/ contains
terms that involve sites belonging to clustersm and n, typically inter-cluster hopping
terms. CDMFT assumes that the effect of the environment of each cluster can be
well approximated by an effective action

X
n2�

S.m;n/ ! S.m/env: (11.5)

This effectively decouples the clusters. This contribution from the environment is
assumed to be uncorrelated, i.e., to be quadratic in c. Thus, the total effective action
for a given cluster takes the general form

SeffŒc; c
�� D

Z ˇ

0

d�d� 0X
˛;ˇ

c�̨.�/G �1
0 .� � � 0/˛ˇcˇ.� 0/C

Z ˇ

0

d� H1.c; c
�/; (11.6)

where G0 is the dynamical mean field. The indices ˛; ˇ are now restricted to one
cluster, and likewise for the interaction HamiltonianH1.

In the frequency domain, the dynamical mean field can be written as

GG �1
0 .i!n/ D i!n � t 0 � � .i!n/; (11.7)

where t 0 is the restriction of the hopping matrix to the cluster and � .i!n/, the
hybridization function, represents the dynamical hybridization of the cluster orbitals
with their effective environment. This is better expressed in terms of an Anderson
impurity model [3]; let us explain.

In order for this effective action to make sense, the dynamical mean field GG 0 must
be causal. This implies that it must have the analytic properties of a Green function:
its poles and zeros must lie on the real axis, its eigenvalues must have positive
residues, and in addition GG 0.i!n/must behave like 1=i!n at large frequencies. This
entails a general spectral representation of � as

�˛ˇ.i!n/ D
Z

d!0 �˛.!
0/� �̌.!0/

i!n � !0 (11.8)

or, in a discrete version,

�˛ˇ.i!n/ D
NbX



�˛
�
�̌



i!n � "
 ; (11.9)

where "
 and �˛
 form a collection of parameters that can be adjusted to fit any
causal hybridization function as closely as needed. Nb is the number of poles
deemed necessary to adequately represent the hybridization function.
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Such a discrete hybridization function is naturally obtained from the following
Anderson impurity model:

HAIM D
X
˛;ˇ

t 0̨ˇc�˛cˇ C
X
˛;


�
�˛
c

�
˛a
 C H:c:

�C
NbX



"
a
�

a
 (11.10)

Electrons can hop between the cluster sites labelled ˛; ˇ and a set of effective
orbitals (the bath) labelled by 
, with annihilation operators a
. Let us demonstrate
this simple equivalence. The Green function associated with the noninteracting
Anderson model (11.10) is simply

G full.i!n/ D 1

i!n � T ; (11.11)

where the full hopping matrix T for the combined cluster and bath system is

T D
�
t 0 �
�� "

�
(11.12)

t is theL�L hopping matrix within cluster degrees of freedom only, � is theL�Nb
hopping matrix between bath and cluster orbitals, and " the diagonalNb�Nb matrix
of bath energies "
. The Green function obtained by tracing out the bath degrees of
freedom is simply the restriction ofG full to the cluster degrees of freedom only. The
mathematical problem at hand is simply to invert a 2 � 2 block matrix

�
A11 A12

A21 A22

�
D
�
B11 B12

B21 B22

��1
; (11.13)

whereA11 D !�t , A12 D A�21 D � , A22 D !�" andB11 is the Green function we
are looking for. By working out the inverse matrix condition, we find in particular
that

A11B11 C A12B21 D 1 (11.14)

B21 D �A�1
22 A21B11 (11.15)

and therefore
�
A11 �A12A�1

22 A21
�
B11 D 1 : (11.16)

The Green function G 0 of the cluster is thus given by

G 0�1 D ! � t 0 � � 1

! � "�
�; (11.17)
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where we recognize the hybridization function (11.9) in the last term. This
completes the demonstration.

The full effective Hamiltonian of each cluster is therefore

H 0 D
X
˛;ˇ

t˛ˇc
�
˛cˇ C

X
˛;


�
�˛
c

�
˛a
 C H:c:

�C
NbX



"
a
�

a
 CH1 (11.18)

Adding the interaction term H1 contributes a self-energy ˙ to the inverse Green
function, but, for a given set of bath parameters,H1 does not affect the hybridisation
function, since the tracing out of bath degrees of freedom does not involveH1 in any
way. Thus, the interacting Green function of the cluster takes the following form:

G 0�1.i!n/ D i!n � t 0 � � .i!n/�˙ .i!n/
D GG �1

0 .i!n/ �˙ .i!n/
(11.19)

The self-energy˙ will of course depend on the value of the bath parameters, i.e., on
the environment. This is an improvement over cluster perturbation theory, in which
˙ is only affected by the cluster itself.

11.1.2 The Self-Consistency Condition

The approximate Green function of the lattice model that follows from the effective
Hamiltonian (11.18) is obtained by borrowing the self-energy from the cluster Green
functionG 0 and applying it to the lattice, like in CPT:

G�1. Qk; i!n/ D i!n � t. Qk/�˙ .i!n/: (11.20)

Here t. Qk/ is the exact dispersion of the lattice model, but expressed as a partial
Fourier transform, i.e., as matrix in cluster indices with a dependence on the reduced
wave-vector Qk defined in the Brillouin zone of the superlattice.

Let us apply a partial Fourier transform to G . Qk; i!n/ back to real-space, to
project it onto the cluster:

NG .i!n/ D L

N

X
Qk

h
i!n � t. Qk/�˙ .i!n/

i�1
(11.21)

L being the number of sites in the cluster and N the total number of lattice sites
(N=L is the number of distinct values of Qk). Ideally, this projected Green function
NG should coincide with the cluster Green functionG 0 calculated from the dynamical

mean field GG . The condition NG D G 0 closes a self-consistency loop, illustrated in
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Fig. 11.1 The CDMFT
self-consistency loop

Fig. 11.1, that may converge towards an optimal dynamical mean field GG 0. Let us
summarize the elements of this loop:

1. An initial trial value of the dynamical mean field GG 0, or equivalently of the
hybridization function � , is selected.

2. The impurity solver is applied and the cluster Green functionG 0 is computed, as
well as the associated self-energy˙ , from (11.19).

3. The CPT Green function (11.20) is computed, as well as its projection NG onto
the cluster, (11.21).

4. The dynamical mean field is updated by substituting G 0 ! NG into (11.19):

GG �1
0 .i!n/! NG�1

.i!n/C˙ .i!n/ (11.22)

5. One goes back to step 2, until GG 0 (or � ) converges.

The details of this self-consistency loop depend whether one uses a QMC solver
or an exact diagonalization (ED) solver. In particular, since a QMC solver works
directly with a discrete representation of the dynamical mean field GG 0, step 4 above
is rather direct. On the other hand, an ED solver proceeds through the Hamiltonian
formulation, and this requires the AIM representation (11.10). Step 4 therefore
implies a procedure to infer an updated set of bath parameters f�˛
; "
g from the
updated mean field GG 0, or equivalently from the updated hybridization function � .
This involves inverting relation (11.9), which can only be done approximately with
a finite bath (see Sect. 11.2 below).

11.1.3 The SFA Point of View

Section 9.5 of this volume explains how the SFA may be used to study systems with
bath degrees of freedom, such as the AIM representation of the DMFT or CDMFT
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systems. Recall that the SFA defines a functional ˝Œ˙ � of the self-energy, which
can be evaluated exactly on a restricted set of self-energies that are the physical
self-energies of a family of Hamiltonians H 0. The Hamiltonians H 0 differ from
the original Hamiltonian (11.1) in their one-body terms only: they share the same
interaction. In the context of CDMFT, the Hamiltonians H 0 are precisely the AIM
representation (11.10), parametrized by the bath parameters collectively written as
.�; "/. The functional˝Œ˙ � reduces, in this restricted space, to a function˝.�; "/,
given by

˝.�; "/ D ˝ 0� L
N
T
X
!n

X
Qk

ln det
n
1� �t. Qk/� t 0�� .i!n/

�
G 0.i!n/

o
; (11.23)

where ˝ 0 is the grand potential of the AIM (11.10). The optimal bath parameters
are found in principle by solving the Euler equations

@˝

@�
D 0 @˝

@"
D 0 (11.24)

From the above expression for˝ , the Euler equations are

X
!n

Tr

�h
G 0�1.i!n/ � NG�1

.i!n/
i
� @˙

0.i!n/
@�


D 0: (11.25)

and likewise for derivatives with respect to the bath energies ".
The SFA thus provides an unambiguous and well-justified prescription for setting

the parameters (�; "/ of the effective medium in DMFT or CDMFT. The condition
(11.25) is automatically fulfilled if the CDMFT self-consistency condition NG D G 0
is satisfied, thus providing a justification for the self-consistency procedure that is
rooted in a dynamic variational principle.

11.2 The Exact Diagonalization Implementation

11.2.1 Working with a Small Bath System: The Distance
Function

The ED solver is based on the AIM representation (11.10) of the effective medium.
We shall not review here the ED procedure itself: the interested reader is referred
to a section of Chap. 7.9 of this volume. The computational size of the ED problem
is set by the total number of orbitals in the cluster and bath. In most applications,
that number does not exceed 12. Therefore the number of bath parameters in the
set f�; "g is rather limited and the self-consistency condition NG D G 0 cannot be
satisfied exactly. It must instead be approximately satisfied, in some optimal way,
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and this is usually done as follows. A merit function is defined:

d.�; "/ D
X
!n

W.i!n/Tr
ˇ̌
ˇG 0�1.i!n/ � NG�1

.i!n/
ˇ̌
ˇ
2

; (11.26)

where the dependence on the bath parameters appears in G 0, through (11.19) and
GG 0 therein. The sum is taken in principle over all Matsubara frequencies, but in
practice a cutoff i!c is imposed. The weights W.i!n/ are used to emphasize some
frequencies more than others, and their definition is guided more by heuristics than
by any rigorous process. Ideally, this function d should vanish, but with a finite bath
system it can only be minimized.

Concretely, step 4 of the CDMFT procedure – (11.22), must be implemented as
follows: for a given value of˙ , resulting from a time-consuming ED procedure, the
distance function (11.26) must be minimized, in practice using a standard procedure,
such as the conjugate gradient method. This minimization does require the frequent
evaluation of GG 0 through the representation (11.9), but, from a numerical point of
view, this is a much lighter task than the ED procedure itself. The minimum of
the distance function then defines a new set of bath parameters, from which a new
dynamical mean field GG is constructed and the main CDMFT loop summarized in
page 346 can proceed.

The ED solver is generally implemented at zero temperature. In that case,
the sum over Matsubara frequencies appearing in (11.26) should in principle be
replaced by an integral along the imaginary axis. In practice, one uses a small but
nonzero “fictitious temperature” ˇ�1 in order to evaluate the distance function.
The practical implementation of ED-CDMFT thus involves a certain number of
“floating” parameters that will quantitatively affect the solutions:

1. The parametrization of the finite bath system itself, i.e., how many parameters
f�; "g are actually used and their precise definition.

2. The values of the fictitious temperature ˇ�1 and of the cutoff frequency !c used
in computing the distance function (11.26).

3. The weight W.i!n/ appearing in (11.26).

We will discuss the first of these factors in the next section, and the remainder in the
subsequent one.

11.2.2 Bath Parametrization

In the most general case, for a cluster containing 2L orbitals and 2Nb bath
orbitals (spin degeneracy included), there would be 2Nb bath energies "
 and
4LNb hybridization parameters �˛
. This means a total of 144 parameters for a
typical .L;Nb/ D .4; 8/ system. Symmetries will greatly reduce that number. For
instance, if spin independence is assumed, this is reduced toNb.LC1/. Point group
symmetries will reduce that number even further, as we shall now see.
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Let us assume that the cluster is invariant under a point group G, whose elements
are permutations of the cluster sites. For instance, G D C2 is the group of two
elements generated by rotations of � about an axis, or reflexions about a plane; G D
C2v is the group generated by reflexions about two different planes (e.g., horizontal
and vertical). We will assume for simplicity that the group G is Abelian, so that
all of its irreducible representations are one-dimensional. The square plaquette
cluster (2�2) with nearest-neighbor and isotropic next-nearest-neighbor hopping is
invariant under the larger group C4v, which is non-Abelian, but we will only use its
invariance under the C2v Abelian subgroup. Under these assumptions, we can define
linear combinations of cluster orbitals that fall into one-dimensional, irreducible
representations of the point group, and the corresponding annihilation operators,
that we note c.r/� . The index r labels the irreducible representation, and the index �
labels possible degeneracies within a given representation. For instance,C2v has four
irreducible representations that we can label as .C;C/, .C;�/, .�;C/ and .�;�/,
the signs giving the even or odd character of the orbital under reflexions along the
horizontal and vertical axes, respectively. C2 has two irreducible representations,
respectively, even .C/ and odd .�/ under the group’s generator.

In order for the Hamiltonian H 0 to be invariant under the point group, the bath
orbitals also must transform under irreducible representations of the point group.
We thus introduce the notation a.r/� for the bath operators, where � labels the
different realizations of the irreducible representation r within the bath. The cluster
Hamiltonian could be rewritten in terms of these eigen-orbitals as

H 0 D
X
r;�

t 0.r/� c.r/�� c.r/� C
X
r;�;�

�
�
.r/

�� c
.r/�
� a

.r/

� C H:c:
	
C
X
r;�

"
.r/

� a
.r/�

� a
.r/

� CH1

(11.27)

(spin indices suppressed). These eigen-orbitals can be chosen so as to make the
cluster hopping term diagonal. More important, different irreducible representations
cannot be mixed in the hybridization term. This reduces the number of bath
parameters from the most general case. For instance, for a 2 � 2 cluster with spin
independence, Nb D 8 and C2v symmetry, we can choose to assign two bath sites
to each of the four irreducible representations, and this translates into a total of 16
bath parameters. This most general parametric representation of the bath was put
forward in [4, 5].

However, many implementations of ED-CDMFT use a somewhat more restric-
tive, yet more intuitive parametrization of the bath. Consider Fig. 11.2, which
illustrates two parametrizations of a four-site bath coupled to a two-site cluster for a
one-dimensional problem. On the left panel (a), a representation based on two bath
sites per irreducible representation of C2 is illustrated (the signs appearing over
the dashed links apply to the corresponding hybridization amplitudes). On the right
(b), each edge of the cluster is associated with its own bath, with equal parameters
because of the C2 symmetry of the system. That representation is clearly a special
case of the more general representation (a) when "C

1 D "C
2 D "1 and "�

1 D "�
2 D "2.
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a b

Fig. 11.2 Possible bath configurations for a two-site cluster in one-dimension. Left (a):
parametrization in terms of symmetry eigen-operators. Right (b): simpler parametrization based
on edge sites only. The blue circles are real-space cluster sites (not eigen-operators). The squares
represent bath orbitals

In principle, one should use the most general bath parametrization possible, since
this leaves more space to fulfill the CDMFT self-consistency condition. In practice
however, the usefulness of the most general parametrization is not obvious. Consider
for instance Fig. 11.3, where the most general parametrization was applied to the
one-dimensional system illustrated in Fig. 11.2a. The bath parameters "C

1 and "C
2

are different in the dynamical impurity approximation (i.e., the SFA solution of the
problem), but are not differentiated by the distance function used in the CDMFT
solution; thus "C

1 D "C
2 in the CDMFT solution, thereby providing a solution

equivalent to that of the simpler system illustrated in Fig. 11.2b.
Figure 11.4 illustrates a bath configuration associated with a four-site cluster for

the two-dimensional Hubbard model. The bath is configured as two “ghost clusters,”
with sites numbered 1–4 and 5–8 respectively. In studying the normal state, this
configuration would involve four independent parameters:

"
 D " .
 D 1; 2; 3; 4/ "
 D "0 .
 D 5; 6; 7; 8/
�11 D �22 D �33 D �44 D � �15 D �26 D �37 D �48 D � 0 (11.28)

When probing the antiferromagnetic state, one would in addition introduce a
modulation between odd and even sites, increasing the number of independent bath
parameters to 8:

"1 D "3 D "C ı" "5 D "7 D "0 C ı"0

"2 D "4 D " � ı" "6 D "8 D "0 � ı"0

�11 D �33 D � C ı� �15 D �37 D � 0 C ı� 0

�22 D �44 D � � ı� �26 D �48 D � 0 � ı� 0

(11.29)
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Fig. 11.3 Bath energies ("C

1 and "C

2 , left axis) and hybridizations (�C

1 and �C

2 , right axis) for
the system illustrated in Fig. 11.2a, at half-filling, as a function of one-site interaction U . The full
line is the result of the CDMFT procedure, whereas the dashed lines are the DIA results (i.e., using
Potthoff’s SFA approach). Because of particle hole symmetry, "�

1 D �"C

2 and "�

2 D �"C

1 (not
shown). The values of "C

1 and "C

2 are different in the DIA, but they coincide in CDMFT (same for
�

C

1 and �C

2 )

Fig. 11.4 Possible bath configuration for a four-site cluster in two dimensions. The blue circles
are real-space cluster sites and the squares represent bath sites. Darkened squares have distinct
bath parameters when the antiferromagnetic state is probed. The dashed curves represent in-bath
pairing terms that are introduced to probe d -wave superconductivity

A possible way to probe d -wave superconductivity is to add singlet pairing terms
between bath sites, much as would be done between cluster sites in the variational
cluster approach. Each one of these pairing terms has the form

O�ij D a�1"a�2# C a�2"a�1# C H:c: (11.30)

and the sum of these terms would be

H 0
sc D O�12 C O�34 � O�14 � O�23 C O�56 C O�78 � O�58 � O�67 (11.31)
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The pairing terms just introduced hybridize the bath orbitals between themselves
and therefore do not fall into the general form (11.18). In other words, the matrix "
of (11.12) is no longer diagonal and has an anomalous part. Before applying relation
(11.9), one simply needs to diagonalize it and modify the matrix � accordingly. The
latter would then acquire an anomalous part.

Instead If we were to use a basis of symmetry eigen-operators to parametrize the
same system, the pairing terms would show up directly as anomalous hybridizations
between cluster and bath. The symmetry group would be C2v, except if super-
conductivity and antiferromagnetism are probed simultaneously, in which case the
cluster-bath symmetry would be reduced to C2.

11.2.3 The Distance Function

The distance function (11.26) is to some degree arbitrary: there is freedom in the
choice of the fictitious temperature ˇ�1, the cutoff !c and the weights W.i!n/.
Some authors also omit the square in (11.26). This arbitrariness reflects the finite
size of the bath. At the same time, it completely disappears, along with the need of
a distance function, if the bath parameters are set according to the SFA and (11.24)
(this is called the dynamical impurity approximation, or DIA, in Chap. 9.5 of this
volume).

We will illustrate the effect of this arbitrariness with the following weight
functionsW.!/:

W.i!n/ D 1 within !n 2 Œ0; !c� (sharp cutoff) (11.32a)

W.i!n/ D 1=!n (extra weight at low !n) (11.32b)

W.i!n/ D Tr j˙ 2.i!n/j within !n 2 Œ0; !c� (11.32c)

All of these functions have a finite support between ! D 0 and some cutoff
frequency i!c, and are evaluated on a grid of Matsubara frequencies defined
by a fictitious temperature 1=ˇ. They ignore high frequencies: although a lot
of information is buried in the high-frequency behavior of the Green function
(the moments), that information is not weighted uniformly across all Matsubara
frequencies. If we use the SFA Euler equation (11.25) as a loose guide, the weight
function should be highest where the variation of the self-energy is highest. Under
the reasonable assumption that this condition will be generally met when the self-
energy itself is largest, the third of the above weight functions is proportional
to the square of the self-energy (the trace is there to make it basis independent,
like (11.26)). The second of these functions is designed to emphasize very low-
frequencies and, under the same assumptions, would best work for a Mott insulator,
whose self-energy is singular at low frequencies.
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a

c

b

d

e f

Fig. 11.5 Plots illustrating the CDMFT and DIA solutions from the cluster of Fig. 11.2b, for the
one-dimensional Hubbard model, all expressed as a function of the chemical potential 
. Panel (a):
Electron density n (the exact Lieb and Wu result is also shown). Panel (b): SFA gradient associated
with the CDMFT solutions of Panel (a). Panel (c) and (d): Corresponding hybridization parameters
�1;2 and bath energies "1;2 for the weight functions (11.32) and the SFA solution. Panel (e) and (f):
Bath energies "1;2 for a sharp cutoff (11.32a) with various values of !c, and the corresponding
values of the SFA gradient. Unless indicated otherwise, the cutoff was set at !c D 2 and the
fictitious inverse temperature at ˇ D 100. Taken from [6]

The CDMFT solutions obtained from these different distance functions, as well
as those obtained in the DIA, are presented in Fig. 11.5, which we will now explain.
All graphs in this figure pertain to the one-dimensional Hubbard model at zero
temperature and U D 4, t D 1, as approximated by the cluster-bath system of
Fig. 11.2b. They show various quantities as a function of the chemical potential 

between 
 D 0 and the particle–hole symmetric point 
 D U=2. Panels (c) and
(d) show the bath parameters � and ", for the various weight functions defined
in (11.32), as well as those obtained from the DIA (black lines). The striking
feature of these two graphs is that the DIA solutions are constant within a range
of 
 in which the system is exactly half-filled (the bath energies in fact are linear
functions of 
, simply because the chemical potential was defined so as to affect
the bath electrons as well; but the combinations "i C 
 are indeed constant in this
range). This is expected and natural since the physical properties of the system are
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-independent in the range of 
 associated with half-filling (i.e., within the Mott
gap). On the other hand, the various CDMFT solutions show a variation of the bath
parameters in that range. This cannot be attributed to the finite size of the bath,
since the DIA results pertain to the same system. It should instead be attributed to
the self-consistency condition NG D G 0, which is not exactly equivalent to the more
fundamental variational condition (11.24) for a finite bath size.

Why then not use the DIA systematically? Because it is computationally much
more complex that CDMFT. Even though the same impurity solver is used in both
approaches, the number of times it must be called is much larger in the DIA, and
the "- and �-dependence of the functional (11.23) apparently makes for a complex
landscape on which saddle points are difficult to converge to, except for a small
number of bath parameters. For this reason, CDMFT remains a very practical
approach. What then should be our guide in choosing the parameters of the distance
function (11.26)? One possibility is to try a few, and compare, for each solution,
the values of the gradient of the functional (11.23) at each of the CDMFT solutions
found:

jr˝j D
s�

@˝

@�

�2
C
�
@˝

@"

�2
: (11.33)

This is done in Panel (b) of Fig. 11.5. In that example, the sharp cutoff at !c D 2

is the one that overall yields the lowest SFA gradient. One could then assert that
this solution is closest to the ideal DIA solution. This is more or less confirmed
by comparing the bath parameters on panels (c) and (d). Panels (e) and (f) show the
same comparisons, this time for different values of the cutoff!c, with a sharp cutoff.
Again, picking the cutoff that yields the lowest SFA gradient (11.33) also brings us
closest to the DIA solution.

Finally, panel (a) of Fig. 11.5 compares the electron density n obtained from the
various solutions with the exact result of Lieb and Wu [7]. It is tempting from this
graph to assert that the weight function (11.32b) is the best choice, since it is closest
to the exact solution, whereas the other weight functions are closer to the DIA
solution, which differs from the exact result. However, we only expect convergence
towards the exact solution when both the number of sites L and the number of bath
sitesNb reach the thermodynamic limit. The closeness of the exact solution to one of
the CDMFT solutions is accidental: changing the fictitious temperature ˇ�1 would
slightly shift that solution on one side or the other.

It is worth noting that all CDMFT solutions, as will as the DIA solution, show
an infinite compressibility point (@n=@
 ! 1) at some critical value 
gap of
the chemical potential, and this is an important property of the exact solution.
That property is not recovered when single-site DMFT or P-CDMFT is used
[8]. By contrast, it is clearly seen in the QMC-CDMFT solution [9], where the
value of 
gap is essentially the same as the one found in the DIA (1:41t for
U D 4).
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11.3 Quantum Monte Carlo Solvers

QMC methods exist in many flavors. The Hirsch-Fye method [10] (HF-QMC)
has been used since the beginning of CDMFT [1]. More recently it tends to be
replaced by the Continuous-Time QMC (CT-QMC) [11–13]. This is not the place to
provide a detailed description of either approach. We will simply provide a cursory
introduction to each. A comparison of the performances of the various approaches
can be found in [14].

ED and QMC solvers complement each other on many aspects:

1. The QMC solver has access to a practically infinite bath, compared with a
maximum size of about Nb D 8 in the ED solver. Indeed, the QMC solver
does not require in practice the introduction of the Hamiltonian parametrization
(11.18) for the bath, since it works directly in the functional representation (11.6)
in which the dynamical mean field GG 0 may be represented by a frequency-
dependent matrix GG 0.i!n/ in the space of cluster indices.

2. The QMC solver works at finite temperature, and extrapolations are necessary
to recover zero-temperature information. By contrast, the ED solver works
primarily at zero temperature; even though a finite-temperature implementation
is possible [5], its accuracy is not well controlled.

3. The QMC solver has access to dynamical information in imaginary time only,
in the interval � 2 Œ0; ˇ�. Equivalently, this information is confined to the set
of Matsubara frequencies i!n. Access to approximate real-frequency properties
is possible through “analytic” continuation, which is achieved through the
uncontrolled maximum entropy method (MEM). On the other hand, the ED
solver provides the Green function for any complex or real frequency.

4. The QMC solver is subject to the well-known fermion sign problem. In the two-
dimensional Hubbard model, this problem is basically present everywhere except
at the particle-hole symmetric point (
 D U=2, t 0 D 0) and increases in intensity
the further one strays from this point, either by increasing doping or the diagonal
hopping t 0.

5. QMC solvers have access to larger cluster sizes, although this possibility has been
exploited more in the DCA than in CDMFT, and with the Hirsch-Fye method.
However, the CT-QMC method with hybridization expansion (see below) is
limited to small cluster sizes (4–6).

6. On the numerical side, the ED solver requires an amount of memory that grows
exponentially with the number of cluster and bath sites, and the Lanczos method
scales poorly when parallelized. The QMC solver is easily parallelized and
does not require large memory or communication (it scales linearly). But being
stochastic, its accuracy grows with the square-root of simulation time. Overall,
the QMC solver requires more resources in a typical use, but is more adapted to
large supercomputers.
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11.3.1 The Hirsch-Fye Method

An introduction to the Hirsch-Fye QMC and its use in CDMFT can be found in [9].
Will we summarize the main points here. We will assume for simplicity that we are
dealing with the one-band Hubbard model, with interaction

H1 D U
X
a

na"na# (11.34)

so that the greek index ˛ is now a composite .a; �/ of the site and spin indices. We
will in addition assume that the Hamiltonian does not mix or hybridize up and down
spins.

The method deals directly with the effective action (11.6), except that the imag-
inary time segment Œ0; ˇ� must be discretized into Nˇ time slices. The dynamical
mean field GG 0 becomes a matrix with cluster and time slice indices, and the effective
action (11.6) becomes

SeffŒc; c
�� D ��2

X
a;b;�;�;� 0

c�
a�� .G

�1
0 /a�;b� 0cb�� 0 C U��

X
a;�

na"� na#� (11.35)

In the above expression the indices � and � 0 are discrete and label the different time
slices; the integrals over imaginary time have been replaced by sums, with the slice
width �� D ˇ=N� appearing as a prefactor.

In HF-QMC, the following Hubbard–Stratonovich factorization is applied to the
interaction part:

e���Una"� na#� D e� 1
2
��U Œna"�Cna#� �

X
sa�D˙1

e�sa� Œna"��na#� �; (11.36)

where the constant � is defined by the relation cosh� D e��U=2. This factorization
introduces a set of LN� Ising spins sa� as auxiliary fields.

Using this decomposition, the action SeffŒc; c
�� becomes quadratic in c; c� and

the partition function can be computed in terms of a propagator G�.fsg/ which
depends on the particular Ising configuration s˛� :

Z D
X

sa�D˙1

Z
ŒDc Dc�� exp�

0
@ X
a;b;�;�;� 0

c�
a�� ŒG

�1
� .fsg/�a�;b� 0cˇ�� 0

1
A ; (11.37)

where the inverse propagatorG�1
� reads, for a given Ising configuration fsg,

ŒG�1
� .fsg/�a�;b� 0 D . QG �1

0 /a�;b� 0 � ��sa�ıab��;� 0C1; (11.38)



11 Cluster Dynamical Mean Field Theory 357

where the “antiperiodic” function ��;� 0C1 is defined as 1 if � D � 0 C 1 and �1 if
� D 1 and � 0 D N� [15]. The dynamical mean field QG0 differs from G0 by a shift
in the chemical potential induced by the Hubbard–Stratonovich factorization. The
functional integral over the fermion variables ca� results in a simple determinant of
the inverse propagator:

Z D
X

sa�D˙1

Y
�D˙1

detG�1
� .fsg/: (11.39)

The task is reduced to a stochastic evaluation of the sum over Ising configurations,
with a determinant to be recalculated for each update of the Ising configura-
tion.

The sum over Ising configurations is carried out by setting up a random walk
through configuration space (the Metropolis algorithm). The probability p.s ! s0/
of transition from a configuration fsg to a configuration fs0gmust obey the principle
of detailed balance:

p.s ! s0/
p.s0 ! s/

D
Q
� detG�1

� .fs0g/Q
� detG�1

� .fsg/ : (11.40)

A quick update of the transition probabilities is possible if the Ising configuration
fsg is updated locally (by flipping one Ising spin at a time) [9, 10].

Once the random walk has reached equilibrium, measurements of physically
relevant quantities, such as the cluster Green function G 0, are performed and
statistical errors are estimated using binning methods. The cluster Green function
is obtained as a function of time indices � and � 0, as a matter of fact as a
function of their difference � � � 0. This information must be transformed into
a frequency-dependent G 0.i!n/ to fit into the CDMFT procedure outlined in
Fig. 11.1. This is accomplished by (1) constructing a cubic spline interpolation
G 0

inter.�/ as a function of continuous imaginary time and (2) computing the Fourier
transform

G 0.i!n/ D
Z ˇ

0

d� G 0
inter.�/e

i!n� : (11.41)

However, doing this literally is likely to yield the incorrect asymptotic behavior
as i!n ! 1, because of the finite value of N� and statistical errors. A practical
solution is to use a known Green function G ref (for instance, for the noninteracting
problem) and to compute instead

G 0.i!n/ D G ref.i!n/C
Z ˇ

0

d�
�
G 0

inter.�/ �G ref.�/
�

ei!n� : (11.42)
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In addition to statistical errors, which are controlled by the binning methods,
this approach makes a systematic error related to the finite number N� of time
slices. In principle, one must repeat the process for a few values of �� and stop
when averages no longer depend on �� within the statistical errors. One can
also extrapolate observables to �� ! 0, knowing that convergence occurs as
.��/2 [16].

11.3.2 The Continuous-Time Method

Continuous-time QMC refers to a variety of new-generation QMC methods that do
not rely on a fixed discretization of the imaginary-time interval Œ0; ˇ�, but rather
on the stochastic evaluation of a perturbative expansion. These methods have had
a tremendous success in essentially solving most models of bosons [17, 18]. They
are fraught with the same sign problem as other QMC approaches when applied
to fermions, but this problem is somewhat less severe in impurity-like approaches
like CDMFT. In recent years, three flavors of CT-QMC have been developed
for impurity problems. Depending on which part of the action is expanded,
one speaks of weak-coupling [19], hybridization expansion [11] or auxiliary-field
formulations [13].

Generally, CT-QMC assumes a decomposition of the Hamiltonian H D HA C
HB , and evaluates the partition function as a series expansion in powers of
HB . Adopting an interaction representation in which HA is time-independent, the
partition function takes the form

Z D Tr exp�
 
ˇHA C

Z ˇ

0

d� HB.�/

!

D
1X
kD0

.�1/k
Z ˇ

0

d�1 � � �
Z ˇ

�k�1

d�k Tr
�
e�ˇHAT�HB.�k/ � � �HB.�1/

�
; (11.43)

where T� is the time-ordering operator. We will focus here on the hybridization
expansion formulation [11]. In that formulation, HA contains the cluster and bath
parts of Hamiltonian (11.18), whereas HB contains the hybridization between bath
and cluster sites:

HA D
X
˛;ˇ

t˛ˇc
�
˛cˇ CH1 C

NbX



"
a
�

a
 D Hclus CHbath (11.44)

HB D Hhyb CH�
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X
˛;


�˛
c
�
˛a
: (11.45)
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The partition function then takes the form
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(11.46)

where the first trace is evaluated in the cluster system only, and the second one is
evaluated in the bath system only. The latter can be evaluated exactly, since the bath
is non-interacting. The result can be expressed in terms of the hybridization function

�˛.�/ D
X
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�e.��ˇ/"


e�"

; (11.47)

as follows:
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where Zbath is the bath partition function

Zbath D
Y



�
1C eˇ"


�
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and� is the k � k matrix

�i;j D �˛i j .�j � �i /: (11.50)

The global partition function then reduces to

Z D Zbath

1X
kD0

.�1/k
Z ˇ

0

d�1 � � �
Z ˇ

�k�1

d�k

Z ˇ

0

d� 0
1 � � �

Z ˇ

� 0

k�1

d� 0
k

X
˛1 ���˛k
˛0

1 ���˛0

k

� Tr
�

e�ˇHclusT� c˛k .�k/c
�

˛0

k

.� 0
k/ � � � c˛1.�1/c�˛0

1
.� 0
1/
	

det�: (11.51)
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Calculating the trace in (11.51) necessitates a knowledge of the exact eigenstates
of the cluster system. A complete diagonalization of the cluster Hamiltonian is
therefore necessary, and this limits the application of the hybridization expansion
method to small clusters (e.g., four sites), much like in the ED solver, except
that in this case the bath is infinite. Notice that despite the formal introduction of
bath sites in the derivation, in the end the determinant det� does not rely on a
particular discretization of the bath, but only on the hybridization function � .i!n/,
or equivalently on the related dynamical mean field GG .i!n/.

The calculation of the trace in (11.51) for a given set of times f�i ; � 0
i g is usually

the computational bottleneck of the method. One way of doing it is to adopt a basis
of eigenstates jmi and eigenvalues Em of Hclus and to construct a representation of
the various creation and annihilation operators in that basis. The trace in (11.51)is
then

Tr
�

eHclus.�k�ˇ/c˛keHclus.��kC� 0

k/c
�

˛0

k

� � � eHclus.��1C� 0

1/c
�

˛0

1

	
; (11.52)

where the evolution operators are diagonal.
The integral and sums in (11.51) are carried stochastically. A configuration

is defined by a set of times f�i ; � 0
i g, as set of indices f˛i ; ˛0

i g and an expansion
order k. Configurations are updated by inserting or deleting times in those lists, thus
increasing or decreasing the expansion order k by 1. The weight of each contribution
can be positive or negative, depending on the order of operators (this is the source
of the sign problem in CT-QMC). Readers are referred to the literature [20, 21] for
details on the Monte Carlo evaluation itself (updates, detailed balance and so on).

11.4 The Mott Transition

A key success of dynamical mean-field theory is the picture it provides of the
Mott metal–insulator transition (see Chap. 6.5 of this volume). Consider Fig. 11.6,
which shows the qualitative phase diagram, on the U � T plane, of the half-filled,
particle-hole symmetric Hubbard model. The left panel shows the prediction of
single-site DMFT [22]. The Mott transition on the U � T plane is of first order,
indicated as a red line in the figure. This first-order line ends at a finite-temperature
critical point and at Uc1.0/, with a region (colored area) where the metallic and
insulating phases may coexist. This single-site DMFT picture of the Mott transition
has been criticized, mainly on the ground that the absence of feedback of magnetic
correlations on single particle excitations yields a nonzero ground-state entropy
(S D N ln 2, N being the number of sites) in the Mott phase, and that this
exaggerates the stability of the insulating phase at nonzero temperature. Cluster
dynamical mean field theory modifies this picture by the addition of short-range
correlation effects or, said otherwise, by adding a momentum-dependence to the
self-energy. This provides a feedback of short-range antiferromagnetic fluctuations
into single-particle properties. However, the main features of the DMFT picture are
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Fig. 11.6 Schematic phase diagram of the half-filled, particle-hole symmetric Hubbard model
using single-site DMFT (left), CDMFT with a CT-QMC solver on a 2 � 2 plaquette (center) and
the Dynamical Impurity Approximation (right). At the red dots, where the first-order line touches
the boundary of the coexistence region, continuous transitions occur

not affected by these refinements. The middle diagram of Fig. 11.6 emerges from a
CDMFT study using the continuous-time QMC solver [23]. The essential difference
with the single-site result is that the first-order line ends at Uc2.0/ instead of Uc1.0/
at zero temperature. The zero-temperature points are the result of an extrapolation,
since QMC solvers were used in both cases. The right panel of Fig. 11.6 is a
modified scenario inspired from the dynamical impurity approximation (DIA) [24],
in which only the zero-temperature axis was actually calculated. It was shown in
[24] that the transition is of first order even at zero temperature; two solutions of
the Euler equations (11.24) exist, and the transition (red line) occurs when their
ground state energies cross. The self-consistency condition NG D G 0, in the bath
parametrization used in [24], does not show a first-order transition; the latter can
only be seen by solving the more exact conditions (11.24).

Regarding Fig. 11.6, note that the slope of the first-order line is negative in
the single-site DMFT solution, but positive in the CDMFT solution. Through the
Clausius–Clapeyron equation, this entails that the entropy is larger in the Mott
phase than in the metallic phase according to the single-site solution, whereas
the opposite is true according to the CDMFT solution. This is another sign that
the degeneracy of a single site exaggerates the entropy of the insulating state in
DMFT, which leads to an inaccurate description of the Mott transition in single-site
DMFT.

Another difference between single-site DMFT and CDMFT lies in the evolution
of the density of states across the Mott transition. This is illustrated in Fig. 11.7.
In single-site DMFT, the quasiparticle weight Z remains constant while the cental
peak in the DOS becomes narrower and narrower until it disappears completely
at the transition, leaving a gap already wide open. This can be seen from the
left panel of Fig. 11.7[25], or for instance from Fig. 30 of [22]. By contrast, the
CDFMT density of states calculated on a four-site plaquette [25, 26] (right panel of
Fig. 11.7) shows a drop in Z, until a gap opens up at the transition and increases
gradually thereafter. This is the effect of a feedback of short-range correlations on
quasiparticle dynamics. Related is the appearance of side bands on either side of the
gap that originate from short-range spin dynamics [26].
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Fig. 11.7 Density of states of the 3D Hubbard model across the Mott transition in single-site
DMFT (left) and in CDMFT on a 2� 2 plaquette (data from [25])

Fig. 11.8 Left: Hysteresis curves obtained in [27] for the double occupancy as a function of U for
the model illustrated in the right panel

However, the square-lattice Hubbard model at half-filling describes an anti-
ferromagnetic insulator. The Mott transition described above is an underlying
phenomenon that is revealed only by suppressing antiferromagnetic order in the
solutions. A true Mott transition can be seen, however, in systems with mag-
netic frustration, such as the Hubbard model on a triangular lattice (isotropic or
not) at half-filling. The system depicted in the right panel of Fig. 11.8, with a
hopping t 0 along one of the diagonals, provides a minimal modelling of quasi-
two-dimensional organic conductors of the BEDT family. If t 0 is sufficiently
close to one, frustration inhibits antiferromagnetism and a Mott transition is
observed as a function of U [27–29]. The left panel of Fig. 11.8 shows data
taken from [27] for the double occupancy D D hn"n#i, obtained by scan-
ning U upwards and downwards. Hysteresis is observed, indicating a first-order
transition between a metallic (left) and insulating (right) solution. The Mott
insulator in that case is likely a spin liquid, i.e., does not support low-energy
excitations resulting from a long-range magnetic order. Note that not all types of
order have been probed in this system, either with CDMFT or other methods.
In particular, above some critical value of U and for t 0 close to t , the spin



11 Cluster Dynamical Mean Field Theory 363

liquid state gives way to a non-collinear magnetic order [30]. Another way
of preventing long-range order to reveal the Mott transition is to define the
Hubbard model on the Kagomé lattice; CDMFT was applied to this problem in
[29, 31].

The Mott transition is not only driven by the interaction strength, but also by
doping. The doping-induced Mott transition has been studied in Hirsch-Fye [32]
using CT-QMC. A transition between two metallic phases with different electron
densities is seen as a function of chemical potential (see Fig. 11.9). The high-density
solution describes a correlated metal with smaller double-occupation than the lower-
density solution. The transition line coincides with a maximum in the scattering
rate, resulting from a strong competition between spin and charge fluctuations. The
doping-induced first-order transition observed in [32] ends with a critical line T .n/.
The critical temperature decreases extremely rapidly with U. Thus, the effects of the
Mott transition extend far beyond half-filling.

Related to the Mott transition itself is the pseudogap phenomenon. This is best
studied with an ED solver, which provides real-frequency information [5,26,28]. In
this respect, CDMFT adds nothing spectacular to CPT; indeed, the smaller cluster
size in CDMFT, compared to CPT, is not compensated by the benefits of self-
consistency (see Chap. 7.9 of this volume).

Fig. 11.9 Occupation n as a function of chemical potential 
 for the square-lattice Hubbard
model, obtained via CDMFT with a CT-QMC solver, from [32]. Several values of U close to the
Mott transition are shown, at different temperatures T D t=10, t=25 and t=50 (triangles, squares,
and circles, respectively). Two metallic solutions sometimes coexist, and are obtained by sweeping

 in one direction or the other
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11.5 Application to the Cuprates

Many of the theoretical approaches described in this volume were motivated by
the ambition to explain the origin of high-temperature superconductivity; more
precisely, to answer the following question: does the Hubbard model contain
the key elements to explain superconductivity in the cuprates? Single-site DMFT
alone cannot answer this question, as it lacks the short-range correlation effects
needed even to describe d -wave superconductivity. But the question has been
addressed by quantum cluster methods: DCA (see Chap. 8.8), the variational cluster
approximation (see Chap. 9.5) and CDMFT, in addition to many other methods
described in this volume and its sequel.

When probing d -wave superconductivity in CDMFT, the hybridization function
(11.9) must contain anomalous terms of the proper symmetry. Within the ED
solver, this was at first accomplished as illustrated in Fig. 11.4, i.e., by adding
to the bath Hamiltonian d -wave pairing terms between bath orbitals themselves
(the red dotted lines of Fig. 11.4), as described in (11.30) and (11.31). In this
parametrization, the bath is seemingly made of two “ghost clusters” whose pairing
terms mimick the broken symmetry state that could take place on the cluster itself.
Note that it is customary in CDMFT not to tamper with the cluster Hamiltonian
when probing broken symmetries, contrary to what is done in the variational cluster
approximation; the agents of symmetry breaking are concentrated in the bath. The
bath Hamiltonian being no longer diagonal in bath orbitals with the addition (11.31),
a numerical diagonalization is performed to work with new, diagonal orbitals which
restore the usual form (11.9) of the hybridization function. The latter will then have
anomalous terms of the correct pairing symmetry and spin.

Any study of d -wave superconductivity within the Hubbard model must also
taken into account the possibility of antiferromagnetic order in competition, or in
coexistence with, superconductivity. This requires a more general bath parametriza-
tion, such as the one given in (11.29), also illustrated in Fig. 11.4. This was done
in [33] in the special case of the square-lattice Hubbard model (i.e., with NN
hopping only). As seen from Fig. 11.10, not only were solutions with d -wave
superconductivity found, but they are rather robust. When antiferromagnetism is not
allowed, superconductivity exists all the way to half-filling when U is small enough
(below the Mott transition), but is suppressed even at U D 4t when in competition
with antiferromagnetism (not shown here).

Kancharla et al. [34] carried a similar analysis on the more realistic one-band
model for the cuprates that includes second-neighbour and third-neighbour hopping
terms (t 0 and t 00). Figure 11.11 shows that the superconducting order parameter
scales like J D 4t2=U , at least in the under-doped region. The right panel of the
same figure shows how t 0 breaks the electron–hole symmetry of the phase diagram
and how superconductivity and antiferromagnetism can coexist in a homogeneous
solution. Such a mixed state is also found in the variational cluster approximation
[35, 36].
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Fig. 11.10 Antiferromagnetic (circles) and d -wave (squares) order parameters as a function of
doping in the square-lattice Hubbard model, from [33]. The two orders were not allowed to
compete. The d -wave data is scaled by 10 for clarity

Fig. 11.11 Left panel, top: d -wave order parameter  as a function of electron density n, for
various values of U and t 0 D �0:3t , t 00 D 0:2t . Bottom: the same, scaled by J D 4t2=U . Right
panel: d -wave ( ) and antiferromagnetic (M ) order parameters vs n, from a common solution
where they are allowed to compete. Taken from [34]

The CT-QMC solver was applied to the superconductivity problem in [12],
again in the special case t 0 D 0. The d -wave order parameter as a function of
doping is illustrated in Fig. 11.12. The CT-QMC allows for an estimate of Tc, but
such a computation is very resource-intensive because of critical slowing down.
Of course, this Tc has a mean-field in character: The Mermin-Wagner theorem
forbids the spontaneous breakdown of continuous symmetries in a purely two-
dimensional system at nonzero temperature. In a finite cluster, the long wavelength
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Fig. 11.12 d -wave order parameter vs doping ı from a CT-QMC [12] in the NN Hubbard model.
The critical temperature Tc is shown at three values of ı, and the order parameter is shown at a
temperature T equal to half the maximum Tc

pair fluctuations that would destabilize a superconducting phase at finite temperature
are not at work and cannot be accounted for by a fermionic bath.

A fair criticism of the above results on broken symmetries in the Hubbard model
is the lack of finite-size analysis. The existence of broken symmetry phases such as
antiferromagnetism and d -wave superconductivity can only be established firmly in
the limit of infinite cluster size; an infinite bath-size is not sufficient.1 In principle
infinite-size extrapolations should be performed in order to assess the robustness
of CDMFT predictions in the thermodynamic limit. In practice, this requires vast
amounts of computing resources, and a solver that can accommodate larger clusters,
such as the Hirsch-Fye QMC or the auxiliary-field CT-QMC [13]. This was accom-
plished within the DCA in [37], with cluster sizes ranging up to LD 32 and special
attention paid to the cluster shape in relation with the periodic boundary conditions
used in DCA. The existence of a Kosterlitz–Thouless transition was confirmed in
the square-lattice Hubbard model at Tc � 0:023t for U D 4t and ı � 10%. The
cost of these computations precluded a wider exploration of parameter space. The
assumption underlying current work on superconductivity using cluster approaches
is that the thermodynamic limit will bring important renormalizations, but will
not qualitatively affect the dependence of the superconducting order upon band
parameters, interaction strength or doping. Thus, cluster approaches are important
tools in exploring the space of models that can potentially lead to superconductivity
or other broken symmetry phases.

To conclude this section, let us briefly mention a few applications of CDMFT
to other problems. An interesting issue in systems with attractive interactions is the
crossover from a BCS state (weak pairing) to Bose–Einstein Condensation (strong
pairing). This was studied in [38] in the context of the attractive Hubbard model. It
was observed that for jU j . 8t the pairing is driven by the potential energy, whereas

1 We have seen, for instance, that the exact value of the critical chemical potential 
gap in the
one-dimensional Hubbard model cannot be recovered with an infinite bath [9].
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it is driven by the kinetic energy at strong coupling. By this we mean that the paired
state exists because of a gain in potential energy in the first case, and a gain in
kinetic energy in the second case. This is relevant to the physics of the cuprates,
even though the attractive Hubbard model is used here as an effective, rather than
microscopic, model.

Heavy-fermion materials form another large and fascinating class of correlated
materials. The hybridization of localized f electrons with conduction bands leads to
the formation of quasiparticles that are the source of the Kondo effect. It is expected
that there is a critical value of this hybridization below which the f electrons order
magnetically, thus suppressing the Kondo effect; this bears the name of Kondo
breakdown, and was studied with CDMFT in [39] using the periodic Anderson
model. Again, the CDMFT results differ from previous single-site DMFT results
by a less radical shift of spectral weight across the transition that can be attributed
to short-range correlations.

11.6 CDMFT and DCA

CDMFT and the DCA are two cluster extensions of single-site DMFT. Both
approaches have revealed antiferromagnetic order and d -wave pairing in the
Hubbard model [1, 33, 34, 37, 40–42], and DCA computations have been performed
on large enough clusters to show that d -wave superconductivity persists in the
thermodynamic limit [37]. We will comment on the differences between the two
approaches here, without providing a detailed introduction to DCA, which can be
found in Chap. 9 of this volume.

DCA is formulated in reciprocal space, using clusters with periodic boundary
conditions, whose self-energies˙.K ; !/ are diagonal in cluster momentumK . The
impurity solver respects translation invariance, and therefore the hybridization
function �K is also diagonal in cluster momentum. The DCA self-consistency
condition reads

1

i!n � NtK � �K .!/�˙K .!/ D
L

N

X
Qk

1

i!n � ". QkCK /�˙K .!/
; (11.53)

where ".k/ is the lattice dispersion relation and NtK is a coarse-grained dispersion
defined as

NtK D L

N

X
Qk
". QkCK / (11.54)

that is, the average of the dispersion relation in a reduced Brillouin zone centered
around each cluster momentum K . Once a solution is found, the lattice Green
function is naturally
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G.k; !/ D 1

i!n � ".k/ �˙.K ; i!n/ ; (11.55)

where k D QkCK . This is the DCA equivalent of the CPT relation (11.20). Note that
we have not used a matrix notation for G, t or ˙ , as all the above quantities are all
single numbers; when dealing with a multi-band model or a situation where the two
spin projections are hybridized (e.g., superconductivity), then a matrix formulation
is warranted. Note that the Green function (11.55) is discontinuous as a function
of k because of the discrete patches K over the Brillouin zone; this can be fixed
by an interpolation of the self-energy ˙.K ; i!n/ between its discrete values; this
accomplishes the equivalent of periodization in CDMFT or CPT (see Chap. 7.9).

It is important to realize that DCA is not equivalent to CDMFT with periodic
clusters. Let us assume, for instance, that a periodic cluster is used in CDMFT, with
a bath structure that respects translation invariance on the cluster and thus conserves
cluster momentum. The CDMFT self-consistency condition is, explicitly,

1

i!n � t 0 � � .i!n/ �˙ .i!n/ D
L

N

X
Qk

1

i!n � t. Qk/�˙ .i!n/
: (11.56)

This is a matrix relation that can be expressed in any basis of one-particle states.
To understand the difference between conditions (11.53) and (11.56), let us

introduce the unitary matrix U that brings us from the lattice site basis (r) to the
momentum basis (k), so that Fourier transforms on a function fr take the form

Qfk D
X
r

Ukrfr Ukr D 1p
N

e�ik�r (11.57)

Let us introduce likewise the matrix V that makes the same transition, this time
between cluster positions Qr and reduced momentum Qk, and the matrixW that does
the same between cluster sites ra and cluster momentaK :

VQkQr D
r
L

N
e�i Qk�Qr WK ;a D 1p

L
e�iK �ra (11.58)

(these matrices were also introduced in Chap. 9.5). The matrices V and W

commute, since they do not act on the same spaces, and their product S D W ˝V ,
even if it performs a compound Fourier transform from direct space . Qr ; ra/ to
reciprocal space ( Qk;K ), does not coincide with the direct Fourier transform U with
k D QkCK . It is a straightforward matter to show that the matrices� 	 US�1 and
D 	 S�1U are not trivial:

�kk0 D ıQkQk0

1

L

X
a

e�ira �.QkCK�K 0/ Drr 0 D ıab L
N

X
Qk

ei Qk�.Qr�Qr 0�ra/: (11.59)
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If t is the real-space hopping matrix on the lattice, then the dispersion relation is
given by the diagonal matrix " D UtU � (k being the index along the diagonal).
However, the matrix appearing in the CPT Green function on the r.h.s. of the
CDMFT self-consistency condition (11.56) is t. Qk/ D StS � and is not diagonal.
For instance, in the case of a two-site cluster within the one-dimensional Hubbard
model with nearest-neighbor hopping only, that matrix is

StS � D �t
0
@
1C cos.2 Qk/ �i sin.2 Qk/

i sin.2 Qk/ �1 � cos.2 Qk/

1
A : (11.60)

The DCA condition (11.53) would coincide with the CDMFT condition (11.56)
for a periodic cluster if the lattice hopping matrix, instead of t, were Nt D DtD�.
Chopping off the Qr ¤ Qr 0 terms in that matrix yields the cluster restriction

Ntab D 1

N

X
K

X
Qk
". QkCK /eiK �.ra�rb /; (11.61)

which is precisely the coarse-grained dispersion (11.54), but expressed in real-space
indices.

This means that the DCA, contrary to the CDMFT, cannot be understood within
the SFA (see Chap. 9.5) from the same lattice hopping t. Otherwise the two
conditions (11.53) and (11.56) would coincide for periodic clusters. This difference
between the DCA and a periodic version of CDMFT disappears as the cluster size
L increases: it can be shown that the mean squared off-diagonal matrix elements of
� andD scale like 1=L.

Let us now comment on the difference between the DCA and the usual
implementation of CDMFT, i.e., with open boundary conditions. Here again the
difference between the two approaches obviously disappear in the large cluster
limit, but benchmarks conducted on systems whose exact solution is known have
shown that the two approaches do not converge equally fast as L ! 1, for the
same quantities. In [43–45] (the last ones being comments on the previous ones)
the CDMFT and DCA were applied to a simplified one-dimensional large-N model
whose solution is known in the N ! 1 limit. The overall conclusion of these
works is that, as L�1 ! 0, DCA converges faster than CDMFT for quantities that
are averages over the cluster, whereas the opposite is true for local quantities. This
is due to the use of periodic boundary conditions and the absence of cluster edges
in DCA. On the other hand, local quantities measured near the cluster center in
CDMFT converge exponentially fast, whereas the corresponding local quantities
converges like L�2 in DCA. More recently, the authors of [46] have done a similar
analysis for the two-dimensional, saddle-point t–J model. Again, this being a static
(mean-field) model, the comparative study only addresses the geometrical aspects
of the two approaches. The authors conclude that (1) the four-site, plaquette cluster
is a poor approximation of the thermodynamic limit for both approaches; (2) the
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DCA generally converges faster for global quantities such as order parameters, but
may be more erratic than CDMFT for small clusters.

In practice, the issue of the convergence rate of DCA and CDMFT is moot for
small clusters like the four-site plaquette that are far enough from the thermody-
namic limit: no approach is demonstrably better than the other, for any quantity. As
of this writing, large-cluster simulations of the Hubbard model (necessarily with a
QMC solver) are still costly and rarely performed [37, 47, 48].
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Chapter 12
Functional Renormalization Group
for Interacting Many-Fermion Systems
on Two-Dimensional Lattices

Carsten Honerkamp

Abstract Functional renormalization group (fRG) methods have become a widely
used tool to investigate the low-energy properties of interacting fermions. In
particular for two-dimensional lattice systems with competing ordering tendencies,
they are very suitable for investigating the interplay of various possible instabilities
and their mechanisms. Here we review the main elements of the fRG method, its
current state and some applications to correlated electron systems where the fRG has
proved useful, and outline some issues for the further development of the method.

12.1 Introduction

The low-temperature phase diagrams of modern correlated electron materials like
layered copper oxides [1, 2], heavy fermions [3, 4], or iron pncitides [5–7] exhibit
various competing ground states with different types of collective behavior. In
most cases, these ground states can be classified by the means of order parameters
and collective excitations, but there is also strong interest in the states of electron
matter without long-range order, such as spin liquid [8–11] or fractionalized states
[12, 13], or with unconventional excitation spectra, such as topological insulators
[14]. For theory, this poses the challenge of predicting the ground state or low energy
properties of a given model Hamiltonian on some lattice whose form and parameters
are related to the real materials by direct comparison with experiments or with the
help of ab-initio calculations.
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As many of the materials mentioned show a certain degree of electron itineracy,
a theoretical approach that is perturbative in the screened electron–electron interac-
tions can be considered as a useful guide to describe competing orders. Straightfor-
ward diagrammatic perturbation theory in lower orders is often not a satisfactory
description, as some diagrams in the perturbation series produce large, possible
logarithmically divergent contributions at low temperatures and energies. An infinite
summation of these diagrams would be preferable. However, in many situations one
encounters more than one important channel in the perturbation expansion, making
the summation difficult. Moreover, even if there is a clear hierarchy in the impor-
tance of the various contributions, sub-leading terms might change the effective
coupling in the leading channel qualitatively, causing a single-channel-summation
to be physically misleading. Here the renormalization group (RG) proves useful,
as it sums up the perturbation series to infinite order in the bare interactions in
the process of integrating up the RG differential equations. Furthermore in the
RG the most dangerous degrees of freedom are included on equal footing and
step by step. In this way possible singularities are approached in a transparent
and more controlled and unbiased way. In this chapter we review how powerful
functional RG (fRG) methods [15–18] have been used recently to explore possible
instabilities of a number of systems. Most of the work has been performed using
various simplifications, but already provides a wealth of physical information. We
also mention some improvements of these approximate schemes have been tried and
how these affect the physical picture.

The fRG is a broader concept rooting in the works of Wilson, Wegner, and others
in the 1970s [19, 20]. In the context of what is described in this chapter, there
are at least two aspects that are inherited from these seminal works. One is the
idea of coarse graining to effective theories, i.e., the decimation of the degrees of
freedom, and the second is the field theoretical formalism in momentum space with
exact flow equations for a generating functional [20]. In other aspects, the use of
the fRG for correlated electrons described here is somewhat different. In statistical
physics, Wilsonian RG techniques are mainly understood as concept to explore the
vicinity of critical points. These are given by fixed-points of the RG procedure.
Universal behavior arises naturally and is in the center of interest. Functional RG
equations, like the one for the effective average action derived by Wetterich [16]
that forms the basis for the formalism described in this chapter, also prove to be very
useful in the study of critical phenomena. For example, using the Wetterich equation
one can compute the critical exponents of O(N ) models in three dimensions with
good precision without having to perform an �-expansion or resummations [21,22].
However, for the correlated electron lattice systems described in this chapter, the
scope somewhat different and nonuniversal properties play a larger role. In many
problems, in particular those with competing orders, the main issue is the proper
identification and characterization of the low-temperature state of a system that does
not have to be critical, and the mechanisms responsible for it. This set of questions
includes nonuniversal properties such as energy scales, gap structures around Fermi
surfaces, low- and intermediate-energy excitations, etc. Therefore, the primary goal
of most of the studies described here is to determine to which effective theory the



12 Functional Renormalization Group for Interacting Many-Fermion Systems 375

flow goes at intermediate scales on the way down to lower energies. This question
is often decided by nonuniversal features of the system like lattice type and channel
coupling effects that can be irrelevant in the RG sense. Furthermore, the search
for and description of fixed points is a priori somewhat less meaningful at least in
the current approximations, as most interesting flows lead to strong coupling, i.e.,
a divergence of the interaction function occurs, and the approximations made in
the scheme become invalid. The fRG approach discussed below is best understood
as performing a partial trace over high-energy degrees of freedom that allows one
to track the build-up of possibly long-ranged effective interactions in an unbiased
way to infinite order in the bare interactions. This already provides very useful
information on the potential ground state that can be compared with experiments
and other theoretical approaches. More abstractly and generally, the main idea of
the fRG is to derive (initially exact) flow equations for generating functionals of the
theory that take one from a starting point where the correlation or vertex functions
are known very well to the point of physical interest. In standard momentum-shell
fRG schemes, the starting point is obtained by excluding all quantum fluctuations
by a cutoff. Then the initial correlation functions can be simply obtained from
the bare action. Lowering the cutoff includes quantum fluctuations step by step
toward the full theory. Obviously, for many cases, one expects some freedom in
both the starting point of this procedure and the flow trajectory as well. Below we
will mention how this freedom in the fRG idea has been used to obtain alternative
views on many-fermion lattice systems. We expect that future work will make even
more use of this great flexibility. While these considerations reflect the main part of
what is described in this chapter, we want to mention activities underway to extend
the fRG approach also to the more precise study of (quantum) critical points in
correlated electron systems, in particular to such problems where the conventional
Hertz–Millis [23–25] approach becomes questionable [26].

Various works using RG methods for fermions have been inspired an earlier
review article by Shankar [27]. Here, in analogy to the RG for scalar �4-models,
some important examples like the flows in one dimension, the Kohn–Luttinger
mechanism, and phase space arguments for the validity of Fermi liquid theory are
presented in physical terms. The fRG methods described here go beyond these
arguments and may represent a more general perspective and some methodical
refinements that allow one to successively reduce the approximations and to address
in a straightforward manner additional issues such as flows to into symmetry-broken
regimes [28], boson–fermion mixtures [29–31] and in future possibly strongly
coupled systems [32, 33]. We also note that fRG techniques can be used to obtain
mathematically precise arguments for the validity range of Fermi liquids in two
dimensions [17].

This chapter concentrates on the use of the fRG as a tool detect instabilities
in weakly to moderately coupled many-fermion systems on two-dimensional (2D)
lattices. The same RG equations have, however, been applied intensively in other
fields in condensed matter and ultracold atom physics and currently there is an active
interchange of ideas between these fields. As examples we mention a series of works
on transport through nanoscale low-dimensional correlated electron systems [34,35]
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and also on the BCS-BEC crossover [36] and bound-state formation [37] in ultracold
atoms. Recently, the fRG formalism has been extended to the study of quantum spin
systems [38]. Furthermore, nonequilibrium situations can also be tackled using fRG
techniques [39–41].

12.2 Functional RG Schemes for Fermions: Exact Flow
Equations and Truncations

12.2.1 Basic Elements

In the functional integral formalism for many-particle systems at nonzero tempera-
ture T , the fermionic degrees of freedom are described by Grassmann fields, .k; s/
and N .k; s/, where k is a multi-index containing fermionic Matsubara frequencies
!n D .2n C 1/�T , wavevectors k in the respective Brillouin zone and possibly
more, like band indices, etc. s is the spin degree of freedom, in the usual framework
s D ˙1=2.

Let the free part of the action of our many-fermion system be of the type

S0 D
X
k;s

N .k; s/ Œ�i!n C �.k/�  .k; s/ : (12.1)

Here the sum over k is understood as sum over everything contained in the multi-
index. �.k/ is the band dispersion. We suppress possible band indices, but the
extension to the multiband case is straightforward.

For spin-rotational invariance, the fermionic interaction can be written as

SI D T

2N

X
k1;k2;k3
s;s0

V.k1; k2; k3/ N .k1; s/ N .k2; s0/ .k4; s0/ .k3; s/ (12.2)

N is the number of lattice sites. The fourth wavevector and the fourth Matsubara
frequency in k4 is usually fixed by the appropriate wavevector- and frequency-
conservation and not summed over, but in the general multiband case, one has to
sum over a fourth band index as well. For Hubbard onsite interactions in a one-
band model, the coupling function is just V.k1; k2; k3/ D U , i.e., structureless in its
wavevector dependence. In the multiband case this changes, as explained below for
the pnictides.

The free propagator is the negative inverse of the quadratic part in S0,

G
.2/
0 .k; s/ D �h .k; s/ N .k; s/i0 D

1

i!k � �.k/ (12.3)
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With the free propagator the generating functional of the theory is written as
functional integral over the Grassmann fields

W.�; N�/ D � ln
Z
D .k; s/D N .k; s/ e�S. ; N ;�; N�/ (12.4)

with

S. ; N ; �; N�/ D �
X
k;s

N .k; s/
h
G
.2/
0 .k; s/

i�1
 .k; s/ C SI

C
X
k;s

� N�.k; s/ .k; s/ C N .k; s/�.k; s/� : (12.5)

The integral without the logarithm and the sources �, N� set to zero is the partition
function of the system. By taking derivatives with respect to the source fields
�.k; s/ and N�.k; s/, one obtains the connected Green’s functions of the theory, most
importantly

G.2/.k; s/ D �h .k; s/ N .k; s/i D ı2

ı�.k; s/ı N�.k; s/ W.�; N�/ (12.6)

and

G.4/.k1; sI k2; s0I k3; sI k4; s0/ D �h .k1; s/ .k2; s0/ N .k4; s0/ N .k3; s/i

D ı4

ı�.k3; s/ı�.k4; s0/ı N�.k2; s0/ı N�.k1; s/ W.�; N�/

(12.7)

It is convenient to introduce a Nambu notation where barred and nonbarred
Grassmann fields are grouped in 2-vectors. With � D . N ; / we write

S.�;H/ D 1

2

X
k;s

�.k; s/ OQ.k; s/�.k; s/C SI

C
X
k;s

H.k; s/�.k; s/ (12.8)

with the two-by-two matrix

OQ.k; s/ D
�

0 Q.k; s/

�Q.k; s/ 0

�
; (12.9)

inverse free propagatorQ.k; s/ D
h
G
.2/
0 .k; s/

i�1
and sources H D .��; N�/.
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12.2.2 Functional Renormalization Group Differential Equations

To implement the renormalization group idea of deriving the an effective action
for the low-energy modes, i.e., to integrate first over high-energy modes, it is now
appropriate to split the propagator into high- and low-energy parts. This is done by
writing

G
.2/
0 .k; s/ D G>;.2/

0 .k; s/CG<;.2/
0 .k; s/ D C�.k/

i!n � �.k/ C
1 � C�.k/
i!n � �.k/ (12.10)

with C�.k/ D 1 if k describes a high-energy mode, and C�.k/ D 0 if k belongs to
the low-energy modes, and � > 0 is an energy scale discriminating between high
and low. Targeting situations with only weak to moderate interactions, it plausible
to discriminate modes with respect to the bare dispersion, i.e., to write C�.k D
f!n;kg/ D � .j�.k/j ��/ with �.x/ D 0 for x < 0 and �.x/ D 1 for x > 0.
We call this a sharp cutoff in wavevector space, but as noted above the concept of
effective action be played through with other cutoffs as well, like smoother cutoffs,
or involving the Matsubara frequencies.

Now let us include only the high-energy modes into the theory, i.e., let the bare
propagator in the free part of the action be given by G>;.2/

0 .k; s/ D G
.2/
�;0.k; s/ D

Q�1
� .k; s/. Introducing the RG scale or flow parameter � into the free part of

the action promotes the generating functional W.H/ to W�.H/. For nonzero �,
we could now compute observables of the fermionic theory in a diagrammatic
approach. As the low-energy modes in the propagator G.2/

0 are set to zero, only
high-energy modes would appear in the diagrams. Studying these quantities as a
function of � often gives more physical insights, as the full functional integral
over all modes (i.e., for � D 0) typically develops singular contributions at low T .
More generally, the strategy for the cutoff is to deform the free propagator in such
a way that (a) the initial correlation functions are known, and e.g., correspond to
the bare ones if all internal lines are set to zero by a high enough cutoff, and
(b) the relevant observables become free of singularities. Then one continues to undo
the deformation continuously such that the build-up and competition of possible
singularities can be studied. This gives information on the leading instabilities of
the system at low scales.

Furthermore, the connected correlation functions computed only with the modes
above � appear in the effective action of the modes below � (amputated with
the free propagator G>;.2/

0 .k; s/) [42, 43]. The self-energy for a wave-vector k in
the low-energy sector computed at scale � can be interpreted as that arising by
absorbing the modes above �, and the interaction computed with the modes above
� on the internal lines renormalizes the interaction of the modes below �, leading
to a �-dependent effective interaction.

One possibility would now be to compute the change of the connected correlation
functions as a function of � directly from the change of the generating functional
W�.H/ with �. Formally, one can write down an exact (RG) differential equation
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Fig. 12.1 Polchinski flow equation for the amputated connected correlation functions V .m/
� .

Nambu notation is used, therefore there are no arrows on the fermion lines, and the round symbols
stand for vertices in their fully antisymmetric version. The flow equations for the connected
correlation functions obtained from W� have the same structure. On the right-hand side, only
single propagator lines and no one-loop diagrams with two propagator lines appear. Adapted
from [44]

for the �-dependence of W�.H/. However, being a functional of Grassmann
variables, W�.H/ needs to be expanded in a power series in the source fields,
with the connected correlation functions G.m/

� (“m-point functions”) appearing
as expansion coefficients. This leads to an infinite coupled hierarchy of flow
equations (see, e.g., [44] or [18] for these equations, or Fig. 12.1 for diagrammatic
expressions) for the G.m/

� where higher-order G.m/
� s show up on the right-hand

side of the flow equation of the lower G.m/
� . For practical purposes, this hierarchy

requires a truncation to be closed. Now, to make contact to ordinary perturbation
theory and series summations like random phase approximation (RPA) or Cooper
ladder summations, one would like to retrieve the corresponding diagrams of the
perturbation theory in the truncation of the fRG hierarchy. This means that in
particular in the flow equation for the four-point function (four external legs,
the connected two-particle Green’s function), one-loop diagrams made from two
propagators should show up. One directly sees in the diagrammatic expression for
this hierarchy in Fig. 12.1 that no such diagrams occur. These contributions are
hidden further down in the hierarchy, in the feedback of the six-point correlation
function on the four-point function. This means that including these important
contributions would require to include the flow of the four-point function, after
inserting the solution of the flow equation for the four-point function into that for
the four-point function, dealing with �-nonlocal flow equations.

The flow equation for W� can also be transformed into a flow equation for
the so-called effective action, the generating functional for amputated connected
correlation functions V .m/

� . This equation was originally derived by Polchinski [15]
and used by Zanchi and Schulz [45, 46] for fermions on a lattice. Here as well, the
six-point contributions have to be kept in some way, e.g., by resorting to�-nonlocal
flow equations [45–47], implying a larger numerical effort. In other works, the flow
of W� is derived using a cumulant expansion (see, e.g., [27, 45, 46, 48]). Then one
gets the desired one-loop diagrams for the flow of the interactions, but now both
internal lines have to be in the thin wavevector-shell being integrated out. While this
catches the most important contributions in the particle–particle channel and in the
cases of perfect nesting, it makes it still hard to include the contributions where the
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two internal lines are at somewhat different absolute values of their band energies.
In this sense, also these equations suffer from some inflexibility when it comes to
treating 2D models with general dispersions.

Here, and also regarding some other aspects, the flow equations for the one-
particle irreducible (1PI) vertex functions provide a very useful alternative. These
equations [16] are derived from an exact flow equation for the functional ��.˚/,
the Legendre transform ofW�.H/, which in our notation reads [49]

P��.˚/ D 1

2
tr
� OG.2/

0;�
POQ�

	
C 1

2

�
˚;
POQ�˚

	
� 1
2

tr

"
POQ�

�
ı2��

ı˚2

��1#
: (12.11)

Here, OG.2/
0;� is the inverse of the quadratic part in Nambu space, OQ�. �� possesses an

expansion in terms of 1PI vertex function .m/� (see e.g., [50] for more information
on the relation of the 1PI vertices to connected correlation functions). For theories
without external fermionic sources, only even orders of m are nonzero. The zeroth-
order term corresponds to the grand canonical potential, .2/� is the full inverse

propagator, and .4/� is the interaction vertex from which the two-particle Green’s
function and two-particle susceptibilities can be constructed, now all for the theory
with quantum fluctuations included down to scale �. From (12.11) the flow
equations for the vertex functions can be obtained by inserting the field expansion in
the ms. They are displayed diagrammatically in Fig. 12.2. Now the right-hand sides
only contain 1PI one-loop terms. When there are two internal lines, one is a so-called

γ (8)
Λ

γ (4)
Λ γ (4)

Λγ (4)
Λ

γ (4)
Λ

γ (6)
Λ

γ (6)
Λ

Fig. 12.2 Flow equations for the 1PI vertex functions. ˙� is (up to the free propagator) the two-
point 1PI vertex, .4/ the four-point vertex etc., again using Nambu notation. The line with the
slanted bar denotes a single scale propagator S�, the solid lines are full scale-dependent Green’s
functions. Adapted from [44]
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single-scale propagator defined below that is usually only nonzero for modes at the
cutoff (at least when a sharper cutoff is used as flow parameter), while the other line
can be anywhere at j�.k/j 
 �. Therefore also contributions with slightly different
band energies are included directly at this level. The hierarchy is still coupled, but
now the great advantage is that we can set – as an approximating truncation – the
six-point vertex to zero without loosing the one-loop terms for the four-point vertex.
The remaining two flow equations for self-energy and four-point interaction vertex
are shown in the upper plot of Fig. 12.3. The truncation can be argued to be good for
weakly coupled systems with two-particle interactions. Here the six-point vertex is
zero in the initial conditions. Its initial growth is only in third order in the interaction,
hence one can expect that for small enough initial interactions the six-point vertex
remains small for some scale range. Then at low scales, near the Fermi surface,
its impact becomes inhibited due to phase space constraints [49]. The remaining
flow equation for the interaction corresponds to a summation of parquet diagrams
[51, 52], with the advantage of being solved more easily by integrating the RG flow
equations.

a b

c

Fig. 12.3 Upper figure: The right-hand sides of 1PI RG equations for the self-energy and the
interaction, in Nambu notation and with antisymmetric vertices, in the truncation where the six-
point vertex is set to zero. Lower plots: The one-loop diagrams appearing on the right-hand side
of the flow equation for the self-energy (two diagrams on the left) and for the coupling function
V� (five diagrams on the right), now with the Nambu index resolved, in the case of spin-rotational
symmetry. (a) is the particle–particle diagram, (b) the crossed particle–hole diagram, (c) the direct
particle–hole diagrams. The grey rectangles denote the coupling function V� with the spin index
conserved along the short edges. For details, see [49]
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In the case of translational, spin-rotational and U(1)-invariance, the antisymmet-
ric four-point vertex .4/�;s1s2s3s4 .k1; k2; k3; k4/ for incoming particles k1; s1, k2; s2 and
outgoing particles k3; s3, k4; s4 (the quantum numbers of particle 4 are dictated by
the conservation laws, up to possible band indices) can be expressed in terms of a
coupling function V�.k1; k2; k3/ by [49]


.4/
�;s1s2s3s4

.k1; k2; k3; k4/ D V�.k1; k2; k3/ıs1s3ıs2s4 � V�.k2; k1; k3/ıs1s4 ıs2s3
(12.12)

This coupling function does not carry spin indices anymore, it is, however, under-
stood that the spin projections of particles 1 and 3 are both s, and those particles
2 and 4 are s0. V�.k1; k2; k3/ carries the symmetries of the lattice (or of the Bloch
functions in the multiband case) and should obey the relations V�.k1; k2; k3/ D
V�.k2; k1; k4/ D V�.k3; k4; k1/. These latter relations, however, get more intricate
in the N -patch discretizations described below.

With this, the flow equations for the self-energy becomes

d

d�
˙�.k/ D �

Z
dk

�
2V�.k; k

0; k/ � V.k; k0; k0/
�
S�.k

0/ : (12.13)

The equation for V�.k1; k2; k3/ with k4 D k1 C k2 � k3 reads [49]

d

d�
V�.k1; k2; k3/ D TPP;� C T d

PH;� C T cr
PH;� (12.14)

with the one-loop particle–particle contributions TPP;� and the two different
particle–hole channels T d

PH;� and T cr
PH;� where

TPP;�.k1; k2I k3; k4/

D
Z

dk V�.k1; k2; k/L.k;�k C k1 C k2/ V�.k;�k C k1 C k2; k3/(12.15)

T d
PH;�.k1; k2I k3; k4/

D
Z

dk
h
�2V�.k1; k; k3/ L.k; k C k1 � k3/ V�.k C k1 � k3; k2; k/

CV�.k1; k; k C k1 � k3/L.k; k C k1 � k3/ V�.k C k1 � k3; k2; k/
CV�.k1; k; k3/ L.k; k C k1 � k3/ V�.k2; k C k1 � k3; k/

i
(12.16)

T cr
PH;�.k1; k2I k3; k4/

D
Z

dk V�.k1; k C k2 � k3; k/L.k; k C k2 � k3/ V�.k; k2; k3/ (12.17)

In these equations, the product of the two internal lines in the one-loop diagrams
is L.k; k0/ D S�.k/G

.2/
� .k

0/ C G
.2/
� .k/S�.k

0/ with the so-called single-scale
propagator
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S�.k/ D �G.2/
� .k/



d

d�
Q�.k/

�
G
.2/
� .k/ : (12.18)

Here,G.2/
� .k/ D C�.k/= Œi! � �.k/ � C�.k/˙�.k/� denotes the full Green’s func-

tion at RG scale �. If self-energy effects are ignored, the single-scale propagator is
simply S�.k/ D PC�.k/= Œi! � �.k/�, with PC�.k/ being confined to a momentum
shell with j�.k/j � � in the case of a momentum-shell cutoff.

12.2.3 Choice of Flow Parameter

Although we have made reference to a momentum-shell cutoff at several stages in
the derivation of the 1PI fRG equation in the last subsection, it is not difficult to see
that the same equations can be written down for any other continuously variable
parameter in the quadratic part of the action, provided that this parameter does
not appear in the interaction term. This indicates how flexible and powerful these
equations are. Here we want to discuss briefly which different flow parameters have
been used previously to explore the instabilities of Hubbard-type lattice system.
We mention, however, that in other contexts the freedom to choose appropriate
flow parameters has been exploited as well [29, 53]. The guiding principle for a
good flow parameter in our context is that it should enable us (a) to approach
a specific infrared singularity in a controlled way (regulator property) and (b) to
include all other (possibly also singular) tendencies during the flow (unbiasedness).
Then the fRG will give a more realistic picture than perturbation expansions that
single out one dominant channel. In diagrammatic bubble or ladder summations, the
singularities normally arise due to a pile-up of logarithms. These are roughly given
by g logŒW=max.T;�/� (after Matsubara frequency summation) with a coupling
constant g, bandwidth W and lower energy cutoff �. Hence, if we want to build in
such dangerous terms step by step, we can either vary �, the temperature T , or the
coupling g. Cutting out low Matsubara frequencies should have a similar effect as
increasing T . This gives the following options.

12.2.3.1 Momentum-Shell RG

Here we introduce a cutoffD�Œ�.k/� into the quadratic part of the action,

Q�.k/ D T
X
ik0;k

D�Œ�.k/� N k Œi!n � �.k/�  k : (12.19)
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D�Œ�.k/� is very large for j�.k/j � � and D�Œ�.k/� D 1 for j�.k/j > �.
In practice one mainly needs the inverse D�1

� Œ�.k/� D C�Œ�.k/�, which can be
chosen conveniently as a sharp step function for analytical manipulations or as a
smoothened step function for numerical treatments. Then the full Green’s function,
given by G�.k/ D C�Œ�.k/�=fi! � �.k/ � C�Œ�.k/�˙�.k/g, is suppressed for
modes with j�.k/j � �. The same holds for the single-scale propagator, hence only
high-energy modes show up in the loop diagrams. The momentum-shell RG is the
widely-used standard [27]. Alternative forms can also be derived from other exact
RG equations [15, 17, 45, 46].

A serious drawback of the momentum-shell cutoff RG is the nonuniformity in the
RG scale at which one-loop particle–hole (PH) processes with different wavevector
transfers q are included at low T . PH processes with small q, i.e., a particle at
wavevector k and a hole at k C q, can only occur in the vicinity of the Fermi
surface. For T ! 0 the support of the PH bubble for ! D 0; q ! 0 shrinks to
a temperature-smeared ı-function on the Fermi surface with width � T . Thus,
the q ! 0 PH-modes are integrated out only for cutoff � � T , even if the
density of states is divergent, and these processes give a singular contribution for
T ! 0. However, in a coupled flow with various other tendencies, the flow normally
diverges before we get down to � � T . The flow has to be stopped and the q ! 0

PH pairs did not have the chance to contribute to the flow by construction. Therefore,
the cutoff-flow is still biased to some extent and approaches are needed to study the
influence of the q ! 0 particle–hole excitations.

The following three schemes work without a sharp cutoff and allow for a uniform
inclusion of the important one-loop processes.

12.2.3.2 Temperature Flow

The temperature-flow scheme [56] uses the temperature T appearing in the
quadratic part of the action as flow parameter. Before the T -derivative can be
taken, the fermion fields need to be rescaled to remove the T -dependence appearing
in front of the interaction term in the original action. Then the theory is defined
at some high T � T0 in terms of its two-point and four-point vertex. Here, we
simply choose the free propagator and the local Hubbard repulsion as the initial
values at T0. This should be reasonable for sufficiently high T0 � bandwidth, as
all perturbative corrections decay with a negative power of T . In the approximate
version used e.g. in [56] without .6/T and self-energy corrections, the right-hand side
of the flow equation for the interaction is just given by the T -derivatives of the one-
loop diagrams. This flow scheme basically reproduced the antiferromagnetic and
d -wave pairing instabilities found in the t–t 0-Hubbard model using the momentum-
shell schemes, but also added a ferromagnetic regime near van Hove filling and
triplet pairing instabilities for larger values of jt 0j [56].
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12.2.3.3 Interaction Flow

In the interaction flow scheme [57] we first multiply Q with a scale factor 1=g and
split it in two, yielding

Qg D T
X
i!n;k

N kg�1=2 Œi!n � �.k/�  kg�1=2; (12.20)

g will be the flow parameter. We can absorb the factor 1=g in rescaled fields Q ; NQ 
defined as Q D g�1=2 . With this the interaction term gets an extra factor g2 when
written in terms of the new fields:

V .4/
g D

1

2N

X
k;k0 ;kCq

s;s0

g2V.k; k0; k C q/ NQ kCq;s NQ k0�q;s0 Q k0;s0
Q k;s : (12.21)

We observe that changing the scale factor 1=g in Qg corresponds to changing the

strength of the bare interactions. The rescaled fermions Q , NQ describe a system with
a bare interaction strength g2 V . Now we can start at g D 0C, i.e., at infinitesimally
small bare interaction, and use the flow equations for the -theory to integrate up to
the desired bare interaction, reached at g D 1. We can also stop the flow at any other
value of g, with the functions g˙ and g2Vg.k; k0; k C q/ being the self-energy and
interacting vertex function for the bare interaction g2V.k; k0; k C q/. One can call
this scheme interaction flow, or simply flat-cutoff flow, as all modes are suppressed
by the same factor g. Now singularities on the right-hand side of the flow equation
are not regularized by the flow parameter. Thus, the interaction flow scheme has to
be used at T > 0, when the one-loop diagrams are bounded. Using this scheme, the
ground state phase diagram of the 2D t–t 0 Hubbard model comes out basically the
same as in the T -flow [57].

12.2.3.4 Smooth Frequency Cutoff

Another regulator that does not ignore small-wavevector transfer processes in the
particle–hole channel and is hence capable of describing ferromagnetic instabilities
as well is the so-called ˝-scheme introduced by Husemann and Salmhofer [58].
Here one uses a smooth cutoff on the Matsubara frequency axis, given byC˝.!n/ D
!2n=.!

2
n C ˝2/, and the flow goes from large ˝ damping away all modes down

to ˝ D 0 where the full free propagator is obtained. The benefit of the simple
functional dependence on !n and ˝ is that this cutoff function still permits one to
determine the Matsubara sums in the loop diagrams analytically. The results of this
cutoff-scheme together with an alternative vertex decomposition are shown in the
next sections.
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12.3 Implementation of the Fermionic fRG
for Two Dimensional Lattices

Besides the fact that the equations above were derived from the exact flow
equations for generating functionals, the name fRG reflects that at least for many-
fermion systems with a Fermi surface, one can in general no longer reduce the
parametrization of the interaction vertex to a handful of running coupling constants.
Rather, the functional dependence of the interactions on the location on the Fermi
surface or more generally in the Brillouin zone can turn out to be relevant, i.e.,
grow strongly under the RG flow. Hence keeping the functional dependence of
the interaction vertex around the Fermi surface(s) is important. This leads to RG
equations for functions of wavevectors, i.e., functional differential equations. The
two-fermion interaction vertex, e.g., depends on three wavevectors, while the fourth
is fixed by wavevector conservation on the lattice. Note that in principle also
the frequency dependence of the interactions can be studied, but in the works
described here the frequency dependence is mainly neglected. The wavevector
dependence is typically treated by a so-called N -patch discretization, where the
Brillouin zone is divided up into patches containing Fermi surface segments. This
was first used in this context by Zanchi and Schulz [45, 46]. Within these patches,
the wavevector dependence is ignored again, and the value for the patch region
near the Fermi surface is computed and used at all wavevectors inside the patch.
However, as described below, a sufficient number of patches allows one to draw a
number physically relevant conclusions. The setup of the patches around the Fermi
surfaces is shown in Fig. 12.4. It is guided by the idea that one wants to obtain an
effective interaction for quasiparticles near the Fermi surface, and the wavevector-
dependence tangential to the Fermi surface is relevant in standard examples. The
dependence normal to the Fermi surface does usually not alter the leading flow.
Various other patching schemes, like square patchings of the Brillouin zone have
been investigated as well, without unexpected or problematic differences in the
results [57, 59].

Let us now focus on the mainly used approximation which consists (besides
the truncation explained earlier) in neglecting the self-energy feedback. Then only
the interaction vertex is considered. Further, we ignore the frequency dependence.
By the N -patch construction, the fRG equations for .4/� .k1;k2;k3/ are converted
into N3 coupled nonlinear differential equations for the components of the dis-
cretized interaction vertex. As at least the particle–particle channel contains singular
diagrams for T ! 0, the solution of these fRG equations without self-energy
corrections typically results in a flow to strong coupling where one or more families
of interaction processes run to large absolute values. This is accompanied by the
build-up of sharp structures in wavevector-space, corresponding to the formation
of longer-range interactions. Then the flow has to be stopped when the coupling
strength has exceeded the scale of the band width, as then self-energy corrections
and possibly also the truncation error would become important. From this scale
where the run-away flow occurs one can derive an estimate for critical scales for
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Fig. 12.4 N -patch discretization of the Brillouin zone for the one-band Hubbard model on the 2D
square lattice. The colored region is a patch in which the coupling function is approximated as a
constant

long-range ordering or gap openings. Furthermore from the analysis which class
of coupling function diverges most strongly, one can infer the dominant tendencies
toward long-range ordering.

An useful tool for assessing physical information, e.g., on the gap function in
the case of a Cooper instability is the diagonalization of the effective interaction in
the Cooper (zero total incoming wavevector) channel, V�.k;�k ! k0;�k0/ at a
scale � near the instability [60]. By studying the linearized gap function, one can
see that the pairing gap function would adopt the k-dependence of the eigenvector
belonging to the most negative eigenvalue of V�.k;�k ! k0;�k0/. This allows
one to determine the structure of the pairing around the Fermi surface beyond
simple symmetry statements. This reasoning can of course be extended to other
order parameters.

As shown in Sect. 12.4, the flow to strong coupling typically occurs for com-
ponents of the coupling function V�.k1;k2;k3/ with particular vales of the total
wavevector k1 C k2 or a particular wavevector transfer k2 � k3. While the
dependence of the coupling function of these combinations of wavevectors is rather
strong, there is usually a weaker dependence on the precise location of the external
legs on the Fermi surface which can be well described with lower lattice harmonics
such as a constant or a dx2�y2 -formfactor. This led Husemann and Salmhofer [58]
to propose an alternative description of the coupling function,
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V�.k1;k2;k3/ D U �˚�
SC.k1;k3;k1 C k2/C ˚�

M .k1;k2;k3 � k1/

C 1

2
˚�

M .k1;k2;k2 � k3/ �
1

2
˚�

K .k1;k2;k2 � k3/; (12.22)

where now the new functions ˚SC, ˚M, and ˚K are treated with a fine resolution
for the last entry, and where formfactors are used to describe their dependence on
the first two entries. Moreover, the particle–particle channel is selected to drive
the flow of the pairing part ˚SC, the magnetic (crossed particle–hole) channel
drives the magnetic part ˚M, and the another combination of particle–hole terms
drives the charge part ˚K. All this does not involve any additional approximations,
but for larger parameter region it turned out [58] to be an efficient additional
approximation to use only s-wave (constant) and dx2�y2 -formfactors to describe
the dependence of the ˚-functions on their two first arguments. Therefore only one
wavevector dependence, namely on the last argument, for the ˚-functions needs
to be treated numerically. This reduces the computational effort and allows for
a better description of the strong dependence on these wavevector combinations.
The results for the repulsive Hubbard model at van Hove-filling on the 2D square
lattice are briefly described in Sect. 12.4. We expect that this alternative formulation
will prove useful also in the study of flows into the symmetry-broken state, and
to capture frequency dependences better. Very similar decompositions for the
frequency structure of the vertex function have already been used in the context
of impurity models [61].

12.4 Instabilities in Two-Dimensional Lattice Systems

Here we describe the results obtained by applying the N -patch fRG scheme to
two interesting systems. The first system is the one-band Hubbard model on the
2D square lattice, whose phase diagram is of interest in connection with the
high-Tc cuprates and other unconventional superconductors. As a second example
we discuss fRG studies of multiband Hubbard-type systems on the same lattice
with direct relevance to the newly discovered iron pnictide (and chalcogenide)
superconductors.

12.4.1 Two-Dimensional Hubbard Model Near Half Filling

The 2D Hubbard model is one of the most-studied theoretical models in context with
high-temperature superconductivity in the layered copper-oxide materials. While
the original derivation of an effective one-band model for copper-oxide planes
[62] implies a strong local Coulomb interaction U on the cooper dx2�y2 -orbitals,
the model has also been investigated intensively at weaker couplings. Here we
discuss the picture that is obtained by using the fRG which is perturbative in U .
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Nevertheless, studying the Hubbard model at weak to moderate U is still relevant at
least for cuprates in the overdoped regime. Here, experiments [63, 106, 107] exhibit
a rather well-defined 2D Fermi liquid with Fermi surfaces that can be parameterized
by simple one-band tight-binding prescriptions.

The Hamiltonian of the one-band Hubbard model focussed on here reads

H D �t
X
hi;j i;
n:n:

�
c
�
i;scj;s C c�j;sci;s

	
� t 0

X
hhi;j ii;

n:n:n:

�
c
�
i;scj;s C c�j;sci;s

	

CU
X
i

ni;"ni;# ; (12.23)

with t and t 0 being the hopping amplitudes to nearest neighbor and diagonal next-
nearest neighbors on the square lattice. U is the Hubbard onsite repulsion. It serves
as initial condition for the coupling function parametrizing the interaction vertex
at high scales �0 � 4t before any modes have been integrated out, V�0.k1;k2;
k3 D U . Together with the chemical potential 
, the hopping parameters t and t 0
determine the shape of the Fermi surface. The band structure including 
 is given
by �.k/ D �2t coskx cos ky � 4t 0 coskx cos ky � 
.

Any band structure with the inversion symmetry �.k/ D �.�k/ and nonzero
density of states at the Fermi surface exhibits a logarithmically divergent particle–
particle diagram for zero incoming wavevector and frequency for T ! 0.
These diagrams can be summed up in a ladder summation. For repulsive onsite
interactions, this does not cause a divergence, but a strong suppression of scattering
processes with zero total wavevector and frequency. On the other hand, particle–
hole terms are known to create attractive nonlocal interactions. Inserting these back
into the particle–particle ladder into this summation will cause Cooper instabilities
in unconventional (possibly very anisotropic) pairing channels if the temperature is
low enough. This is the so-called Kohn–Luttinger effect [27, 64] that predicts that
all inversion-symmetric metals (in at least two dimensions) have a superconducting
ground state, unless another instability excludes this. In fact, mathematically it is
impossible to guarantee the convergence of perturbation theory for generic systems
below a certain energy scale determined by the mentioned particle–particle ladder
[17]. Note, however, that the Kohn–Luttinger effect may only occur at very low
T and hence may be only of academic interest for many material classes. In
particular, impurities could kill many of these low-Tc anisotropic superconducting
phases easily. In the 2D Hubbard model on the square lattice, however, particle–
hole corrections to the pair scattering have a marked influence and lead to rather
high critical scales for Cooper pairing, as described below.

Regarding the possible ground states of the one-band Hubbard model on the
square lattice at weak to moderate U , the Fermi surface location and shape plays a
dominant role. Let us now consider how the N -patch fRG-flows differ for different
Fermi surfaces.

For 
 D 0 and t 0 D 0, one has a half-filled band with a perfectly nested Fermi
surface. All electronic states that are occupied at T D 0, i.e., with �.k/ < 0,
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can be scattered by wavevector Q D .�; �/ on unoccupied states, leading to a
dominance of particle–hole fluctuations with this nesting wavevector. A random-
phase approximation summation of these bubbles would result in a divergent static
spin susceptibility at Q for any > 0 at sufficiently low temperatures indicating the
formation of an antiferromagnetic (AF) spin-density wave. The basic fRG results
for low T are shown in the left half of Fig. 12.5. In the upper plot the Fermi
surface is shown together with N D 32 discretization points. In the middle plot
we show the flow of two families of coupling constants. We can see that some of

1
3

5

7 9
11

13

15
17

19

21

2325
27

29

31

k a /p
  x

k a /p
  x

k 
a 

/p
  y

k 
a 

/p
  y

1 1

1 1

0 0

0

0

0

0

0

0

0.5

15

30

30 30

20

20 20

10

30

20

10

10 10

k 1

k 1

k2 k2

v 
/ t

v 
/ t

Λ / t Λ / t

10

10 10

10

–10

–10
10–0.9 10–2100.3 100

5

5

0.5

-0.5 –0.5

–1 –1
–1 –1

1
3

5

7
9

11

13
15

17
19

21

23
25

27

29
31

Fig. 12.5 N -patch fRG data obtained with the momentum-shell 1PI fRG scheme for the repulsive
Hubbard model on the 2D square lattice. Left plots: 
 D 0, t 0 D 0 and initial U D 2t , right plots:

 D 1:2t , t 0 D �0:3t , U D 3t . Upper row: Fermi surfaces for the two cases and the N D 32

discretization points for the two incoming k1, k2 and the first outgoing wavevector k3. Middle row:
Solid lines show the flows of components in the coupling function V�.k1; k2; k3/ corresponding to
Cooper pair scattering with zero total incoming wavevector, k1 C k2 D 0, or jk1 � k2j D N=2

in terms of patch indices. The dashed lines correspond to processes in the AF-SDW channel with
wavevector transfer k2�k3 near ˙.�; �/. The flow is started at� D 4t and goes to the left toward
smaller�. Lower plots: Snapshots of the coupling function V�.k1; k2; k3/ near the instability with
k1 fixed at point 1 with k1 and k2 moving around the Fermi surface. The colorbars on the right
indicate the values of the interactions
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these lines flow to large values when the scale parameter � is lowered. This is an
example for a flow to strong coupling. When the interaction reaches values larger
than the band width the flow has to be stopped, as explained in Sect. 12.3. Next to
the divergence scale we can also read out from the data which classes of coupling
constants grow most strongly. In this case, these are the dashed lines corresponding
to interaction processes with wavevector transfer Q D .�; �/ between k2 and k3.
The maximal coupling constant that grows most strongly also belongs to this family.
All members of this family flow to strong coupling in a rather similar way when
� is reduced toward the critical scale �c � 0:16 t . Other families of couplings
constants grow less strongly. Shown as well are as solid lines Cooper processes with
zero total incoming wavevector. These processes show some growth as well, but lag
behind the leading components. The lowest plot on the left shows a snapshot of the
coupling constant when the first outgoing wavevector k3 is fixed at discretization
point 1 near .��; 0/ as function of the incoming wavevectors. We can clearly see
two structures: one vertical line with strongly enhanced repulsive interactions at
k2 D 24 (corresponding to wavevector transfer Q D .�; �/ between k2 and k3)
with very little dependence on k1, and another line at k1 D 24 (corresponding to
wavevector transfer Q D .�; �/ between k1 and k3). These values show again
only a weak dependence on k2 and are roughly half as large as the vertical feature.
Concentrating on these two features we arrive at the following effective interaction
near the instability

H
.SDW/
� D VAF

2

X
k1;k2;k3
s;s0

Œ2ı.k2�k3 ˙Q/Cı.k1�k3 ˙Q/� c�k3;sc
�

k4;s0
ck2;s0ck1;s;

wherek4 is understood to be given by k1Ck2�k3 modulo reciprocal lattice vectors.
A simple calculation shows that this interaction is equivalent to a long-ranged
AF spin–spin interaction H D �J Phi;j i eiQ�.Ri�Rj /S i � S j with spin operators
given by the usual fermion bilinears and J / VAF. This effective Hamiltonian
exhibits long-ranged AF order at sufficiently low T . In this sense, the fRG flow
for these parameters clearly indicate the proximity to an AF-ordered state or an
AF spin-density wave (AF-SDW). Strictly speaking, this is the most we can infer
at this stage. Whether long-range order actually occurs depends on the subleading
terms and on the approximation errors collected on the way to this result. Note
that the dynamics and interactions of emergent collective degrees of freedom are
not appropriately captured in this approximation. Of course in two dimensions, a
spontaneous breaking of a continuous symmetry should not occur at T > 0. On
the other hand, most experimental systems described by our model would have
additional small couplings in the third direction that change the situation in favor
of our result. Moreover, as the leading instability is clearly exposed by this scheme,
one could now resort to a bosonized description that allows one to treat the collective
infrared physics much better (see e.g., [65] how the continuous symmetry breaking
in two dimensions gets healed in the asymptotic flow).
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Now let us consider a different Fermi surface with more curvature. We choose
t 0 D �0:3 t and 
 D �1:2, such that the Fermi surface is now curved but still
contains the van Hove point .�; 0/ and .0; �/. The flow is illustrated in the right
plots in Fig. 12.5. In the middle plot on the right we now see a dominance of
the Cooper scattering processes with zero incoming total wavevector. Here some
lines seem to diverge to large positive values, while some other lines take very
negative values. The sign structure is also visible quite nicely in the bottom figure
on the right. Here the first outgoing wavevector .k/3 is again fixed at point 1 (near
.��; 0/) and the dependence on the incoming wavevectors around the Fermi surface
is plotted. One observes diagonal lines of enhanced interactions, corresponding to
zero total incoming wavevector k1Ck2 D 0. This pair scattering is attractive when
the incoming pair k1, k2 near the same saddle point .˙�; 0/ as the outgoing pair
k3;�k3, and repulsive, when incoming and outgoing pairs are at different saddle
points. This is exactly the formfactor d.k/ D d0.cos kx�cosky/ of a dx2�y2 -Cooper
pairing instability, where the dominant interaction is given by what is obtained by
only keeping these diagonal features in V�.k1;k2;k3/,

H
.dSC/
� D VdSC

X
k;k0

d.k/d.k0/ c�
k0;"c

�

�k0;#c�k;#ck;" :

The spin-structure can be understood by forming the antisymmetric vertex again
via (12.12). As the dominant features are symmetric with respect to interchange of
k1 and k2, the equal-spin vertex vanishes. Again, this effective Hamiltonian can be
solved by mean-field theory exactly. It has a d -wave paired ground state. This d -
wave pairing instability was obtained by a number of research groups with different
variations of fRG approaches (e.g., [45–47, 54–56]). The parameter region for its
occurrence is rather wide. It constitutes convincing evidence that the weakly coupled
Hubbard model possesses a d -wave superconducting ground state. The pairing
mechanism at these weaker couplings is best described as AF-spin-fluctuation
induced. This is already visible in the bottom plot on the right-hand side of Fig. 12.5.
Here one can see that the d -wave pairing interaction on the diagonal lines with zero
total incoming wavevector crosses a region with enhanced repulsive interactions,
e.g., near k1 � 8; 9 and k2 � 24; 25. This enhancement is the broadened, due to
Fermi surface curvature, version of the vertical SDW feature in the left lower plot for
the fully nested case. We see that the enhancement to positive values fits perfectly
into the sign structure of the d -wave. Studying the flow as a function of the cutoff
�, one finds that the SDW features appear first and create the attractive component
in the dx2�y2 -pairing channel. More drastically, one can put a filter into the fRG
scheme that removes these SDW features by hand, e.g., by setting these interactions
to their initial values. This way one also looses the d -wave pairing instability in
the same way as the AF-SDW instability, showing the strong coupling between the
channels. Another way to check this view is to completely drop the particle–hole
channels. In this case, no flow to strong coupling is found, as no attractive pairing
components are generated, and as the SDW instability is excluded as well. If we only
drop the particle–particle channel, we of course destroy the pairing instabilities, and
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the SDW instability takes a wider parameter space, at even higher critical scales
comparable to those found in simple RPA summations.

The fRG data discussed so far showed rather clearcut single-channel instabilities,
either in the AF-SDW or in the d -wave pairing channel, provided T is low enough.
For higher T > Tc the flow remains finite, and the system should be in a metallic
state. The critical scale at T D 0 is usually a good estimate for the critical
temperatures Tc above which the flow remains finite, up to factors �1. One can
ask how the flow changes when we move from one to the other by changing the
parameters. In principle there are two possibilities: One is that the flow to strong
coupling changes gradually and the critical scale remains nonzero, with the SDW
component getting weaker and the pairing component getting stronger continuously.
The second possibility would be a quantum critical point where the critical scale
for the run-away flow scale is suppressed to zero. As shown in the upper plots of
Fig. 12.6 the change from AF-SDW is of the first type, while for larger t 0 one finds
indications for quantum critical point between d -wave pairing and ferromagnetism,
at least in the fermionic fRG flows, as illustrated in the lower plots of Fig. 12.6. The
main factor that causes this difference between the phase changes is the overlap of
the interaction processes between the two respective channels.

The AF-SDW instability and the dx2�y2 both require repulsive interaction
processes between the two saddle points region near .�; 0/ and .0; �/. Hence the
growth of one channel also supports the other channel to a large extent. If the Fermi
surface remains in the vicinity of the van Hove points for a larger range of
, there is
a rather wide crossover region where both channels, d -wave pairing and AF-SDW,
grow strongly in a rather similar fashion. This is the case in the so-called saddle-
point regime in the upper right plot of Fig. 12.6. Here, the mutual reinforcement
of different interaction processes with initial and final states near the saddle-point
regions is reminiscent of the flows to strong coupling in the half-filled two-leg
Hubbard model, where d -wave pairing and AF-SDW channel are again driven in
parts by the same processes. In this one-dimensional system the ground state does
not select one these channels and does not develop any quasi-long-range order, but
becomes a short-range correlated spin liquid with a single-particle gap [66,67]. This
resemblance motivated interpretations of the flows in two dimensions as indications
for a partial truncation of the Fermi surface in the saddle point regions [55, 68, 69],
similar to what is argued to occur in the underdoped high-Tc cuprates. A controlled
determination of the resulting strong-coupling state near the saddle-point region for
these parameter regions is, however, still missing.

If the Fermi surface is further away from the saddle point regions, the strongest
interaction processes with wavevector transfer .�; �/ occur near the Brillouin zone
diagonal where the dx2�y2 -formfactor is small. Then d -wave pairing and AF-SDW
channels are rather weakly coupled. Correspondingly the energy scales for the two
instabilities can be quite different. This is seen in the left upper plot of Fig. 12.6
for band fillings larger than one. Here the high-energy-scale AF-SDW instability
gets cut off at a certain critical chemical potential and is replaced by a low-energy-
scale dx2�y2 pairing instability. Without further analysis it is difficult to determine
the precise nature of this transition. However, as the coupling between the channels
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for band filling larger than unity, for t 0 D �0:3t and U D 3t . There is a high-energy-scale
AF SDW instability with a weaker dx2�y2 -wave pairing instability when the AF-SDW is cut off.
Data from [84]. Right upper plot: Data for the same t 0 and U on the “hole-doped” side with band
fillings smaller than one, from [55]. Now there is a broad crossover “saddle point regime” between
the nesting-driven AF-SDW instability and the dx2�y2 -wave pairing regime. Lower left plot: Tc vs.
t 0 at the van Hove filling where the Fermi surface contains the points .�; 0/ and .0; �/. For large
t 0 one finds a ferromagnetic instability. Data from [56] obtained with the T -flow scheme. Right
lower plot: Critical scale ˝c for the flow to strong coupling, again vs. t 0 at van Hove filling, now
obtained with the simplified vertex parametrization of [58] and with a smooth frequency cutoff.
While the results agree well with the full N -patch flow for t 0 � 0 and t 0 � �0:5t , the transition
from d -wave pairing to the ferromagnetic regime does not go through a potential quantum critical
point as in the left lower plot

is rather weak, we expect that a more accurate calculation would yield first-order
transition.

The situation is again different for the transition from the d -wave pairing to
the ferromagnetic instability, as illustrated in the lower plots in Fig. 12.6. Here the
critical scale for the flow to strong coupling is suppressed strongly in the transition
region, and the fermionic fRG flows (left lower plot) even suggest a quantum critical
point. While it is difficult to fully understand these coupled nonlinear flows of N3

components of the coupling function using a simple argument, there is now one
significant difference compared to the continuous crossovers described above. Let
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us again consider the interaction process that is common to both, d -wave pairing
and ferromagnetic channel. The latter channel is driven by scattering processes with
wavevector transfer q (between k2 and k3) going to zero. A closer analysis shows
that these processes should be repulsive to cause a ferromagnetic instability, like for
the usual Stoner criterion. This, however, means that also the processes with q ! 0

that have zero total momentum and enter the Cooper channel should be repulsive.
A positive pair scattering with small wavevector transfer is, however, incompatible
with singlet Cooper pairing that needs attractive scattering for these wavevector
combinations. In this sense, the overlap between the two ordering channels can
either support ferromagnetism or d -wave pairing, but not both tendencies together,
and the two channels compete already in the symmetric phase. We note as well that
the ferromagnetic instability is rather fragile and limited to the neighborhood of van
Hove filling. Upon doping away one finds a smooth crossover to an instability with
low critical scale and dominant p-wave pairing interactions [56].

The two different plot in the lower half of Fig. 12.6 are obtained for the same
system parameters. The left plot is for the “full” fermionic N -patch fRG in
the temperature-flow scheme [56] and shows the quantum critical point between
d -wave pairing and ferromagnetic instabilities. The plot on the right-hand side
is adapted from [58]. Here the fermionic vertex was decomposed into different
functions in charge, spin and pairing channel and with s- and d -wave formfac-
tors that depend only on one specific wavevector transfer or the total incoming
wavevector (as discussed in Sect. 12.3. While this seems a good approximation in
the parameter region further away from the transition between d -wave pairing and
ferromagnetism, is seems to overestimate the critical scale in the region near t 0 �
�1=3 and rather points to a first-order transition. Nevertheless this decomposition of
the vertex can be significantly improved by also treating a remainder term capturing
the previously ignored higher formfactors [58, 59] and represents a promising
direction for an improved wavevector resolution of the interaction vertex.

Summarizing these results on the one-band Hubbard model we see that the
fRG is capable of deriving tentative phase diagrams with detailed descriptions of
the wavevector-structure (and in principle also frequency-structure) of the effective
interactions. Next to establishing broader regime with clearcut instabilities toward
phases with unconventional Cooper pairing, the method also shows that the effective
interactions at the borders of these regimes are rather complex. To understand
the physical meaning of these flows with several strong channels in the effective
interaction and to relate them to observable phenomena is an interesting challenge
for the future research.

12.4.2 Iron Pnictides

A new field where fRG has contributed already considerably are the newly discov-
ered iron pnictide superconductors [5–7]. Here the applicability of a perturbative
technique like the one described here may be even better, as the pncitides are
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certainly not as strongly correlated as the high-Tc cuprates. This can already
be inferred from the experimental phase diagram, where one only finds metallic
antiferromagnetic phases (if at all), but never Mott insulating antiferromagnetism.
Further, theoretical works that try to assess the value of the iron-d orbital onsite-
interaction strengths find values that put the materials into the range of weak
to moderate correlations [70, 71]. Regarding the electronic structure, the pnic-
tides are, however, more complex than the cuprates. The main reason is that at
least three of the five iron d -orbital have non-negligible weight near the Fermi
level [72, 73], and that these d -orbitals hybridize strongly with the neighboring
arsenic p-orbitals. Therefore, even if one is only interested in the vicinity of
the Fermi surface, the multiband character has to be kept. The Fermi surface is
divided into two hole pockets, centered around the origin of the Brillouin zone
at k D 0, and two electron pockets around k D .�; 0/ and k D .0; �/

in the unfolded zone corresponding to the small unit cell with one iron atom
(or k D .�; �/ in the folded zone corresponding to the large unit cell with
two iron atoms). As pointed out early [72, 74], there is a potential nesting of
electron and hole pockets which enhances particle–hole susceptibilities with the
wavevector connecting these pockets. In addition, depending on the parameters and
approximations [75], there can be a third hole pocket at .�; �/ in the unfolded
zone.

The first fRG work on the pncitides was performed by Wang et al. [60] for a
five-band model. These authors obtained a sign-changing s-wave pairing instability
driven by AF fluctuations as the dominant pairing instability. Further they found
strongly anisotropic gaps around the electron pockets, with possibility of node
formation. The basic structure of the phase diagram with the sign-changing pairing
gap between electron- and hole-pockets can be understood already from simplified
few-patch RG approaches [76]. This would, however, predict isotropic gaps around
these pockets [77]. To understand the gap anisotropy one has to take into account
the multiorbital nature of the electronic spectrum in the iron pnictides, as was done
by the Berkeley group in their initial study [60]. Let us start with a single-particle
Hamiltonian in wavevector-orbital space

H D
X
k;s;o

h.k/oo0c
�

k;o;sck;o0;s ; (12.24)

where the matrices h.k/oo0 take into account intra- and inter-orbital (density–density
interactions and Hund’s rule) terms for orbital index o D o0 or o 6D o0 respectively.
s is the spin quantum number. The energy bands are obtained by a unitary
transformation from orbital to band operators (index b), ck;b;s D P

o ubo.k/ck;o0;s .
For the various density-functional-theory-based tight-binding parameterizations of
the band structure (e.g., [71, 78–80]) of the d -dominated bands, three orbitals dxy ,
dxz and dyz (in the coordinates of the small cell, with x- and y-axis pointing toward
the nearest iron neighbor) contribute significantly near the Fermi level. The simplest
choice for the interaction between the electrons is to introduce orbital-dependent
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intra- and inter-orbital onsite repulsions, plus Hund’s rule and pair hopping terms.
While these local terms lead to wavevector-independent interactions in the orbital
basis, parametrized by a tensor Vo1;o2;o3;o4, after the transformation to bands one
arrives at a wavevector-dependent interaction function

Vb1;b2;b3;b4.k1;k2;k3;k4/ D
X

o1;o2;o3;o4

Vo1;o2;o3;o4

� ub1;o1.k1/ub2;o2.k2/u�
b3;o3.k3/u

�
b4;o4.k4/:

(12.25)

The combination of ubos behind the interaction tensor is sometimes called the
“orbital make-up” [78, 79]. These prefactors cause in practice that already the
initial interaction of the fRG flow exhibits a marked wavevector-structure which
is then renormalized during the flow. It turns out that this orbital make-up has an
essential influence on the competition between different channels in the flow and is
responsible for the gap anisotropies found in the multiband fRG studies by Fa Wang
and collaborators [60,81,82] and in subsequent studies [83]. A typical result for the
predicted pairing gaps are shown in the right plot of Fig. 12.7.

Summarizing this brief section, the iron superconductors pose an interesting
problem to the fRG where the main ordering tendencies have been calculated in
good agreement with experiments, at least according to the currently accepted
picture. For the future research, one goal should be to make the fRG a useful bridge
between ab initio descriptions and experimental observables, in particular regarding
materials trends in, e.g., the gap structure or the energy scales of the different
systems. Furthermore, the studies should be extended to include the dispersion

Fig. 12.7 N -patch fRG results for the five-pocket scenario for FeAs-compounds. Left plot: fRG
flow of the leading ordering tendencies. The sign-changing s-wave channel is competing with
SDW and d -wave pairing. Right plot: Leading eigenvector of the Cooper pair scattering around the
Fermi pockets, showing the sign change between hole- (patch indices 1–48) and electron-pockets
(indices 49–80) and the anisotropy of the suggested gap function. Data taken from [83], interaction
parameters U D 3:5 eV, U 0 D 2:0 eV, JH D Jpair D 0:7 eV
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orthogonal to the iron-pnictide planes, as this would yield additional possibilities
for nodes in the gap function [5–7].

12.5 Remarks on the 1PI fRG Scheme

After describing two of the main applications of the fRG for 2D correlated electron
systems we discuss some formal issues to clarify the 1PI fRG scheme and to
compare with other RG approaches. This will also introduce some important issues
for the further development of the method.

12.5.1 Differences to Standard Wilsonian RG

In the formalism described in this chapter, only the first stage of a standard
Wilsonian RG procedure, the integrating-out of modes has been performed. This
first step may be considered the essential physical ingredient of all Wilson-inspired
RG schemes, thus the fRG schemes described here do not fall into any different
class. Regarding the other two standard stages of Wilsonian RG (see, e.g., [18,27]),
some comments are in place. The second stage usually refers to a momentum-
or wavevector-rescaling. This is typically not done in the context described here.
The most natural procedure for a many-fermion system would be a rescaling of
the wavevector-component perpendicular to the Fermi surface. However, a simple
calculation shows that this in general spoils wavevector conservation which we
would like to keep, for instance to resolve the anisotropy of the effective interactions.
For frequency rescaling there are no such counter-arguments, at least at zero
temperature, but all the works described here keep the frequency axis unchanged
during the flow. The main purpose for using the renormalization group on the works
described here is to sum up the perturbation series in an unbiased way. For this,
momentum or frequency-rescaling seems an unnecessary complication. Further,
also the field rescaling to keep the quadratic term unchanged, commonly referred to
as stage three of Wilsonian RG step, is usually not done in our context. The whole
setup of the scheme in general does not depend on whether the system is close
to a fixed point or certain parts of the action maintain the same form at all scales
such that a field rescaling is not needed. In particular for systems with the Fermi
level near a van Hove singularity, the dispersion is not scale-invariant, but the fRG
equations still give a valid description of the low-energy effective action – the
main target in the present context. It might be that some of these issues have to be
changed if one aims at describing fixed points of the flow in more detail, and other
flow schemes using all three stages are discussed in the literature [18]. Most of
the applications described here concentrate on determining the leading instabilities
down to a scale where the truncation error is expected to be unimportant, and for
this purpose the present formalism appears to be sufficient.
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12.5.2 Higher Loops

Another common question is where higher-loop contributions that one knows from
other RG approaches are hidden. Note that in the exact hierarchy of flow equations
for the 1PI vertices, no higher-loop diagrams occur on the right-hand side. It is,
however, not difficult to see that the solution of the one-loop fRG equations contains
contributions of all orders in the bare interactions, and with an arbitrarily high
number of loops. To see this for the coupling function V�, one has to insert
the solution of the flow equation for V� at scale �, schematically (supressing
wavevector and frequency summations) given by

V� D
Z �

�0

d�0 PV�0 D
Z �

�0

d�0 X
a

V�0La�0V�0

with the different particle–hole and particle–particle one-loop diagramsLa for least
one vertex into the “ˇ-function” for the coupling function on the right-hand side,
leading to

PV� D
X
a

V�L
a
�V� D

Z �

�0

d�0 X
a

V�L
a
�

X
a0

V�0La
0

�0V�0 :

The resulting expression corresponds to diagrams with three vertices at different
scales and four internal propagators (two coming from each La�). These dia-
grams are either “chains” of two one-loop diagrams, e.g., when La� and La

0

�0

are both particle–particle diagrams, or true two-loop terms, e.g., when La� is a
particle–particle loop and La

0

�0 is of particle–hole type. Of course, this procedure
of reinserting integrated one-loop terms for vertices can be iterated, leading to
diagrams of arbitrarily high order in bare interactions and loops. Similar procedures
can be used to assess two-loop self-energy effects that otherwise would be lost due
to the neglect of the frequency-dependence of the vertices, see e.g., [84–88].

12.5.3 Connection to Infinite-Order Single-Channel
Summations

The integration of the 1PI equations in the present truncation contains all standard
ladder and bubble summations known from perturbation theory. Hence the RG is
considered to give a rather unbiased picture of the leading ordering tendencies,
even in the case of competing ordering tendencies. The connection to, e.g., ladder
summations in the particle–particle channel can be seen if we drop all particle–
hole terms on the right-hand side of the flow equation for the interaction. Then the
remaining equation has the structure
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PV�.k1; k2; k3/ D V�.k1; k2; k/LPP
� .k;�k C k1 C k2/V�.k;�k C k1 C k2; k3/ :

Again, the sum over k is not written out. For simplicity, let us assume that the
initial condition V�0.k1; k2; k3/ does not depend on the wavevectors or frequencies,
and let us focus on the channel k1 C k2 D 0, i.e., zero total wavevector and zero
total momentum. Near the Fermi level and at T D 0, LPP

� .k;�k/ typically goes
like 1=�, with T

P
k L

PP
� .k;�k/ � �0=�, as the particle–particle bubble at k1 C

k2 D 0 diverges logarithmically in the infrared cutoff. These simplifications lead to
the equation

PV� D �0

�
V 2
� �! V� D V�0

1C �0V�0 log �0
�

If the initial vertex V�0 is attractive, this equation has a pole at �c D
�0 exp Œ�1=.�0V�0 �. Hence the RG equation exactly reproduces the well-
known Cooper instability. Likewise, all other particle–particle and particle–hole
instabilities obtained in ladder or bubble summations can be recovered in suitable
simplifications of the full one-loop flow. Some more attention has to be paid for the
case of particle–hole instabilities at small wavevector transfer, like ferromagnetic
Stoner instabilities. As mentioned in Sect. 12.2.3, the “deficit by construction”
in these cases can, however, be remedied by other flow parameters such as the
temperature [56], interaction strength [57] or a smooth frequency cutoff [58].

12.5.4 Symmetry-Breaking: Connection to Mean-Field
and Eliashberg Theory

Typically, the fRG flows in 2D lattice models lead to strong coupling, at least if
the temperature is low enough and if the density of states is nonzero at the Fermi
level. This means that at least one class of interaction processes becomes very strong
at low scales. Very often, as discussed in Sect. 12.4, this flow to strong coupling
suggests a symmetry breaking in a particular channel, accompanied with a gap
opening in the single-particle spectrum. Hence, instead of just exploring which type
of symmetry breaking is indicated by the flow, an improved flow would also describe
the growth of the order parameter and the change in the excitation spectrum. In the
fermionic models discussed here, there are various ways to pursue this idea.

One idea is partial bosonization, which means to perform a Hubbard–
Stratonovitch transformation of the leading interaction terms (written as a square of
appropriate fermionic bilinears) to an appropriate bosonic field. This field couples
to the fermionic bilinear and acts like an additional self-energy accounting for
the change in the dispersion relation. In a next step, the gapped fermions can be
integrated out, and the resulting bosonic theory can be studied. This approach is
very useful if the fermionic flow reveals a clearly defined collective boson, and if
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one is primarily interested in the collective dynamics at energy scales below the
fermionic gap. A more detailed account of this method is beyond the scope of this
chapter and the reader is referred to original papers [30, 65, 89, 90]. Interestingly,
for the bosonic sector, the full effective potential can be analyzed [91]. The bosonic
1PI flows in vertex expansion were e.g., discussed by Kopietz and collaborators
[18, 29].

Another less sophisticated way to describe the symmetry-broken phase would
be to stop the fRG flow at a certain scale �s where the interactions have built up a
definite structure. Then one can use a mean-field decoupling of the leading terms and
study the self-consistent mean-field solutions for the electronic modes below �s .
This method has been shown to work reasonably for the repulsive Hubbard model
on the square lattice [92]. One might ask whether the outcome depends strongly
on the scale �s where the transition to the mean-field description is made. Here
one is, however, helped by the fact that, e.g., in the simple BCS model with bare
attraction V�0 , initial bandwidth �0 and constant density of states �0, the scale-
dependent attraction grows like V� D V�0= log.�=�c/ toward the critical scale
�c D �0 exp.�1=V�0�0/. The BCS gap is then given by� D 2�0 exp.�1=V�0�0/
provided that the dimensionless coupling constant V�0�0 is smaller than unity. This
dependence means that the growth of V�s , when the bandwidth�0 D �s is changed
to a smaller �s0 , is canceled exactly by the shrinkage of the bandwidth, leaving the
gap value unchanged. In more complex models like the repulsive Hubbard model,
these dependences are altered by the particle–hole terms and the �s-independence
is no longer true. Nevertheless, in the study of [92], the�s-dependence turned out to
be tolerable, and the scheme gave a reasonable phase diagram with gap magnitudes
that compare well with other approaches.

A more ambitious, fully fermionic approach is to allow for a tiny symmetry-
breaking in the initial condition for the self-energy. Then the flow of this self-energy
needs to be treated together with the flow of the interactions. The symmetry breaking
might create new types of vertices. Then, at the critical scale �c, the anomalous
self-energy will grow rapidly and alter the flow of the interactions, preventing
a true divergence. Therefore all modes can be integrated out down to � D 0,
and the scheme provides a renormalized single-particle excitation spectrum in the
symmetry-broken phase. These schemes were first tried out using momentum-shell
cutoffs for simplified BCS-pairing [28] and charge-density-wave models [93] with
strongly restricted interactions (e.g., only particle pairs with total momentum zero
interact) for which mean-field theory and also the truncation of the fRG hierarchy
is exact. It turned out that a reordering of the hierarchy for the flow of the 1PI
vertex functions is essential to obtain correct results. More precisely, in the so-called
Katanin-modification [94] one replaces the product of a scale-dependent Green’s
function and a single-scale propagator, G�S� by G� PG�. While the single-scale-
propagator only contains a scale-derivative of the cutoff-function, the latter term also
contains in addition the derivative of the self-energy / Ṗ�. This term represents a
part of the feedback of the formerly neglected six-point vertex on the flow of the
four-point vertex [28]. Katanin showed that keeping these additional contributions
is important to fulfill certain Ward identities better, or even exactly in the case of
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simplified mean-field models. Physically, the role of these additional contributions
is as follows. The flow is started with a very small initial symmetry breaking or
gap parameter. This means that high-energy modes get integrated out with a gap
that is different from the final one at the end of the flow. The additional Ṗ�-term
contributions from all scales above � and corrects the contribution these of higher
modes when the anomalous self-energy changes during the flow. With this Katanin-
modification the “gap-flow” produces the exact BCS results when all scales are
integrated out and in the limit of initial symmetry breaking going to zero. One
can also nicely see diagrammatically that the fRG solution for this model is fully
equivalent to solving the BCS gap equation [28]. For models with less restricted
interactions, mean-field theory is no longer exact, and the fRG includes a number
of corrections to mean-field theory, such as the suppression of the pairing strength
through one-loop particle–hole diagrams [99]. One can also show how standard
Eliashberg theory [100–102] is contained as a specific approximation in the fRG
scheme (see [103] for the connection to Eliashberg theory above and at Tc, and
[104] for a general argument including the symmetry-broken phase). Further, the
approach in the symmetry-broken phase can be adapted to search for first-order
transitions [105] that are not detected by run-away flows in the symmetric phase.

The fate of the running interactions depends on the type of symmetry-breaking.
For breaking of a discrete symmetry, the interactions become smaller again at scales
below the rapid growth of the self-energy (the gap opening) [93]. For continuous
symmetry breaking as in the case of the BCS model, one can distinguish between
an “amplitude mode” in the vertex that also flows back to smaller values below
the gap opening, and a “Goldstone mode” that for � ! 0 basically saturates at
a value inversely proportional to the initial symmetry breaking [28]. Hence, for
realistic situations, these flows always produce large interactions with rather sharp
momentum and frequency structures. It is by no means clear that the simple patching
schemes described in this chapter are able to capture this behavior correctly, plus the
truncation error might become more important. These issues have slowed down the
application of these fermionic flows into the symmetry-broken phase for models
where mean-field theory is not exact. Nevertheless the scheme has been tried in
the attractive Hubbard model [95] and for competing orders in one dimension [96].
In both cases the results were rather promising, such that future work using this
approach might provide more results.

12.5.5 Normal-State Self-Energy

In most applications of the N -patch fRG, the self-energy flow has been ignored
completely. By now several aspects of the normal state self-energy˙�.k; !n/ have
been studied. ˙�.k; !n/ can in principle be computed from (12.13). The informa-
tion contained in the result depends, however, on the approximation employed for
the vertex or coupling functions appearing on the right-hand side. In most N -patch
studies, the frequency dependence of the vertex is neglected and hence ˙�.k; !n/
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comes out frequency-independent and usually real. This level of approximation is
still enough to obtain information on the flow of the Fermi surface. A first study
was presented in [55] for the one-band Hubbard model, where the flow of the
Fermi surface turned out to be rather mild with a tendency toward a flatter Fermi
surface down to a scale where the flow to strong coupling occurred. While this
gave some first insights, it also emphasized some formal problems that arise. First
of all, the particle number usually changes when the self-energy flow is included,
and for flows with fixed particle number one has to cope with a scale-dependent
chemical potential. Then, in momentum-shell schemes, it might happen that the
renormalized Fermi surface flows into regions that have been integrated out already.
This can lead to divergences. These problems have been addressed so far on a
conceptual level [97,98], but have not yet led to a clear picture on the Fermi surface
renormalization in the t–t 0 Hubbard model. Based on the experience in [55] we do
not believe that this aspect changes the obtained phase diagrams in the one-band
model considerably. It might become more important in multiband models, where
the orbital mixture of the bands enters the interaction functions, as explained in
Sect. 12.4, and the interplay between orbital weights and Fermi surface effects is
more subtle.

To obtain the imaginary part and also the frequency dependence of the self-
energy, one can reinsert the solution of the one-loop flow equation for the interaction
into the flow equation of the self-energy, similar to what is described in Sect. 12.5.2.
This leads to a frequency-dependent two-loop contribution with nonzero imaginary
part on the real frequency axis. From this, quasiparticle scattering rates, quasiparti-
cle weights as frequency derivatives and the whole renormalization of the spectral
function can be computed.

The scattering rates in the one-band Hubbard model have been addressed to
some extent in [84], where the anisotropy was described as function of the Fermi
surface shape and of the temperature. If the Fermi surface is located near the .�; 0/,
.0; �/ points of the Brillouin zone, the scattering rate is usually strongly anisotropic
and higher near .�; 0/, .0; �/ than near the Brillouin zone diagonal. Interestingly,
some experiments [106, 107] point to a positive correlation between the anisotropic
component of the transport scattering rate and the superconducting Tc. This trend
comes out of the fRG calculation of the quasiparticle scattering rates as well [86].
The reason for this trend are again the scattering processes between the saddle points
that are responsible for both the d -wave pairing and the enhanced self-energy in
these regions.

The flow of the quasiparticle weight, the Z-factor, determined by the frequency
derivative of the self-energy at zero frequency, has also been studied with similar
techniques in at least two works [85,109]. Here the suppression of the quasiparticle
weight is strongest near the saddle points, but is not strong enough to change the
leading flows to strong coupling. More drastic effects are found when the full
frequency dependence of the self-energy on the real axis is considered. This has
been studied in the one-band Hubbard model in [88,108], again using two-loop self-
energies. These works showed that the real part of the retarded self-energy develops
an additional kink at low frequencies near the instability scale and near the saddle
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points. This leads, if strong enough, to an anisotropic split-up of the quasiparticle
peak. These works also showed that a parametrization of the self-energy to a
Z-factor is in principle insufficient. The trends toward an anisotropic destruction
of the quasiparticles are quite promising in connection with the phenomenology of
high-Tc cuprates, but to date no firm connection between these weak coupling trends
and observable phenomena could be established. In particular more work is needed
that allows one to assess the precision of the fRG results very close to the instability.
Note also that in all these works on the frequency dependence and on the imaginary
part of the self-energy, the self-energy feedback on the flow of the vertex function
was ignored beyond the inclusion of Z-factors in a few works [85, 87, 109]. In this
regard and on a technical level, some fRG studies performed in impurity systems
[61] and for quantum spin [38] are more advanced, as they include the self-energy
feedback at least on some approximate level into the flow of the vertices. It is mainly
due to the rich wavevector structure of the interactions that for 2D many-electron
lattice systems the full self-energy feedback has not been tackled yet.

12.5.6 Refined Studies

Here we mention two refinements of the usualN -patch approach that give additional
support to the picture established in the simplest approximation. The first issue is
the frequency dependence of the vertex. Here, a simple patching of the Matsubara
frequency axis into a number of segments has been introduced in [110, 111]. This
was employed in [110] to study the impact of various phonon-mediated electron–
electron interactions on the flow to strong coupling in the t–t 0-Hubbard model.
Regarding the basic trends toward AF-SDW and d -wave pairing instabilities, the
refined treatment did not result in qualitative changes. However, it provided some
information on the frequency structure of the pairing interaction. Its width as
function of the frequency transfer between incoming and outgoing legs can be
interpreted as characteristic frequency of the “pairing boson.” This turned out to
very similar to the frequency width of the spin susceptibility at wavevector .�; �/,
again corroborating the picture of d -wave pairing mediated by AF spin fluctuations.

Another important and very useful step to improve the previousN -patch results
for the t–t 0-Hubbard model was undertaken by Katanin [87]. He included into the
flow of the four-point vertex the integrated solution of a term in third-order of
the four-point vertex that in the usual 1PI flow hierarchy contributes to the flow of
the six-point vertex. This goes beyond the usual truncation. Katanin also computed
real and imaginary part of the self-energy at the Fermi surface and included the
self-energy into the flow via a Z-factor. Summarizing his results, Katanin found
that these corrections do not change the leading instability but may lead to a
slight shift of the phase boundaries in comparison with the previous one-loop
analysis. In agreement with earlier studies [85], for curved Fermi surface and not
too low temperatures the quasiparticle weight was only mildly reduced so that the
quasiparticles remain well defined during the fRG flow. The quasiparticle scattering
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and Fermi surface shifts came out numerically small. In this sense, for most of the
parameter space, the commonly used one-loop fRG approach without self-energy
corrections should be expected to give a correct physical picture about the types and
characteristic scales of the leading instabilities.

12.6 Conclusions and Outlook

The fRG for interacting fermions is a widely applicable and flexible method based
on the safe and powerful foundation of exact flow equations for generating function-
als. In this chapter we have focussed on the use of this method for investigating the
leading low-temperature ordering tendencies of correlated electrons on 2D lattices.
For the one-band Hubbard model, one main result of the method has been to show
that there is a wide parameter regime for a d -wave Cooper-pairing instability, and to
map out the other main instabilities depending on the model parameters. While most
of the studies showing these instabilities still involve many approximations like the
neglect of self-energy effects, all available information indicates that the obtained
picture is qualitatively correct. The next steps will bring more detailed investigations
of the effective interactions and of self-energy effects. Another important extension
would be a detailed treatment of the symmetry-broken state for relevant models
like the 2D repulsive Hubbard model, where to the flow is continued down to
� D 0. Then the fRG can not only give information on the leading instabilities, but
also provide renormalized excitation spectra and correlation functions. For pnictide
superconductors, the fRG has proven to be a method that allows one study how
details of the microscopic model, like the orbital compositions of the bands, lead
to changes in the effective interactions and the predicted pairing gaps. Here the
task will be to describe experimentally observed material-specific properties (e.g.,
the presence or absence of magnetically ordered phases or superconducting gap
nodes and their location on the Fermi surfaces) in a reliable but still transparent
way. This will again require some further developments of the fRG method and its
implementation, as in these complex multiband systems the observables of interest
obtained so far might still depend on the degree of approximation.

Besides these two fields of applications described here, there are many other
activities in condensed matter physics using fRG methods, some of them were
mentioned in the Introduction. In particular the large freedom to choose the RG
flow trajectory will lead to many other occasions where the same fundamental flow
equations will lead to interesting and relevant results.
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Chapter 13
Two-Particle-Self-Consistent Approach
for the Hubbard Model

André-Marie S. Tremblay

Abstract Even at weak to intermediate coupling, the Hubbard model poses a
formidable challenge. In two dimensions in particular, standard methods such as
the random phase approximation are no longer valid since they predict a finite
temperature antiferromagnetic phase transition prohibited by the Mermin–Wagner
theorem. The two-particle-self-consistent (TPSC) approach satisfies that theorem as
well as particle conservation, the Pauli principle, the local moment and local-charge
sum-rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. The internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical review
of TPSC along with a short summary of existing results and two case studies: (a)
the opening of a pseudogap in two dimensions when the correlation length is larger
than the thermal de Broglie wavelength and (b) the conditions for the appearance of
d -wave superconductivity in the two-dimensional Hubbard model.

13.1 Introduction

Very few models can describe complex behavior observed in nature with an
economy of parameters. The Hubbard model is in this category. It has become
the cornerstone of correlated electron physics. On the down side, it is extremely
difficult to solve. While it was proposed in 1963 [1–3], the only exact results
that we know are in one dimension [4] and in infinite dimension [5]. A variety
of approximate approaches to solve this model exist, as can be checked from the
table of contents of this volume. The two-particle-self-consistent (TPSC) [6–8]
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approach that is described in the present chapter is in the category of nonperturbative
semianalytical approaches. By semianalytical, I mean that while it is possible to find
many analytical results, numerical integrations are necessary in the end to obtain
quantitative results.

Why should you bother to learn yet another approach? Because in its known
regime of applicability it is extremely reliable, as can be judged by benchmark quan-
tum Monte Carlo (QMC) calculations; because it satisfies a number of exact results
that control the quality of the approximation and make it physically appealing; and
because it gives physical insight into many questions related to the two-dimensional
Hubbard model relevant for the high-temperature superconductors and many other
materials. As a case study, I discuss in this chapter the physics of pseudogap induced
by precursors to long-range order. We will see that this describes the physics of the
pseudogap in electron-doped high-temperature superconductors where predictions
of TPSC have been verified experimentally. Pseudogap phenomena include the
appearance of a minimum in the single-particle spectral weight and density of state
at the Fermi level. I will be more precise later.

This chapter offers to the reader a simple pedagogical introduction to this
approach along with the case studies mentioned above and a guide to various other
problems that have been, or have not yet been, solved with TPSC.

I assume familiarity with the basics of many-body theory, i.e., the canonical
formalism, second quantization, many-body Green’s functions, response functions
and with the Matsubara formalism for finite temperature calculations. Knowledge
of functional derivative approaches would be useful for some of the more advanced
topics, but it is not essential to learn the important results.

Before you read on, you might be interested to know a little more about the
method to decide whether it is worth the effort. TPSC is designed to study the one-
band Hubbard model

H D �
X
ij�

ti;j c
�
i� cj� C U

X
i

ni"ni#; (13.1)

where the operator ci� destroys an electron of spin � at a site i . Its adjoint c�i�
creates an electron and the number operator is defined by ni� D c

�
i� ci� . The

symmetric hopping matrix ti;j determines the band structure, which here can be
arbitrary. The screened Coulomb interaction is represented by the energy cost U
of double occupation. It is also possible to generalize to cases where near-neighbor
interactions are included. We work in units where kB D 1, „ D 1 and the lattice
spacing is also unity, a D 1. In all numerical calculations, we take as unit of energy
the nearest-neighbor hopping t D 1:

One of the first concepts that is discussed with the Hubbard model is that of
the Mott transition [9]. When dimension is larger than unity, at “strong coupling,”
large U=t , the states are localized, but at “weak coupling,”small U=t , the states are
delocalized. The Mott transition is quite subtle and has been the subject of many
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papers. It is discussed in the chapters of Jarrell, Potthoff, Sénéchal and others in this
volume.

TPSC is valid from weak to intermediate coupling. Hence, on the negative side,
it does not describe the Mott transition. Nevertheless, there is a large number of
physical phenomena that it allows us to study. An important one is antiferromagnetic
fluctuations in two- or higher-dimensional lattices. A standard random phase
approximation (RPA) calculation of the spin susceptibility signals a finite tem-
perature phase transition to antiferromagnetic long-range order. This is prohibited
by the Mermin–Wagner theorem [10, 11] that states that in two dimensions you
cannot break a continuous symmetry at finite temperature. It is extremely important
physically that in two dimensions there is a wide range of temperatures where there
are huge antiferromagnetic fluctuations in the paramagnetic state. The standard way
to treat fluctuations in many-body theory, RPA, misses this. As we will see, the
RPA also violates the Pauli principle in an important way. The composite operator
method (COM), described in this volume by Avella and Mancini (see Chap. 3.7), is
another approach that satisfies the Mermin–Wagner theorem and the Pauli principle
[12–14]. What other approaches satisfy the Mermin–Wagner theorem at weak
coupling? The fluctuation exchange approximation (FLEX) [15, 16], and the self-
consistent renormalized theory of Moriya–Lonzarich [17–19]. Each has its strengths
and weaknesses, as discussed in [7, 20]. Weak coupling renormalization group
approaches1 become uncontrolled when the antiferromagnetic fluctuations begin to
diverge [21–24]. Other approaches include the effective spin-Hamiltonian approach
[25].

In summary, the advantages and disadvantages of TPSC are as follows. Advan-
tages:

• There are no adjustable parameters.
• Several exact results are satisfied: conservation laws for spin and charge, the

Mermin–Wagner theorem, the Pauli principle in the form
D
n2"
E
D ˝
n"
˛
; the local

moment and local-charge sum-rules and the f-sum rule.
• Consistency between one- and two-particle properties serves as a guide to the

domain of validity of the approach. (Double-occupancy obtained from sum-rules
on spin and charge equals that obtained from the self-energy and the Green
function.)

• Up to intermediate coupling, TPSC agrees within a few percent with QMC
calculations. Note that QMC calculations can serve as benchmarks since they
are exact within statistical accuracy, but they are limited in the range of physical
parameter accessible because of the sign problem.

• We do not need to assume that Migdal’s theorem applies to be able to obtain the
self-energy.

1See the contribution of Honerkamp in this volume.



412 A.-M.S. Tremblay

The main successes of TPSC that I will discuss include:

• Understanding the physics of the pseudogap induced by precursors of a long-
range ordered phase in two dimensions. For this understanding, one needs a
method that satisfies the Mermin–Wagner theorem to create a broad temperature
range where the antiferromagnetic correlation length is larger than the thermal de
Broglie wavelength. That method must also allow one to compute the self-energy
reliably. Only TPSC does both.

• Explaining the pseudogap in electron-doped cuprate superconductors over a wide
range of dopings.

• Finding estimates of the transition temperature for d -wave superconductivity
that were found later in agreement with quantum cluster approaches such as the
dynamical cluster approximation.

• Giving quantitative estimates of the range of temperature where quantum critical
behavior can affect the physics.

The drawbacks of this approach, that I explain as we go along, are that

• It works well in two or more dimensions, not in one dimension2 [27].
• It is not valid at strong coupling, except at very high temperature where it

recovers the atomic limit [28].
• It is not valid deep in the renormalized classical regime [6].
• For models other than the one-band Hubbard model, one usually runs out of sum-

rules and it is in general not possible to find all parameters self-consistently. With
nearest-neighbor repulsion, it has been possible to find a way out as I will discuss
below.

For detailed comparisons with QMC calculations, discussions of the physics and
detailed comparisons with other approaches, you can refer to [7, 20]. You can read
[29] for a review of the work related to the pseudogap and superconductivity up to
2005 including detailed comparisons with quantum cluster approaches in the regime
of validity that overlaps with TPSC (intermediate coupling).

Section 13.2 introduces TPSC in the simplest physically motivated way and
demonstrates the various results that are exactly satisfied. Section 13.3 presents
two case studies: the pseudogap and d -wave superconductivity. Many more known
results and extensions are summarized in Sect. 13.4. The attractive Hubbard model
is in the next to the last Sect. 13.5. I conclude with some open problems in Sect. 13.6.

13.2 The Method

In the first part of this section, I present TPSC as if we were discussing in front of a
chalkboard. More formal ways of presenting the results come later.

2Modifications have been proposed in zero dimension to use as impurity solver for DMFT [26].
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13.2.1 Physically Motivated Approach, Spin and Charge
Fluctuations

As basic physical requirements, we would like our approach to satisfy (a) conserva-
tion laws, (b) the Pauli principle and (c) the Mermin–Wagner–Hohenberg–Coleman
theorem. The standard RPA approach satisfies the first requirement but not the other
two. Let us see this. With the charge and spin given by

ni 	 ni" C ni# (13.2)

S z
i 	 ni" .�/ � ni# .�/ ; (13.3)

the RPA spin and charge susceptibilities in the one-band Hubbard model are given,
respectively, by

�sp.q/ D �0.q/

1� 1
2
U�0.q/

I �ch.q/ D �0.q/

1C 1
2
U�0.q/

(13.4)

with q a short-hand for both wave vector q and Matsubara frequency and where
�0.q/ is the Lindhard function that in analytically continued retarded form is, for a
discrete lattice of N sites,

�0R.q; !/ D � 2
N

X
k

f ."k/� f
�
"kCq

�

! C i�C "k � "kCq
: (13.5)

In this expression, assuming periodic boundary conditions,

"k D
0
@�

X
j

eik�.ri�rj /ti;j

1
A � 
 (13.6)

with the sum over j running over all neighbors of any of the sites i: The chemical
potential 
 is chosen so that we have the required density.

It is known on general grounds [30] that RPA satisfies conservation laws, but it
is easy to check that for a special case. Since spin and charge are conserved, then
the equalities �R

sp.q D 0;!/ D 0 and �R
ch.q D 0;!/ D 0 for ! ¤ 0 follow from

the corresponding equality for the non-interacting Lindhard function �0R.q D 0;
!/ D 0:

To check that RPA violates the Mermin–Wagner theorem, it suffices to note that
if U is larger than Uc D 2=�R

0 .qmax; ! D 0/, then the denominator 1 � 1
2
U�0.q/ of

�sp.q/ can diverge at some wave vector qmax and temperature.
The violation of the Pauli principle requires a bit more thinking. We derive a sum-

rule that rests on the use of the Pauli principle and checks that it is violated by RPA
to second order in U . First note that if we sum the spin and charge susceptibilities
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over all wave vectors q and all Matsubara frequencies i!n,3 we obtain local, equal-
time correlation functions, namely,

T

N

X
q

X
i!n

�sp.q;i!n/ D
D�
n" � n#

�2E D ˝n"
˛C ˝n#

˛ � 2 ˝n"n#
˛

(13.7)

and

T

N

X
q

X
i!n

�ch.q;i!n/ D
D�
n"Cn#

�2E� ˝n" C n#
˛2 D ˝n"

˛C ˝n#
˛C 2 ˝n"n#

˛� n2;
(13.8)

where on the right-hand side, we used the Pauli principle n2� D
�
c
�
�c�

	 �
c
�
� c�

	
D

c
�
�c� � c��c��c�c� D c

�
�c� D n� that follows from c

�
�c

�
� D c�c� D 0: This is the

simplest version of the Pauli principle. Full antisymmetry is another matter [31,32].
We call the first of the above displayed equations the local-spin sum-rule and the
second one the local-charge sum-rule. For RPA, adding the two sum-rules yields

T

N

X
q

X
i!n

�
�sp.q;i!n/C �ch.q;i!n/

�
(13.9)

D T

N

X
q

 
�0.q/

1 � 1
2
U�0.q/

C �0.q/

1C 1
2
U�0.q/

!
D 2n � n2: (13.10)

Since the noninteracting susceptibility �0.q/ satisfies the sum-rule, we see by
expanding the denominators that in the interacting case it is violated already to
second order in U because �0.q/ being real and positive (see (13.22)), the quantityP

q �0.q/
3 cannot vanish.

How can we go about curing this violation of the Pauli principle while not
damaging the conserving aspects? The simplest way is to proceed in the spirit of
Fermi liquid theory and assume that the effective interaction (irreducible vertex in
the jargon) is renormalized. This renormalization has to be different for spin and
charge so that

�sp.q/ D �.1/.q/

1 � 1
2
Usp�.1/.q/

(13.11)

�ch.q/ D �.1/.q/

1C 1
2
Uch�.1/.q/

: (13.12)

3In other references we often use iqn instead of i!n to denote the Matsubara frequency
corresponding to the wave vector q.
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In practice �.1/.q/ is the same4 as the Lindhard function �0.q/ (13.5) for U D 0

but, strictly speaking, there is a constant self-energy term that is absorbed in the
definition of 
 [20]. We are almost done with the collective modes. Substituting the
above expressions for �sp.q/ and �ch.q/ in the two sum-rules, local-spin and local-
charge appearing in (13.7) and (13.8), we could determine both Usp and Uch if we
knew

˝
n"n#

˛
: The following ansatz

Usp
˝
n"
˛ ˝
n#
˛ D U ˝n"n#

˛
(13.13)

gives us the missing equation. Now notice that Usp; or equivalently
˝
n"n#

˛
depend-

ing on which of these variables you want to treat as independent, is determined
self-consistently. That explains the name of the approach, “TPSC.” Since the sum-
rules are satisfied exactly, when we add them up the resulting equation, and hence
the Pauli principle, will also be satisfied exactly. In other words, in (13.10) that
follows from the Pauli principle, we now have Usp and Uch on the left-hand side
that arrange each other in such a way that there is no violation of the principle. In
standard many-body theory, the Pauli principle (crossing symmetry) is achieved in
a much more complicated way by solving parquet equations [31, 32].

The ansatz (13.13) is inspired from the work of Singwi [33, 34] and was also
found independently by Hedeyati and Vignale [35]. The whole procedure is not as
arbitrary as it may seem and we justify this in more detail in Sect. 13.2.5 with the
formal derivation. For now, let us just add a few physical considerations.

Remark 13.1. Since Usp and Uch are renormalized with respect to the bare value,
one might have expected that one should use the dressed Green’s functions in the
calculation of �0 .q/ : It is explained in Appendix A of [7] that this would lead to
a violation of the results �R

sp.q D 0;!/ D 0 and �R
ch.q D 0;!/ D 0. In the present

approach, the f-sum rule

Z
d!

�
!�00

ch;sp .q;!/ D lim
�!0

T
X
i!n

�
e�i!n� � ei!n�

�
i!n�ch;sp .q; i!n/ (13.14)

D 1

N

X
k�

�
�kCq C �k�q � 2�k

�
nk� (13.15)

is satisfied with nk� D n
.1/
k� , which is the same as the Fermi function for the

noninteracting case since it is computed from G.1/.5

Remark 13.2. Usp
˝
n"
˛ ˝
n#
˛ D U

˝
n"n#

˛
can be understood as correcting the

Hartree–Fock factorization to obtain the correct double-occupancy. Expressing the

4The meaning of the superscripts differs from that in [7]. Superscripts .2/ .1/ here correspond,
respectively, to .1/ .0/ in [7].
5For the conductivity with vertex corrections [36], the f-sum rule with nk� obtained from G.2/ is
satisfied.
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irreducible vertex in terms of an equal-time correlation function is inspired by the
approach of Singwi and Tosi [33] to the electron gas. But TPSC is different since it
also enforces the Pauli principle and connects to a local correlation function, namely,˝
n"n#

˛
:

13.2.2 Mermin–Wagner, Kanamori–Brueckner
and Benchmarking Spin and Charge Fluctuations

The results that we found for spin and charge fluctuations have the RPA form but
the renormalized interactions Usp and Uch must be computed from

T

N

X
q

X
i!n

�.1/.q/

1� 1
2
Usp�

.1/.q/
D n � 2 ˝n"n#

˛
(13.16)

and
T

N

X
q

X
i!n

�.1/.q/

1C 1
2
Uch�

.1/.q/
D nC 2 ˝n"n#

˛ � n2: (13.17)

With the ansatz (13.13), the above system of equations is closed and the Pauli
principle is enforced. The first of the above equations is solved self-consistently
with the Usp ansatz. This gives the double-occupancy

˝
n"n#

˛
that is then used to

obtain Uch from the next equation. The fastest way to numerically compute �.1/.q/
is to use fast-Fourier transforms [36].

These TPSC expressions for spin and charge fluctuations were obtained by
enforcing the conservations laws and the Pauli principle. In particular, TPSC
satisfies the f-sum rule (13.15). But we obtain for free a lot more, namely,
Kanamori–Brueckner renormalization and the Mermin–Wagner theorem.

Let us begin with Kanamori–Brueckner renormalization of U . Many years ago,
Kanamori in the context of the Hubbard model [2], and Brueckner in the context of
nuclear physics, introduced the notion that the bare U corresponds to computing
the scattering of particles in the first Born approximation. In reality, we should
use the full scattering cross-section and the effective U should be smaller. From
Kanamori’s point of view, the two-body wave function can minimize the effect of
U by becoming smaller to reduce the value of the probability that two electrons are
on the same site. The maximum energy that this can cost is the bandwidth since
that is the energy difference between a one-body wave function with no nodes and
one with the maximum allowed number. Let us see how this physics comes out of
our results. Far from phase transitions, we can expand the denominator of the local
moment sum-rule equation to obtain

T

N

X
q

X
i!n

�.1/.q/

�
1C 1

2
Usp�

.1/.q/

�
D n � 2Usp

U

˝
n"
˛ ˝
n#
˛
: (13.18)
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Since T
N

P
q

P
i!n
�.1/.q/ D n � 2 ˝n"

˛ ˝
n#
˛
, we can solve for Usp and obtain6

Usp D U

1C�U (13.19)

� 	 1

n2
T

N

X
i!n

X
q

�
�.1/

	2
.q;i!n/ : (13.20)

We see that at large U; Usp saturates to 1=�, which in practice we find to be of
the order of the bandwidth. For those that are familiar with diagrams, note that the
Kanamori–Brueckner physics amounts to replacing each of the interactions U in
the ladder or bubble sum for diagrams in the particle–hole channel by infinite ladder
sums in the particle–particle channel [37]. This is not quite what we obtain here

since
�
�.1/

�2
is in the particle–hole channel, but in the end, numerically, the results

are close and the physics seems to be the same. One cannot make strict comparisons
between TPSC and diagrams since TPSC is nonperturbative.

While Kanamori–Brueckner renormalization, or screening, is a quantum effect
that occurs even far from phase transitions, when we are close we need to worry
about the Mermin–Wagner theorem. To satisfy this theorem, approximate theories
must prevent

˝
S2z
˛

from becoming infinite, which is equivalent to stopping
˝
n"n#

˛
from taking unphysical values. This quantity is positive and bounded by its value
for U D 1 and its value for noninteracting systems, namely, 0 � ˝n"n#

˛ � n2=4.
Hence, the right-hand side of the local-moment sum-rule (13.16) is contained in the
interval

�
n; n � 1

2
n2
�
: To see how the Mermin–Wagner theorem is satisfied, write

the self-consistency condition (13.16) in the form

T

N

X
q

�.1/.q/

1 � 1
2
U

hn"n#i
hn"ihn#i�

.1/ .q/
D n � 2hn"n#i: (13.21)

Consider increasing hn"n#i on the left-hand side of this equation. The denominator
becomes smaller, hence the integral larger. To become larger, hn"n#i has to decrease
on the right-hand side. There is thus a negative feedback in this equation that will
make the self-consistent solution finite. This, however, does not prevent the expected
phase transition in three dimensions [38]. To see this, we need to look in more details
at the phase space for the integral in the sum-rule.

As we know from the spectral representation for �;

�ch;sp .q; i!n/ D
Z

d!0

�

�00
ch;sp .q;!

0/
!0 � i!n D

Z
d!0

�

!0�00
ch;sp .q;!

0/
.!0/2 C .!n/2

: (13.22)

6There is a misprint of a factor of 2 in [7]. It is corrected in [28].
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The zero Matsubara frequency contribution is always the largest. There, we find the
so-called Ornstein–Zernicke form for the susceptibility.

13.2.2.1 Ornstein–Zernicke Form

Lets us focus on the zero Matsubara frequency contribution and expand the
denominator near the point, where 1 � 1

2
Usp�

.1/.Q;0/ D 0: The wave vector Q
is that where �.1/ is maximum. We find [38],

�sp .qCQ; i!n/ ' �.1/.Q;0/

1 � 1
2
Usp�.1/ � 1

4
Usp

@2�.1/

@Q2 q
2 � 1

2
Usp

@�.1/

@.i!n/
i!n

� �2

1C �2q2 C i!n=!sp
; (13.23)

where all functions and derivatives in the denominator are evaluated at .Q; 0/ and
where, on dimensional grounds,

� 1
4
Usp

@2�.1/.Q;0/
@Q2�

1 � 1
2
Usp�

.1/.Q; 0/
� (13.24)

scales (noted �) as the square of a length, �, the correlation length. That length
is determined self-consistently. Since !sp � ��2; all finite Matsubara frequency
contributions are negligible if 2�T=!sp � 2�T �2 � 1. That condition in the
form !sp � T justifies the name of the regime we are interested in, namely, the
renormalized classical regime. The classical regime of a harmonic oscillator occurs
when ! � T: The regime here is “renormalized” classical because at temperatures
above the degeneracy temperature, the system is a free classical gas. As temperature
decreases below the Fermi energy, it becomes quantum mechanical, then close to
the phase transition, it becomes classical again.

Substituting the Ornstein–Zernicke form for the susceptibility in the self-
consistency relation (13.16), we obtain

T

Z
ddq

.2�/d
1

q2 C ��2 D eC; (13.25)

where eC contains non-zero Matsubara frequency contributions as well as n � 2˝
n"n#

˛
: SinceeC is finite, this means that in two dimensions .d D 2/, it is impossible

to have ��2 D 0 on the left-hand side otherwise the integral would diverge
logarithmically. This is clearly a dimension-dependent statement that proves the
Mermin–Wagner theorem. In two dimensions, we see that the integral gives a
logarithm that leads to
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� � exp

�
C 0

T

�
;

where in general, C 0 can be temperature dependent [38]. When C 0 is not tempera-
ture dependent, the above result is similar to what is found at strong coupling in
the nonlinear sigma model. The above dimensional analysis is a bit expeditive.
A more careful analysis [39, 40] yields prefactors in the temperature dependence
of the correlation length.

The set of TPSC equations for spin and charge fluctuations (13.16), (13.17),
(13.13) is rather intuitive and simple. The agreement of calculations with benchmark
QMC calculations is rather spectacular, as shown in Fig. 13.1. There, one can see the
results of QMC calculations of the structure factors, i.e., the Fourier transform of the
equal-time charge and spin correlation functions, compared with the corresponding
TPSC results. This figure allows one to watch the Pauli principle in action. At
U D 4t; Fig. 13.1a shows that the charge structure factor does not have a monotonic
dependence on density. This is because, as we approach half-filling, the spin
fluctuations are becoming so large that the charge fluctuations have to decrease so
that the sum still satisfies the Pauli principle, as expressed by (13.10).

More comparisons may be found in [29] and [6,7,41,42]. This kind of agreement
is found even at couplings of the order of the bandwidth and when second-neighbor
hopping t 0 is present [43, 44].

Fig. 13.1 Wave vector (q) dependence of the spin and charge structure factors for different sets of
parameters. Solid lines are from TPSC and symbols are QMC data. Monte Carlo data for n D 1

and U D 8t are for 6�6 clusters and T D 0:5t ; all other data are for 8�8 clusters and T D 0:2t .
Error bars are shown only when significant. (a) and (b) are for the charge structure factor and (c) (d)
for the spin structure factor as defined in [6] where the original figure appears



420 A.-M.S. Tremblay

Remark 13.3. Even though the entry in the renormalized classical regime is well
described by TPSC [45], (13.13) for Usp fails deep in that regime because ˙.1/

becomes too different from the true self-energy. At nD 1, t 0D 0, deep in the renor-
malized classical regime,Usp becomes arbitrarily small, which is clearly unphysical.
However, by assuming that hn"n#i is temperature independent below TX; a property
that can be verified from QMC calculations, one obtains a qualitatively correct
description of the renormalized-classical regime. One can even drop the ansatz and
take hn"n#i from QMC on the right-hand side of the local moment sum-rule (13.16)
to obtain Usp:

13.2.3 Self-Energy

Collective charge and spin excitations can be obtained accurately from Green’s
functions that contain a simple self-energy, as we have just seen. Such modes are
determined more by conservation laws than by details of the self-energy, especially
at finite temperature where the lowest fermionic Matsubara frequency is not zero.
The self-energy on the other hand is much more sensitive to collective modes
since these are important at low frequency. The second step of TPSC is thus to
find a better approximation for the self-energy. This is similar in spirit to what
is done in the electron gas [8] where plasmons are found with noninteracting
particles and then used to compute an improved approximation for the self-energy.
This two-step process is also analogous to renormalization group calculations
where renormalized interactions are evaluated to one-loop order and quasiparticle
renormalization appears only to two-loop order [46–48].

The method to derive the result is justified using the formal derivation [20]
that appears in Sect. 13.2.5. If you are familiar with diagrams, you can understand
physically the result by looking at Fig. 13.2 that shows the exact diagrammatic
expressions for the three-point vertex (green triangle) and self-energy (blue circle)
in terms of Green’s functions (solid black lines) and irreducible vertices (red boxes).
The bare interaction U is the dashed line. One should keep in mind that we are not
using perturbation theory despite the fact that we draw diagrams. Even within an
exact approach, the quantities defined in the figure have well-defined meanings. The
numbers on the figure refer to spin, space and imaginary time coordinates. When
there is an overbar, there is a sum over spin and spatial indices and an integral over
imaginary time.

In TPSC, the irreducible vertices in the first line of Fig. 13.2 are local, i.e.,
completely momentum and frequency independent. They are given by Usp and Uch:

If we set point 3 to be the same as point 1; then we can obtain directly the TPSC spin
and charge susceptibilities from that first line. In the second line of the figure, the
exact expression for the self-energy is displayed.7 The first term on the right-hand

7In the Hubbard model the Fock term cancels with the same-spin Hartree term.
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Fig. 13.2 Exact expression for the three-point vertex (green triangle) in the first line and for the
self-energy in the second line. Irreducible vertices are the red boxes and Green’s functions solid
black lines. The numbers refer to spin, space and imaginary time coordinates. Symbols with an
over-bard are summed/integrated over. The self-energy is the blue circle and the bare interaction
U the dashed line

Fig. 13.3 Exact self-energy in terms of the Hartree–Fock contribution and of the fully reducible
vertex � represented by a textured box

side is the Hartree–Fock contribution. In the second term, one recognizes the bare
interaction U at one vertex that excites a collective mode represented by the green
triangle and the two Green’s functions. The other vertex is dressed, as expected.
In the electron gas, the collective mode would be the plasmon. If we replace the
irreducible vertex using Usp and Uch found for the collective modes, we find that
here, both types of modes, spin and charge, contribute to the self-energy [41].

There is, however, an ambiguity in obtaining the self-energy formula [49].
Within the assumption that only Usp and Uch enter as irreducible particle–hole
vertices, the self-energy expression in the transverse spin-fluctuation channel is
different. What do we mean by that? Consider the exact formula for the self-energy
represented symbolically by the diagram of Fig. 13.3. In this figure, the textured
box is the fully reducible vertex � .q; k � k0; k C k0 � q/ that depends in general
on three momentum-frequency indices. The longitudinal version of the self-energy
corresponds to expanding the fully reducible vertex in terms of diagrams that are
irreducible in the longitudinal (parallel spins) channel illustrated in Fig. 13.2. This
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takes good care of the singularity of � when its first argument q is near .�; �/ : The
transverse version [20,49] does the same for the dependence on the second argument
k�k0, which corresponds to the other (antiparallel spins) particle–hole channel. But
the fully reducible vertex obeys crossing symmetry. In other words, interchanging
two fermions just leads to a minus sign. One then expects that averaging the two
possibilities gives a better approximation for � since it preserves crossing symmetry
in the two particle–hole channels [49]. By considering both particle–hole channels
only, we neglect the dependence of � on k C k0 � q because the particle–particle
channel is not singular. The final formula that we obtain is [49]

˙.2/
� .k/ D Un�� C U

8

T

N

X
q

�
3Usp�sp.q/C Uch�ch.q/

�
G.1/
� .k C q/; (13.26)

where n�� is the average single-spin occupation. The superscript .2/ reminds us that
we are at the second level of approximation. G.1/

� is the same Green’s function as
that used to compute the susceptibilities �.1/.q/. Since the self-energy is constant at
that first level of approximation, this means that G.1/

� is the noninteracting Green’s
function with the chemical potential that gives the correct filling. That chemical

potential 
.1/ is slightly different from the one that we must use in
�
G.2/

��1 D
i!n C 
.2/ � "k � ˙.2/ to obtain the same density [50]. Estimates of 
.1/ may be
found in [20, 50]. Further justifications for the above formula are given below in
Sect. 13.2.4.

But before we come up with more formalism, we check that the above formula
is accurate by comparing in Fig. 13.4 the spectral weight (imaginary part of the
Green’s function) obtained from (13.26) with that obtained from QMC calculations.
The latter are exact within statistical accuracy and can be considered as benchmarks.

TPSC FLEXMonteCarlo

Fig. 13.4 Single-particle spectral weight A.k; !/ for U D 4, ˇ D 5, n D 1, and all independent
wave vectors k of an 8 � 8 lattice. Results obtained from maximum entropy inversion of
quantum Monte Carlo data on the left panel, from TPSC in the middle panel and from the FLEX
approximation on the right panel (Relative error in all cases is about 0.3%.) From [49]
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The meaning of the curves are detailed in the caption. The comparison is for half-
filling in a regime where the simulations can be done at very low temperature
and where a non-trivial phenomenon, a pseudogap, appears. This all important
phenomenon is discussed further below in Sect. 13.2.6 and in the first case study,
Sect. 13.3.1. In the third panel, we show the results of another popular many-body
approach, the FLEX [15]. It misses [51] the physics of the pseudogap in the single-
particle spectral weight because it uses fully dressed Green’s functions and assumes
that Migdal’s theorem applies, i.e., the vertex does not need to be renormalized
consequently [7, 52]. The same problem exists in the corresponding version of the
GW approximation. [53]

Remark 13.4. The dressing of one vertex in the second line of Fig. 13.2 means
that we do not assume a Migdal theorem. Migdal’s theorem arises in the case of
electron–phonon interactions [54]. There, the small ratio m=M; where m is the
electronic mass andM the ionic mass, allows one to show that the vertex corrections
are negligible. This is extremely useful in formulating the Eliashberg theory of
superconductivity.

Remark 13.5. In [7, 49] we used the notation ˙.1/ instead of ˙.2/: The notation of
the present chapter is the same as that of [20]

13.2.4 Internal Accuracy Checks

How can we make sure that TPSC is accurate? We have shown sample comparisons
with benchmark QMC calculations, but we can check the accuracy in other ways.
For example, we have already mentioned that the f-sum rule (13.15) is exactly
satisfied at the first level of approximation (i.e., with n.1/k on the right-hand side).
Suppose that on the right-hand side of that equation, one uses nk obtained from
G.2/ instead of the Fermi function. One should find that the result does not change
by more than a few percent. This is what happens when agreement with QMC is
good.

When we are in the Fermi liquid regime, another way to verify the accuracy of
the approach is to verify if the Fermi surface obtained fromG.2/ satisfies Luttinger’s
theorem very closely.

Finally, there is a consistency relation between one- and two-particle quantities
(˙ and

˝
n"n#

˛
). The relation

T

N

X
k

X
n

˙.k; i!n/G.k; i!n/e�i!n0� D 1

2
Tr .˙G/ D U ˝n"n#

˛
(13.27)

should be satisfied exactly for the Hubbard model. This result follows from the
definition of self-energy and is derived in (13.40) below. In standard many-body
books [54], it is encountered in the calculation of the free energy through a
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coupling-constant integration. In TPSC, it is not difficult8 to show that the following
equation

1

2
Tr
�
˙.2/G.1/

	
D U ˝n"n#

˛
(13.28)

is satisfied exactly with the self-consistent U
˝
n"n#

˛
obtained with the susceptibili-

ties.9 An internal accuracy check consists in verifying by how much 1
2
Tr
�
˙.2/G.2/

�
differs from 1

2
Tr
�
˙.2/G.1/

�
: Again, in regimes where we have agreement with

QMC calculations, the difference is only a few percent.
The above relation between ˙ and

˝
n"n#

˛
gives us another way to justify our

expression for ˙.2/: Suppose one starts from Fig. 13.2 to obtain a self-energy
expression that contains only the longitudinal spin fluctuations and the charge
fluctuations, as was done in the first papers on TPSC [6]. One finds that each
of these separately contributes an amount U

˝
n"n#

˛
=2 to the consistency relation

(13.28). Similarly, if we work only in the transverse-spin channel [20, 49] we find
that each of the two transverse-spin components also contributes U

˝
n"n#

˛
=2 to

1
2
Tr
�
˙.2/G.1/

�
: Hence, averaging the two expressions also preserves rotational

invariance. In addition, one verifies numerically that the exact sum-rule ([7],
Appendix A)

�
Z

d!0

�
˙ 00R
�

�
k;!0� D U 2n�� .1 � n�� / (13.29)

determining the high-frequency behavior is satisfied to a higher degree of accuracy
with the symmetrized self-energy expression (13.26).

Equation (13.26) for ˙.2/ is different from so-called Berk–Schrieffer type
expressions [56] that do not satisfy10 the consistency condition between one- and
two-particle properties, 1

2
Tr .˙G/ D U ˝n"n#

˛
:

Remark 13.6. Schemes, such as FLEX, that use on the right-hand side G.2/ are
thermodynamically consistent (Sect. 13.4.4.1) and might look better. However, as
we just saw, in Fig. 13.4, FLEX misses some important physics. The reason [7]
is that the vertex entering the self-energy in FLEX is not at the same level of
approximation as the Green’s functions. Indeed, since the latter contain self-energies
that are strongly momentum and frequency dependent, the irreducible vertices that
can be derived from these self-energies should also be frequency and momentum
dependent, but they are not. In fact they are the bare vertices. It is as if the
quasiparticles had a lifetime while at the same time interacting with each other
with the bare interaction. Using dressed Green’s functions in the susceptibilities
with momentum and frequency independent vertices leads to problems as well. For
example, the conservation law �sp;ch .q D 0,i!n/ D 0 is violated in that case, as

8Appendix B of [7].
9FLEX does not satisfy this consistency requirement. See Appendix E of [7]. In fact double-
occupancy obtained from ˙G can even become negative [55].
10(See [7], Appendix E).
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shown in Appendix A of [7]. Further criticism of conserving approaches appears in
Appendix E of [7] and in [20].

13.2.5 A More Formal Derivation

Details of a more formal derivation may be found in [57]. For completeness we
repeat some of the derivation. The reader more interested in the physics may skip
that section. The first two subsections present some general formalism that is then
used in the following two subsections to derive TPSC.

13.2.5.1 Single-Particle Properties

Following functional methods of the Schwinger school[30, 58, 59], we begin with
the generating function with source fields �� and field destruction operators  in
the grand canonical ensemble

lnZ Œ�� D ln Tr



e�ˇ

�bH�
bN	T�
�

e� ��.1/��.1;2/ �.2/
	�
: (13.30)

We adopt the convention that 1 stands for the position and imaginary time indices
.r1; �1/ : The overbar means summation over every lattice site and integration over
imaginary-time from 0 to ˇ, and � summation over spins. T� is the time-ordering
operator.

The propagator in the presence of the source field is obtained from functional
differentiation

G� .1; 2I f�g/ D �
˝
 � .1/ 

�
� .2/

˛
�
D � ı lnZ Œ��

ı�� .2; 1/
: (13.31)

From now on, the time-ordering operator in averages, hi, is implicit. Physically
relevant correlation functions are obtained for f�g D 0 but it is extremely convenient
to keep finite f�g in intermediate steps of the calculation.

Using the equation of motion for the field  and the definition of the self-energy,
one obtains the Dyson equation in the presence of the source field [60]

�
G�1
0 � �

�
G D 1C˙GI G�1 D G�1

0 � � �˙; (13.32)

where from the commutator of the interacting part of the Hubbard Hamiltonian H;
one obtains

˙�

�
1; 1I f�g�G�

�
1; 2I f�g� D �U ˝ ���

�
1C� �� .1/  � .1/ �� .2/

˛
�
: (13.33)

The imaginary time in 1C is infinitesimally larger than in 1.
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13.2.5.2 Response Functions

Response (four-point) functions for spin and charge excitations can be obtained
from functional derivatives .ıG=ı�/ of the source-dependent propagator. Following
the standard approach and using matrix notation to abbreviate the summations and
integrations we have,

GG�1 D 1 (13.34)

ıG

ı�
G�1 CGıG

�1

ı�
D 0: (13.35)

Using the Dyson equation (13.32)G�1 D G�1
0 � � �˙ this may be rewritten as

ıG

ı�
D �G ıG

�1

ı�
G D GˆG CG ı˙

ı�
G; (13.36)

where the symbol ˆ inGˆG reminds us that the neighboring labels of the propagators
have to be the same as those of the � in the functional derivative. If perturbation
theory converges, we may write the self-energy as a functional of the propagator:
From the chain-rule, one then obtains an integral equation for the response function
in the particle–hole channel that is the analog of the Bethe–Salpeter equation in the
particle–particle channel

ıG

ı�
D GˆG CG



ı˙

ıG

ıG

ı�

�
G: (13.37)

The labels of the propagators in the last term are attached to the self-energy, as in
(13.36).11 Vertices appropriate for spin and charge responses are given, respectively,
by

Usp D ı˙"
ıG#

� ı˙"
ıG"

I Uch D ı˙"
ıG#

C ı˙"
ıG"

: (13.38)

13.2.5.3 TPSC First Step: Two-Particle Self-Consistency for G.1/;˙ .1/;

�
.1/

sp D Usp and � .1/

ch D Uch

In conserving approximations, the self-energy is obtained from a functional deriva-
tive ˙ ŒG� D ı˚ ŒG� =ıG of ˚ the Luttinger–Ward functional, which is itself
computed from a set of diagrams. To liberate ourselves from diagrams, we start

11To remind ourselves of this, we may also adopt an additional vertical matrix notation convention

and write (13.37) as ıG
ı�

D GˆG CG



ı˙
ıG
ıG
ı�

�
G.
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instead from the exact expression for the self-energy, (13.33) and notice that when
label 2 equals 1C; the right-hand side of this equation is equal to double-occupancy˝
n"n#

˛
. Factoring as in Hartree–Fock amounts to assuming no correlations. Instead,

we should insist that
˝
n"n#

˛
be obtained self-consistently. After all, in the Hubbard

model, there are only two local four-point functions:
˝
n"n#

˛
and

˝
n"n"

˛ D ˝
n#n#

˛
:

The latter is given exactly, through the Pauli principle, by
˝
n"n"

˛ D ˝
n#n#

˛ D˝
n"
˛ D ˝n#

˛ D n=2; when the filling n is known: In a way,
˝
n"n#

˛
in the self-energy

equation (13.33) can be considered as an initial condition for the four-point function
when one of the points, 2, separates from all the others which are at 1: When that
label 2 does not coincide with 1, it becomes more reasonable to factor à la Hartree–
Fock. These physical ideas are implemented by postulating

˙.1/
�

�
1; 1I f�g�G.1/

�

�
1; 2I f�g� D Af�gG.1/��

�
1; 1CI f�g�G.1/

� .1; 2I f�g/ ; (13.39)

where Af�g depends on the external field and is chosen such that the exact
result12

˙�

�
1; 1I f�g�G�

�
1; 1CI f�g� D U ˝n" .1/ n# .1/

˛
�

(13.40)

is satisfied. It is easy to see that the solution is

Af�g D U
˝
n" .1/ n# .1/

˛
�˝

n" .1/
˛
�

˝
n# .1/

˛
�

: (13.41)

Substituting Af�g back into our ansatz (13.13) we obtain our first approximation for

the self-energy by right-multiplying by
�
G.1/
�

��1 W

˙.1/
� .1; 2I f�g/ D Af�gG.1/��

�
1; 1CI f�g� ı .1 � 2/ : (13.42)

We are now ready to obtain irreducible vertices using the prescription of the
previous section, (13.38), namely, through functional derivatives of ˙ with respect
toG: In the calculation ofUsp; the functional derivative of

˝
n"n#

˛
=
�˝
n"
˛ ˝
n#
˛�

drops
out, so we are left with13

Usp D
ı˙

.1/

"
ıG

.1/

#

ˇ̌
ˇ̌
ˇ
f�gD0

� ı˙
.1/

"
ıG

.1/

"

ˇ̌
ˇ̌
ˇ
f�gD0

D Af�gD0 D U
˝
n"n#

˛
˝
n"
˛ ˝
n#
˛ : (13.43)

12See footnote (14) of [20] for a discussion of the choice of limit 1C versus 1�.
13For n > 1, all particle occupation numbers must be replaced by hole occupation numbers.
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The renormalization of this irreducible vertex may be physically understood as
coming from Kanamori–Brueckner screening [7]. This completes the derivation of
the ansatz that was missing in our first derivation in Sect. 13.2.1.

The functional-derivative procedure generates an expression for the charge vertex
Uch which involves the functional derivative of

˝
n"n#

˛
=
�˝
n"
˛ ˝
n#
˛�

which contains
six-point functions that one does not really know how to evaluate. But, if we again
assume that the vertex Uch is a constant, it is simply determined by the requirement
that charge fluctuations also satisfy the fluctuation–dissipation theorem and the Pauli
principle, as in (13.17).

Note that, in principle, ˙.1/ also depends on double-occupancy, but since ˙.1/

is a constant, it is absorbed in the definition of the chemical potential and we do
not need to worry about it in this case. That is why the noninteracting irreducible
susceptibility �.1/.q/ D �0.q/ appears in the expressions for the susceptibility, even
though it should be evaluated with G.1/ that contains˙.1/: A rough estimate of the
renormalized chemical potential (or equivalently of ˙.1/) is given in the Appendix
of [20]. One can check that spin and charge conservations are satisfied by our
susceptibilities.

13.2.5.4 TPSC Second Step: An Improved Self-Energy ˙.2/

Collective modes are emergent objects that are less influenced by details of
the single-particle properties than the other way around. We thus wish now to
obtain an improved approximation for the self-energy that takes advantage of
the fact that we have found accurate approximations for the low-frequency spin
and charge fluctuations. We begin from the general definition of the self-energy
(13.33) obtained from Dyson’s equation. The right-hand side of that equation can
be obtained either from a functional derivative with respect to an external field that is
diagonal in spin, as in our generating function (13.30), or by a functional derivative

of
D
 �� .1/ �� .2/

E
�t

with respect to a transverse external field �t :

Working first in the longitudinal channel, the right-hand side of the general
definition of the self-energy (13.33) may be written as

˙�

�
1; 1

�
G�

�
1; 2

� D �U
"
ıG� .1; 2I f�g/
ı��� .1C; 1/

ˇ̌
ˇ̌
f�gD0

�G��
�
1; 1C�G� .1; 2/

#
:

(13.44)

The last term is the Hartree–Fock contribution. It gives the exact result for the self-
energy in the limit ! !1 [7]. The ıG�=ı��� term is thus a contribution to lower
frequencies and it comes from the spin and charge fluctuations. Right-multiplying
the last equation by G�1 and replacing the lower energy part ıG�=ı��� by its
general expression in terms of irreducible vertices (13.37), we find
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˙.2/
� .1; 2/ D UG.1/��

�
1; 1C� ı .1 � 2/

�UG.1/
�

�
1; 3

�
2
4 ı˙

.1/
�

�
3; 2I f�g�

ıG
.1/
�

�
4; 5I f�g�

ˇ̌
ˇ̌
ˇf�gD0

� ıG
.1/
�

�
4; 5I f�g�

ı��� .1C; 1/

ˇ̌
ˇ̌
ˇf�gD0

3
5 :

(13.45)

Every quantity appearing on the right-hand side of that equation has been taken from
the TPSC results. This means in particular that the irreducible vertices ı˙.1/

� =ıG
.1/

� 0

are at the same level of approximation as the Green functionsG.1/
� and self-energies

˙.1/
� : In approaches that assume that Migdal’s theorem applies to spin and charge

fluctuations, one often sees renormalized Green functions G.2/ appearing on the
right-hand side along with unrenormalized vertices, ı˙�=ıG� 0 ! U: In terms of
Usp and Uch in Fourier space, the above formula [41] reads,

˙.2/
� .k/long D Un�� C U

4

T

N

X
q

h
Usp�

.1/
sp .q/C Uch�

.1/

ch .q/
i
G.1/
� .kC q/: (13.46)

The approach to obtain a self-energy formula that takes into account both
longitudinal and transverse fluctuations is detailed in [20]. Crossing symmetry,
rotational symmetry and sum-rules and comparisons with QMC dictate the
final formula for the improved self-energy ˙.2/ as we have explained in
Sect. 13.2.3.

13.2.6 Pseudogap in the Renormalized Classical Regime

When we compared TPSC with QMC simulations and with FLEX in Fig. 13.4
above, perhaps you noticed that at the Fermi surface, the frequency dependent
spectral weight has two peaks instead of one. In addition, at zero frequency, it has a
minimum instead of a maximum. That is called a pseudogap. A cartoon explanation
[29] of this pseudogap is given in Fig. 13.5. At high temperature we start from a
Fermi liquid, as illustrated in panel I. Now, suppose the ground state has long-range
antiferromagnetic order as in panel III, in other words at a filling between half-
filling and nc . In the mean-field approximation we have a gap and the Bogoliubov
transformation from fermion creation–annihilation operators to quasiparticles has
weight at both positive and negative energies. In two dimensions, because of the
Mermin–Wagner theorem, as soon as we raise the temperature above zero, long-
range order disappears, but the antiferromagnetic correlation length � remains large
so we obtain the pseudogap illustrated in panel II. As we will explain analytically
below, the pseudogap survives as long as � is much larger than the thermal de
Broglie wavelength �th 	 vF=.�T / in our usual units. At the crossover temperature
TX , the relative size of � and �th changes and we recover the Fermi liquid.
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Fig. 13.5 Cartoon explanation of the pseudogap due to precursors of long-range order. When the
antiferromagnetic correlation length � becomes larger than the thermal de Broglie wavelength,
there appears precursors of the T D 0 Bogoliubov quasiparticles for the long-range ordered
antiferromagnet. This can occur only in the renormalized classical regime, below the dashed line
on the left of the figure

We now proceed to sketch analytically where these results come from starting
from finite T . Details and more complete formulae may be found in [6, 7, 41, 61].14

We begin from the TPSC expression (13.26) for the self-energy. Normally one has
to do the sum over bosonic Matsubara frequencies first, but the zero Matsubara
frequency contribution has the correct asymptotic behavior in fermionic frequencies
i!n so that, as in Sect. 13.2.2, one can once more isolate on the right-hand side
the contribution from the zero Matsubara frequency. In the renormalized classical
regime then, we have

˙.kF; i!n/ / T
Z
qd�1dq

1

q2 C ��2
1

i!n � "kFCQCq
; (13.47)

where Q is the wave vector of the instability.15 This integral can be done analytically
in two dimensions [7, 64]. But it is more useful to analyze limiting cases [41].
Expanding around the points known as hot spots where "kFCQ D 0, we find after
analytical continuation that the imaginary part of the retarded self-energy at zero
frequency takes the form

14Note also the following study from zero temperature [62].
15This formula is similar to one that appeared in [63].
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˙ 00R.kF; 0/ / ��T
Z

dd�1q?dqjj
1

q2? C q2jj C ��2 ı.v
0
Fqjj/ (13.48)

/ �T

v0
F

�3�d : (13.49)

In the last line, we just used dimensional analysis to do the integral.
The importance of dimension comes out clearly [41]. In d D 4, ˙ 00R.kF; 0/

vanishes as temperature decreases, d D 3 is the marginal dimension and in d D 2

we have that ˙ 00R.kF; 0/ / �=�th that diverges at zero temperature. In a Fermi
liquid the quantity ˙ 00R.kF; 0/ vanishes at zero temperature, hence in three or four
dimensions one recovers the Fermi liquid (or close to one in d D 3). But in
two dimensions, a diverging ˙ 00R.kF; 0/ corresponds to a vanishingly small A.kF;

! D 0/ as we can see from

A.k; !/ D �2˙ 00R.kF; !/

.! � "k �˙ 0R.kF; !//2 C˙ 00R.kF; !/2
: (13.50)

Figure 31 of [29] illustrates graphically the relationship between the location of
the pseudogap and large scattering rates at the Fermi surface. At stronger U the
scattering rate is large over a broader region, leading to a depletion of A.k;!/ over
a broader range of k values.

Remark 13.7. Note that the condition �=�th � 1, necessary to obtain a large
scattering rate, is in general harder to satisfy than the condition that corresponds
to being in the renormalized classical regime. Indeed, �=�th � 1 corresponds
T=vF � ��1 while the condition !sp � T for the renormalized classical regime
corresponds to T � ��2; with appropriate scale factors, because !sp scales as ��2
as we saw in (13.23) and below.

To understand the splitting into two peaks seen in Figs. 13.4 and 13.5 consider
the singular renormalized contribution coming from the spin fluctuations in (13.47)
at frequencies ! � vF�

�1: Taking into account that contributions to the integral
come mostly from a region q � ��1, one finds

˙ 0R.kF; !/ D
�
T

Z
qd�1dq

1

q2 C ��2

�
1

ikn � "kFCQ

	 �2

! � "kFCQ
; (13.51)

which, when substituted in the expression for the spectral weight (13.50), leads to
large contributions when

! � "k � �2

! � "kFCQ
D 0 (13.52)
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or, equivalently,

! D ."k C "kFCQ/˙
p
."k � "kFCQ/2 C 4�2

2
; (13.53)

which, at ! D 0, corresponds to the position of the hot spots.16 At finite frequencies,
this turns into the dispersion relation for the antiferromagnet [66].

It is important to understand that analogous arguments hold for any fluctuation
that becomes soft because of the Mermin–Wagner theorem [7, 67], including
superconducting ones [7, 50, 57]. The wave vector Q would be different in each
case.

To understand better when Fermi liquid theory is valid and when it is replaced
by the pseudogap instead, it is useful to perform the calculations that lead to
˙ 00R.kF; 0/ / �=�th in the real frequency formalism. The details may be found
in Appendix D of [7].

13.3 Case Studies

In this short pedagogical review it is impossible to cover all topics in depth. This
section will nevertheless expand a bit on two important contributions of TPSC to
problems of current interest, namely, the pseudogap of cuprate superconductors and
superconductivity induced by antiferromagnetic fluctuations.

13.3.1 Pseudogap in Electron-Doped Cuprates

High-temperature superconductors are made of layers of CuO2 planes. The rest of
the structure is commonly considered as providing either electron or hole doping
of these planes depending on chemistry. At half-filling, or zero doping, the ground
state is an antiferromagnet. As one dopes the planes, one reaches a doping, so-called
optimal doping, where the superconducting transition temperature Tc is maximum.
Let us start from optimal hole or electron doping and decrease doping towards
half-filling. That is the underdoped regime. In that regime, one observes a curious
phenomenon, the pseudogap. What this means is that as temperature decreases,
physical quantities behave as if the density of states near the Fermi level were
decreasing. Finding an explanation for this phenomenon has been one of the major
challenges of the field [68, 69].

To make progress, we need a microscopic model for high-temperature super-
conductors. Band structure calculations [70, 71] reveal that a single band crosses

16For comparisons with paramagnon theory see [65].
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the Fermi level. Hence, it is a common assumption that these materials can be
modeled by the one-band Hubbard model. Whether this is an oversimplification
is still a subject of controversy [72–77]. Indeed, spectroscopic studies [72, 78]
show that hole doping occurs on the oxygen atoms. The resulting hole behaves
as a copper excitation because of Zhang–Rice [79] singlet formation. In addition,
the phase diagram [80–85] and many properties of the hole-doped cuprates can
be described by the one-band Hubbard model. Typically, the band parameters that
are used are: nearest-neighbor hopping t = 350–400 meV and next-nearest-neighbor
hopping t 0 D �0:15 to�0:3 t depending on the compound [70,71]. A third-nearest-
neighbor hopping t 00 D �0:5 t 0 is sometimes added to fit finer details of the band
structure [71]. The second-neighbor hopping breaks particle–hole symmetry at the
band structure level.

In electron-doped cuprates, the doping occurs on the copper, hence there is
little doubt that the single-band Hubbard model is even a better starting point in
this case. Band parameters [86] are similar to those of hole-doped cuprates. It is
sometimes claimed that there is a pseudogap only in the hole-doped cuprates. The
origin of the pseudogap is indeed probably different in the hole-doped cuprates. But
even though the standard signature of a pseudogap is absent in nuclear magnetic
resonance (NMR) [87] there is definitely a pseudogap in the electron-doped case
as well [88], as can be seen in optical conductivity [89] and in angle resolved
photoemission spectroscopy (ARPES) [90]. As we show in the rest of this section, in
electron-doped cuprates strong evidence for the origin of the pseudogap is provided
by detailed comparisons of TPSC with ARPES as well as by verification with
neutron scattering [91] that the TPSC condition for a pseudogap, namely, � > �th;

is satisfied. The latter length makes sense from weak to intermediate coupling when
quasiparticles exist above the pseudogap temperature. In strong coupling, i.e., for
values of U larger than that necessary for the Mott transition, there is evidence that
there is another mechanism for the formation of a pseudogap. This is discussed at
length in [92, 93].17 The recent discovery [94] that at sufficiently large U there is
a first order transition in the paramagnetic state between two kinds of metals, one
of which is highly anomalous, gives a sharper meaning to what is meant by strong-
coupling pseudogap.

Let us come back to modeling of electron-doped cuprates. Evidence that these are
less strongly coupled than their hole-doped counterparts comes from the fact that (a)
The value of the optical gap at half-filling,�1.5 eV, is smaller than for hole doping,
�2.0 eV [95]. (b) In a simple Thomas–Fermi picture, the screened interaction scales
like @
=@n. Quantum cluster calculations [92] show that @
=@n is smaller on
the electron-doped side, hence U should be smaller. (c) Mechanisms based on
the exchange of antiferromagnetic fluctuations with U=t at weak to intermediate
coupling [16, 42] predict that the superconducting Tc increases with U=t . Hence
Tc should decrease with increasing pressure in the simplest model where pressure
increases hopping t while leaving U essentially unchanged. The opposite behavior,

17See also conclusion of [29].
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TPSC ARPES

Fig. 13.6 On the left, results of TPSC calculations [29, 97] at optimal doping, x D 0:15,
corresponding to filling 1:15, for t D 350meV, t 0 D �0:175 t , t 00 D 0:05 t , U D 5:75 t , and
T D 1=20. The left-most panel is the magnitude of the spectral weight times a Fermi function,
A .k; !/ f .!/ at ! D 0; so-called momentum-distribution curve (MDC). Red (dark black)
indicates larger value and purple (light grey) smaller value. The next panel is A .k; !/ f .!/ for a
set of fixed k values along the Fermi surface. These are so-called energy-dispersion curves (EDC).
The two panels to the right are the corresponding experimental results [90] for Nd2�xCexCuO4:

Dotted arrows show the correspondence between TPSC and experiment

expected at strong coupling where J D 4t2=U is relevant [85, 96], is observed
in the hole-doped cuprates. (d) Finally and most importantly, we have shown
detailed agreement between TPSC calculations [29, 93, 97] and measurements such
as ARPES [90, 98], optical conductivity [89] and neutron scattering [91].

To illustrate the last point, consider Fig. 13.6 that compares TPSC calculations
with experimental results for ARPES. Apart from a tail in the experimental results.
the agreement is striking.18 In particular, if there were no interaction, the Fermi
surface would be a line (red) on the momentum distribution curve (MDC). Instead, it
seems to disappear at symmetrical points displaced from .�=2; �=2/ : These points,
so-called hot spots, are linked by the wave vector .�; �/ to other points on the
Fermi surface. This is where the antiferromagnetic gap would open first if there
were long-range order. The pull back of the weight from ! D 0 at the hot spots is
close to the experimental value: 100meV for the 15% doping (show), and 300meV
for 10% doping (not shown). More detailed ARPES spectra and comparisons with
experiment are shown in [29]. The value of the temperature T � at which the
pseudogap appears [97] is also close to that observed in optical spectroscopy [89].
In addition, the size of the pseudogap is about ten times T � in the calculation as well
as in the experiments. For optical spectroscopy, vertex corrections (see Sect. 13.4.5)

18Such tails tend to disappear in more recent laser ARPES measurements on hole-doped com-
pounds [99].
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have to be added to be more quantitative. Experimentally, the value of T � is about
twice the antiferromagnetic transition temperature up to x D 0:13. That can be
obtained [97] by taking tz D 0:03 t for hopping in the third direction. Recall that in
strictly two dimensions, there is no long-range order. Antiferromagnetism appears
on a much larger range of dopings for electron-doped than for hole-doped cuprates.

These TPSC calculations have predicted the value of the pseudogap temperature
at x D 0:13 before it was observed experimentally [98] by a group unaware of
the theoretical prediction. In addition, the prediction that � should scale like �th

at the pseudogap temperature has been verified in neutron scattering experiments
[91] in the range x D 0:04–0:15. At that doping, which corresponds to optimal
doping, T � becomes of the order of 100K, more than four times lower than at
x D 0:04: The antiferromagnetic correlation length � beyond optimal doping begins
to decrease and violate the scaling of � with �th: In that doping range, T � and the
superconducting transition temperature are close. Hence it is likely that there is
interference between the two phenomena [100], an effect that has not yet been taken
into account in TPSC.

An important prediction that one should verify is that inelastic neutron scattering
will find over-damped spin fluctuations in the pseudogap regime and that the char-
acteristic spin fluctuation energy will be smaller than kBT whenever a pseudogap is
present. Equality should occur above T �.

Finally, note that the agreement found in Fig. 13.6 between ARPES and TPSC
is for U � 6 t . At smaller values of U the antiferromagnetic correlations are not
strong enough to produce a pseudogap in that temperature range. For larger U; the
weight near .�=2; �=2/ disappears, in disagreement with experiments. The same
value of U is found for the same reasons in strong coupling calculations with cluster
perturbation theory (CPT) [92] and with slave boson methods [101]. Recent first
principle calculations [102] find essentially the same value of U: In that approach,
the value of U is fixed, whereas in TPSC it was necessary to increase U by about
10% moving towards half-filling to get the best agreement with experiment. In any
case, it is quite satisfying that weak and strong coupling methods agree on the value
of U for electron-doped cuprates. This value of U is very near the critical value
for the Mott transition at half-filling [103]. Hence, antiferromagnetic fluctuations at
finite doping can be very well described by Slater-like physics (nesting) in electron-
doped cuprates.

For recent calculations including the effect of the third dimension on the
pseudogap, see [104]. Finally, note that the analog of the above mechanism
for the pseudogap has also been seen in two-dimensional charge-density wave
dichalcogenides [105].

13.3.2 d-Wave Superconductivity

In the BCS theory of superconductivity, pairs of electrons form because of an
effective attraction mediated by phonons. The pairs then condense in a coherent
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state. The suggestion that superconductivity could arise from purely repulsive forces
goes back to Kohn and Luttinger who showed that for pairs of sufficiently high
angular momentum, the screened Coulomb interaction in an electron gas could
be attractive [106]. Just before the discovery of high-temperature superconductors,
an extension of that idea was proposed [107–109]. The suggestion was that
antiferromagnetic fluctuations present in the Hubbard model could replace the
phonons in BCS theory and lead to d -wave superconductivity. This is difficult to
prove beyond any doubt since superconductivity in this case does not arise at the
mean-field level. Mean-field on the Hubbard model gives antiferromagnetism near
half-filling but not superconductivity. In the high-temperature superconductors, the
situation is made even more difficult because of Mott Physics. Nevertheless, the
question is well posed and, as we just saw, Mott physics might be less important in
the electron-doped superconductors.

To investigate how the pairing susceptibility is influenced by antiferromagnetic
fluctuations in TPSC we proceed as follows [42, 110]. The reader who did not
go through the formal Sect. 13.2.5 may skip the next paragraph without loss of
continuity to read the physical results below. The few equations that appear below
give details that are missing in the literature.

13.3.2.1 Some Details of the Derivation

We work in Nambu space and add an off-diagonal source field � and �� in
the generating function (13.30). The transverse spin fluctuations are included by
working with four by four matrices. The pair susceptibility in the normal state can
be obtained from the second functional derivative of the generating function with
respect to the off-diagonal source field, evaluated at zero source field [42]. In more
detail, one proceeds as in the formal derivation in Sect. 13.2.5. The expressions
for the spin and charge susceptibilities are not modified. Once the two-particle
quantities have been found as above, the second step of the approach [7,49] consists
in improving the approximation for the single-particle self-energy by starting from
the exact expression where the high-frequency Hartree–Fock behavior is explicitly
subtracted

˙ .1; 2/ D �U
�
1 0

0 0

�
ıG

�
1; 3

�

ı�# .1C; 1/
G�1 �3; 2�

CU
�
0 0

0 1

�
ıG

�
1; 3

�

ı�" .1C; 1/
G�1 �3; 2� : (13.54)

The bold face objects are matrices in Nambu space. To be able to express the right-
hand side of the above equation in terms of irreducible vertices, susceptibilities
and powers of G; one differentiates GG�1 D I to obtain .ıG=ı�/G�1 D �G�
ıG�1=ı�

�
: With the help of Dyson’s equation on the right-hand side of the last

equation as well as the chain-rule, one finds an expression where one can replace
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every term by their value at the first step, namely, Usp and Uch for the irreducible
low-frequency vertices as well as G.1/

� .k C q/ and �sp.q/; �ch.q/: For the diagonal
piece of the self-energy at the second step, one then obtains (13.26) above or
equivalently (3) of [20,49] by considering both longitudinal and transverse channels
and requiring crossing symmetry of the fully reducible vertex in the two particle–
hole channels as well as consistency with the sum-rule Tr

�
˙.2/G.1/

� D 2U ˝n"n#
˛

[7]. The off-diagonal piece of the exact self-energy (13.54), on the other hand, reads

˙
.2/
12 D �UG.1/

11

�
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� ı˙.1/
12

�
3; 5

�

ı�# .4C; 4/
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12

�
4; 4C� ı .4 � 5/� UG.1/

12

�
4; 3

� ı˙.1/
22

�
3; 5

�

ı�# .4C; 4/
: (13.55)

The pairing susceptibility mediated by spin fluctuations may now be computed from
the derivative with respect to the source field
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G
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�
5; 3
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(13.56)

with the irreducible vertex ı˙.2/
12 =ıG

.1/
12 obtained by functional differentiation of

(13.55). Neglecting ı=ı�#
�
ı˙

.1/
12 =ıG

.1/
12

	
; which represents the influence of spin

fluctuations on the local piece of the irreducible vertex, and including the transverse
component, we find for the d -wave pair susceptibility, �d, the expression that
appears in (1) of [42]. The TPSC expression for the pair susceptibility �d contains
the bubble part and the first term of what would be an infinite series if ˙.2/

12 in the

irreducible vertex could be differentiated with respect to G.2/
12 instead of G.1/

12 :

Why should we trust the results for the d -wave susceptibility obtained for TPSC?
Let us look again at benchmarks. Figure 13.7a displays the d -wave susceptibility
obtained from QMC calculations shown as symbols and from TPSC as lines.
Because of the sign problem, it is not practical to do the QMC calculations at
lower temperatures. Nevertheless, the temperatures are low enough that we see a
nontrivial effect, the appearance of a maximum in susceptibility at finite doping
and a substantial increase with decreasing temperatures. The agreement between
QMC and TPSC is found to be within a few percent and improves for lower values
of U . When the interaction strength reaches the intermediate coupling regime,
U D 6, deviations of the order of 20–30% may occur but the qualitative dependence
on temperature and doping remains accurate. In TPSC the pseudogap is the key
ingredient that leads to a decrease in �d in the underdoped regime. This is easy
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Fig. 13.7 (Color online) From [42]. (a) Comparisons between the dx2�y2 susceptibility obtained
from QMC simulations and from the approach described in the present work. QMC error bars
are smaller than the symbols. Analytical results are joined by solid lines. Both calculations are for
U D 4, a 6 � 6 lattice, and four different temperatures. The case U D 0, ˇ D 4 is shown for
reference. The size dependence of the results is small at these temperatures. The inset compares
QMC and FLEX at U D 4, ˇ D 4. (b) Contributions from the bubble (DOS) represented by
squares and vertex represented by circles. (c) Estimate of Tc using the Thouless criterion for U D 4

and U D 6, t 0 D t 00 D 0

to understand since the pseudogap leaves fewer states for pairing at the Fermi
level. Another way to say this is that the strong inelastic scattering that leads
to the pseudogap is pair breaking. The inset shows that previous spin-fluctuation
calculations (FLEX) in two dimensions [16, 111] deviate both qualitatively and
quantitatively from the QMC results. More specifically, in the FLEX approach �d

does not show a pronounced maximum at finite doping. This is because, as we have
shown in Fig. 13.4, in FLEX there is no pseudogap in the single-particle spectral
weight at the Fermi surface [49, 51].

In two dimensions, superconductivity is in the Kosterlitz–Thouless universality
class. Vortex physics that is absent in TPSC is important to understand the precise
value of the transition temperature. Nevertheless, a necessary condition for this
transition to occur is that there is a higher temperature at which pairs form, a sort of
mean-field Tc: That Tc can be obtained from the so-called Thouless criterion, i.e.,
from the temperature at which the d -wave susceptibility diverges. This divergence
occurs because of growing vertex corrections. Since TPSC contains only the first
term in what would be an infinite ladder sum, we take Tc as the temperature at
which the bubble (that we call DOS) and the first term of the series (that we call
vertex) become equal. This is illustrated in Fig. 13.7b. At ˇ D 1=64; the doping
range between the intersection of the two curves is below Tc: The resulting Tc versus
doping is shown in Fig. 13.7c. In that calculation,

˝
n"n#

˛
is fixed at its value at T �:

There is clearly an additional approximation in finding Tc with TPSC that goes
beyond what can be checked with QMC calculations. How can we be sure that this is
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correct? First there is consistency with other weak-coupling approaches. For exam-
ple, Ref, [112] has shown consistency with cutoff renormalization group technique
[24] for competing ferromagnetic, antiferromagnetic and d -wave superconductivity.
Second, there is consistency as well with quantum cluster approaches that are best
at strong coupling. Indeed, an extensive study as a function of system size by the
group of Jarrell [81] has shown that for 10% doping, Tc is in the range 0:02; not far
from 0:03 that can be read from Fig. 13.7c.

One of the major theoretical questions in the field of high-temperature super-
conductivity has been, “Is there d -wave superconductivity in the two-dimensional
Hubbard model?” TPSC has contributed to answer this question. One of the most
discouraging early results was that QMC simulations showed that the pairing sus-
ceptibility was smaller at finite U than at U D 0: This is clearly seen in Fig. 13.7a.
TPSC allows us to understand why. At ˇ D 4; the bubble largely dominates and
the effect can only be pair breaking because of the inelastic scattering. The vertex,
representing exchange of antiferromagnetic fluctuations analogous to the phonons in
ordinary BCS theory, contributes 22% at most at zero doping and much less at larger
doping. Nevertheless, it clearly increases the pair susceptibility to bring it in closer
agreement with QMC. TPSC allows us to do the calculation at temperatures much
lower than QMC and to verify that indeed the vertex eventually grows large enough
to lead to a transition. We understand also that in this parameter range the dome
shape comes from the fact that antiferromagnetic fluctuations can both increase
pairing through the vertex and be detrimental through the pseudogap produced
by the large self-energy. Antiferromagnetic fluctuations can both help and hinder
d -wave superconductivity.

Another question is whether the presence of a quantum critical point below the
maximum of the superconducting dome plays a role in superconductivity. In the
case we discussed above, long-range antiferromagnetic order appears at T D 0 (not
at finite T because of Mermin–Wagner) up to doping ı D 0:17 for U D 4 [42] and
ı D 0:205 for U D 6 [36]. In this case, then, according to Fig. 13.7c the quantum
critical point is far to the right of the maximum Tc but superconductivity can exist
to the right of that point, the more so when U is larger.

How general are the above results? This and many more questions on the
conditions for magnetically mediated superconductivity were studied with TPSC
on the square lattice at half-filling for second-neighbor hopping t 0 different from
zero [110]. At t 0 D 0 at half-filling, there is a pseudogap on the whole Fermi
surface because of perfect nesting, so Tc vanishes. When t 0 is increased from
zero, the pseudogap is not complete at half-filling and Tc is different from zero.
In addition, for t 0 larger than 0:71; the Fermi surface topology changes and the
dominant magnetic fluctuations are near .0;˙�/ ; .˙�; 0/ :

Additional conclusions of the TPSC study of [110] as a function of t 0 and
U at half-filling are as follows. First some qualitative conclusions that could be
found from just the BCS gap equation with an interaction potential given by the
static component of the spin susceptibility [113]: The symmetry of the d -wave
order parameter is determined by the wave vector of the magnetic fluctuations.
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Those that are near .�; �/ lead to dx2�y2 -wave (B1g) superconductivity while those
that are near .0; �/ induce dxy-wave (B2g) superconductivity. The dominant wave
vector for magnetic fluctuations is determined by the shape of the Fermi surface, so
dx2�y2 -wave superconductivity occurs for values of t 0 that are relatively small while
dxy-wave superconductivity occurs for t 0 > 1. Second, the maximum value that Tc

can take as a function of t 0 increases with interaction strength. TPSC cannot reach
the strong-coupling regime where Tc should decrease with U .

One also finds [110] that, contrary to what is expected from BCS, the
noninteracting single-particle density of states does not play a dominant role. At
small t 0, Tc is reduced by self-energy effects as discussed above and for intermediate
values of t 0 the magnetic fluctuations are smaller and incommensurate so no singlet
superconductivity appears. Hence at fixed U , there is an optimal value of t 0
(frustration) for superconductivity. For dx2�y2 superconductivity in under-frustrated
systems (small t 0) Tc occurs below the temperature TX where the crossover to the
renormalized classical regime occurs. In other words, in under-frustrated systems
at Tc the antiferromagnetic correlation length is much larger than the thermal de
Broglie wavelength and the renormalized classical spin fluctuations dominate. The
opposite relationship between these lengths occurs for over-frustrated systems (t 0
larger than optimal) where Tc is larger than TX and hence occurs in a regime
where renormalized classical fluctuations do not dominate. The two temperatures,
Tc and TX , are comparable for optimally frustrated systems. In all cases, at Tc the
antiferromagnetic correlation length is larger than the lattice spacing.

The superconductivity induced by antiferromagnetic fluctuations in weak to
intermediate coupling has also been studied by Moriya and Ueda [17] with the self-
consistent renormalized approach that also satisfies the Mermin–Wagner theorem.
However, in that approach there are adjustable parameters and no guarantee that the
Pauli principle is satisfied so one cannot be certain this is an accurate solution to the
Hubbard model.

That there is d -wave superconductivity in the two-dimensional Hubbard model
has by now been seen by a number of different approaches: variational19 [114,115],
various quantum cluster approaches20 [80–85] functional renormalization group
[116], and even at asymptotically small U by renormalization group [117]. The
retardation that can be observed even tells us that spin fluctuations remain important
for d -wave superconductivity even at strong coupling [77,118,119]. The most seri-
ous objection to the existence of d -wave superconductivity comes from a variational
and a gaussian QMC approach in [120]. It could be that d -wave superconductivity
in the two-dimensional Hubbard model is not the absolute minimum but only a local
one. If this were the case, one could conclude that a small interaction term is missing
in the Hubbard model to make the d -wave state the ground state. All other studies
show that the physical properties of that state are very close than those of actual
materials.

19See contribution of Randeria in this volume.
20See contribution of Sénéchal in this volume.
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13.4 More Insights on the Repulsive Model

The following two sections of this chapter give a short summary of other results
obtained with TPSC. The purpose is to show what has already been done, leading to
the last section that contains a few open problems that could possibly be treated with
TPSC. These two sections have some of the flavor of a review article, not that of a
pedagogical introduction. In addition, an important aspect of a real review article
is missing: there are very few references to the rest of the literature on any given
topic. For anyone interested in pursuing some of these problems, the citation index
is highly recommended.

13.4.1 Critical Behavior and Phase Transitions

The self-consistent renormalized approach of Moriya–Lonzarich–Taillefer [18, 19]
was one of the first ones to treat the Hubbard model in two dimensions in a way
that satisfies the Mermin–Wagner theorem. Other approaches exist for the half-
filling case: Schwinger bosons [121] or constrained spin-waves [122]. The drawback
of Moriya’s approach is that it contains several fitting parameters. Kanamori
screening, discussed in Sect. 13.2.2, is put by hand, as is the value of the mode
coupling constant. In addition, nothing guarantees the Pauli principle. In other
words, Moriya’s approach has much of the same physics as TPSC but it cannot be
considered an accurate solution to the Hubbard model. There is also no prescription
to compute the self-energy in a way that is consistent with double-occupancy.

More generally, the question that arises with TPSC is whether it predicts the
correct universality class. It was shown in [38] that its results are in the universality
class of the spherical model, namely, O .N D 1/ instead of O .N D 3/ as it
should be for the Hubbard model with spin–rotation invariance. This result is not
surprising since the self-consistency condition on double-occupancy found from the
local moment sum-rule (13.16) is very similar to the self-consistency condition for
the spherical model. With the standard convention for critical exponents, one finds
=	 D 2; z D 2; and for dimension d such that the condition 2 < d < 4 is satisfied,
we find 	 D 1= .d � 2/ : This gives in d D 3; 	 D 1;  D 2; ˇ D 1=2; � D 0 and
ı D 5: This should be compared with numerical results [123] for the 3D Heisenberg
.n D 3/ model, 	 D 0:7 and  D 1:4: Clearly, too close to the critical point, or too
deep in the renormalized classical regime in d D 2; TPSC looses its accuracy.
Results in three dimensions can be found in [55, 124].

13.4.1.1 Crossover to 3D [38]

The crossover from two- to three-dimensional critical behavior of nearly antifer-
romagnetic itinerant electrons was also studied in a regime where the interplane
single-particle motion of electrons is quantum mechanically incoherent because of
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thermal fluctuations. The universal renormalized classical crossover function from
d D 2 to d D 3 for the susceptibility has been explicitly computed, as well as a
number of other properties such as the dependence of the Néel temperature on the
ratio between hopping in the plane tÎ and the hopping perpendicular to it, t?;

1

TN
� T 2N
U 2
mf;c

ˇ̌
ˇ̌ln
�
tÎ
t?

�ˇ̌
ˇ̌ (13.57)

with Umf;c 	 2=� .QdD2; 0/ at the d D 2 pseudogap temperature [38].

13.4.1.2 Quantum Critical Behavior

At T D 0; half-filling, the ground state has long-range antiferromagnetic order.
As one dopes, the order becomes incommensurate and eventually disappears at a
critical point that is called “quantum critical” because it occurs at T D 0: Such
quantum critical points are common in heavy-fermion systems for example. One
of the surprising things about this critical point is that it affects the physics at
surprisingly large T:

The quantum critical behavior of TPSC in d D 2 is in the z D 2 universality
class, like the self-consistent renormalized theory of Moriya et al. [39]. Like that
theory, it includes some of the logarithmic corrections found in the renormal-
ization group approach [125]. In addition, TPSC can be quantitative and answer
the question, “How far in T does the influence of that point extend?” It was
found [40, 126] by explicit numerical calculations away from the renormalized
classical regime of the d D 2 Hubbard model that logarithmic corrections are
not really apparent in the range 0:01t <T < t and that the maximum static spin
susceptibility in the .T; n/-plane obeys quantum critical scaling. However, near the
commensurate–incommensurate crossover, one finds obvious nonuniversal T and
filling n dependence. Everywhere else, the .T; n/-dependence of the nonuniversal
scale factors is relatively weak. Strong deviations from scaling occur at T of order t ,
the degeneracy temperature. That high temperature limit should be contrasted with
J=2 found in the strong coupling case [127]. In generic cases the upper limit T � t
is well-above room temperature. In experiment, however, the non-universality due
to the commensurate–incommensurate crossover may make the identification of
quantum critical scaling difficult. In addition, note that properties other than the
maximum spin susceptibility may deviate from quantum critical scaling at a lower
temperature [36].

13.4.2 Longer Range Interactions

Suppose one adds nearest-neighbor repulsion V to the Hubbard model. The TPSC
ansatz (13.39) can be generalized [128, 129]. Then one needs to compute the
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effect of functional derivatives of the pair-correlation functions that appear, as in
Sect. 13.2.5.3, in the calculation of spin and charge irreducible vertices. Since the
Pauli principle and local-spin and local charge sum-rules do not suffice, the func-
tional derivatives are evaluated assuming particle–hole symmetry, which remains
approximately true when the physics is dominated by states close to the Fermi sur-
face. The resulting theory, called ETPSC, for extended TPSC, satisfies conservation
laws and the Mermin–Wagner theorem and is in agreement with benchmark QMC
results. This approach allows us to reliably determine the crossover temperatures
toward renormalized-classical regimes, and hence, the dominant instability as a
function of U and V . Contrary to RPA, even the spin fluctuations are modified
by the presence of V: Phase diagrams have been calculated. In the presence of V ,
charge order will generally compete with spin order [128, 129].

13.4.3 Frustration

The ETPSC formalism outlined in the previous section is particularly important to
treat interesting problems such as that of the sodium cobaltates. These compounds
are often modeled in an over-simplified way by the two-dimensional Hubbard model
on the triangular lattice. To account for charge fluctuations, one must also include
nearest-neighbor repulsion V: Even with this complication this is an oversimplified
model.

The density- and interaction-dependent crossover diagram for spin- and charge-
density wave instabilities of the normal state at arbitrary wave vector has been
computed [67]. When U dominates over V and electron filling is large, instabilities
are mostly in the spin sector and are controlled by Fermi surface properties.
Increasing V eventually leads to charge instabilities where it is mostly the wave
vector dependence of the vertex that determines the wave vector of the instability
rather than Fermi surface properties. At small filling, nontrivial instabilities appear
only beyond the weak coupling limit. Charge-density wave instabilities are favored
over a wide range of dopings by large V at wave vectors corresponding to

p
3�p

3 superlattice in real space. Commensurate fillings do not play a special role for
this instability. Increasing U leads to competition with ferromagnetism. At negative
values of U or V , neglecting superconducting fluctuations, one finds that charge
instabilities are favored. In general, the crossover diagram presents a rich variety of
instabilities. Thermal charge-density wave fluctuations in the renormalized-classical
regime can open a pseudogap in the single-particle spectral weight, just as spin or
superconducting fluctuations [67].

13.4.4 Thermodynamics, Conserving Aspects

Conserving approaches are very popular. FLEX [15, 16] is an example. These
approaches are attractive because they guarantee that if one evaluates the same
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physical quantity directly from the Green function or from a derivative of the
free energy, the answer will be identical. All that is needed for a “conserving”
approximation is that the self-energy be generated from a Luttinger–Ward functional
[130] that enters the expression for the free energy. In addition, conservation laws
will be satisfied in transport if irreducible vertices are obtained from functional
derivatives of the self-energy. This gives a so-called ˚ derivable theory. Since
in perturbation theory there is an infinite number of possible such Luttinger–
Ward functionals, depending on which closed two-particle irreducible diagrams
constructed from G and the bare interaction one wishes to keep, the constraint
of being conserving is not a very restrictive one. Conserving approximations do
not satisfy the Pauli principle in general and they sometimes give negative values
of double-occupancy [55]. Various other limitations of conserving approaches are
discussed in Appendix E of [7].

TPSC is not obtained from a functional derivative of a Luttinger–Ward func-
tional. Is this a drawback? We have seen that it satisfies conservation laws for spin
and charge at the first step. The question is whether one can find a unique free
energy that is consistent with the one-particle Green function and collective modes
that TPSC focuses on. This question was addressed in the MSc [131] and PhD thesis
[126] of Roy. The results are summarized below. We conclude with an example of
thermodynamic calculation in the context of cold atoms.

13.4.4.1 Thermodynamic Consistency

We should really distinguish conservation laws and thermodynamic consistency.
These two notions are sometimes confused, as outlined in the previous paragraph.
We call an approach thermodynamically consistent when all possible ways of
computing the same thermodynamic quantity give the same result.

Obtaining the self-energy from a functional derivative of the Luttinger–Ward
functional leads to thermodynamic consistency. In TPSC, there is a change in
perspective. Instead of looking for an approximation for the free energy and then
deducing everything else consistently, we find a single-particle Green’s function
G.2/; or equivalently˙.2/; as well as double-occupancy

1

2
Tr
�
˙.2/G.2/

	
D U ˝n#n"

˛.2/
: (13.58)

and deduce everything else: the free energy from integration and the irreducible
vertices for transport quantities from functional derivatives of ˙.2/(Sect. 13.4.5).

There are three ways to extract the free energy from integration: (a) coupling
constant integration of double-occupancy, (b) integration of
.n/ and (c) integration
of the specific heat calculated from the total energy. With the free energy, all
thermodynamic quantities can be obtained. If we make sure that the three ways
to compute the free energy give the same result, then there is thermodynamic
consistency.



13 Two-Particle-Self-Consistent Approach for the Hubbard Model 445

With the above expression for double-occupancy, (13.58), the three different
ways of obtaining the thermodynamic quantities are all based on the same object
G.2/: If G.2/ were the exact solution, they would have to be consistent: However
G.2/ is approximate. Since G.2/ satisfies all the requirements for a physical Green
function, it is likely to be the exact solution of some Hamiltonian H that is close
to, but slightly different from, the Hubbard model. For example, H could have
longer-range interactions. In deriving the formulas for the free energy, we assume
that we are working with the Hubbard model. Hence, there is no guarantee that
all three methods of obtaining F will give the same result. One can check this
numerically in principle. A simpler test, admittedly less stringent, is to compare
n .T; 
;U / obtained from derivatives of the three different F ’s. For the nearest-
neighbor hopping model with ˇ D 10; U D 4, for example, the results are identical
in the percent range, except deep in the renormalized classical regime close to half-
filling where TPSC anyway fails [126, 131].

The specific heat was calculated for the nearest-neighbor hopping Hubbard
model at half-filling as a function of temperature. TPSC reproduces the peak
observed at small temperature in QMC [132]. It is associated with the entrance in
the renormalized classical regime. Physically, the low-temperature peak is a remnant
of the specific heat jump that would occur at finite temperature in the mean-field
theory.

13.4.4.2 Cold Atoms, Entropy

In the context of cold atoms on optical lattices, adiabatic cooling can be used
to reach interesting low T regimes such as the pseudogap or ordered phases
by manipulating the scattering length or the strength of the laser-induced lattice
potential. TPSC has been used [28], and compared with QMC calculations, to
provide isentropic curves for the two- and three-dimensional Hubbard models at
half-filling. Since double-occupancyD is extremely accurate in TPSC, the entropy
S was computed by integrating the Maxwell relation

�
@S

@U

�

T;n

D �
�
@D

@T

�

U;n

(13.59)

with S .T; U D 0/, the known constant of integration.
The main findings are that adiabatically turning on the interaction in d D 2 to

cool the system is not very effective. In three dimensions, adiabatic cooling to the
antiferromagnetic phase can be achieved in such a manner, although the cooling
efficiency is not as high as initially suggested by dynamical mean-field theory
[133]. Adiabatic cooling by turning off the repulsion beginning at strong coupling
is possible in certain cases.
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13.4.5 Vertex Corrections and Conservation Laws

Using the functional derivative formalism of Baym and Kadanoff [58], it is
possible to find an expression within TPSC for the optical conductivity that satisfies
conservation laws and hence the f-sum rule. In other words, one can include vertex
corrections. Note that the f-sum rule this time involves the momentum distribution
n
.2/
k obtained from the best self-energy.

The two types of vertex corrections that are found [36] are the antiferromagnetic
analogs of the Aslamasov–Larkin and Maki–Thompson contributions of supercon-
ducting fluctuations to the conductivity but, contrary to the latter, they include non-
perturbative effects. The calculations are impossible unless a number of advanced
numerical algorithms are used. Take the case with nearest-neighbor hopping only
[36]. In the pseudogap regime induced by two-dimensional antiferromagnetic fluc-
tuations, the effect of vertex corrections is dramatic. Without vertex corrections the
resistivity increases as we enter the pseudogap regime. Instead, vertex corrections
lead to a drop in resistivity, as observed in a number of high-temperature supercon-
ductors. At high temperature, the resistivity naturally saturates at the Ioffe–Regel
limit. At the quantum critical point and beyond, the resistivity displays both linear
and quadratic temperature dependence. The disappearance of superconductivity in
the over-doped regime is correlated with the disappearance of the linear term in the
T dependence of the resistivity [134, 135]. The relation to the physics of hot spots
and results for other band structures (t 0 ¤ 0) should appear soon.

13.5 Attractive Hubbard Model

Working in Nambu space and following a formal procedure analogous to that
explained in Sect. 13.2.5, one can derive TPSC for the attractive Hubbard model
[20, 57, 136]. The irreducible vertex Upp in the particle–particle singlet channel is
given by

Upp
˝
n#
˛ ˝�
1 � n"

�˛ D U ˝n#
�
1 � n"

�˛
(13.60)

and is determined self-consistently at the two-particle level by the local-pair sum-
rule ˝

n#n"
˛ D h���i D T

N

X
q

�.1/p .q/ exp.�i!n0
�/ (13.61)
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�.1/p .q/ D �
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0 .q/

(13.62)
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and the irreducible particle–particle susceptibility

�
.1/
0 .q/ D

T

N

X
k

G.1/
� .q � k/G.1/�� .k/ : (13.63)

Again the Pauli principle and a number of crucial sum-rules are satisfied. So is the
Mermin–Wagner theorem.

In the second step of the approximation, an improved expression for the self-
energy is obtained by using the results of the first step in an exact expression for the
self-energy, to obtain,

˙.2/
� .k/ D Un�� � U T

N

X
q

Upp�
.1/
p .q/G.1/�� .q � k/; (13.64)

where q D .i!n;q/ : This is a cooperon-like formula. The required vertex correc-
tions are included as required by the absence of a Migdal theorem. Comparisons
with other approaches can be found in [137].

13.5.1 Pseudogap from Superconductivity in Attractive
Hubbard Model

Using TPSC for the attractive Hubbard model, quantitative agreement with Monte
Carlo calculations is obtained for both single-particle and two-particle quantities
[50]. As discussed for the repulsive case in Sect. 13.2.6 one obtains a pseudogap
in both the density of states and the single-particle spectral weight21 below some
characteristic temperature T �. It was even checked in QMC calculations that the
ratio of the thermal de Broglie wavelength to the pairing correlation length must
be smaller than unity to observe the pseudogap [140]. The pseudogap, also found
in [141] for example, reflects precursors of Bogoliubov quasiparticles that are not
local pairs, contrary to what is often discussed in the context of the crossover from
BCS to Bose-Einstein condensation [142].

With increasing temperature the spectral weight fills in the pseudogap instead
of closing it [50]. This type of behavior is obtained in high-temperature supercon-
ductors. The pseudogap appears earlier in the density of states than in the spectral
function. A characteristic behavior observed at strong coupling appears already
in TPSC at weak to intermediate coupling, namely, small temperature changes
around T � can modify the spectral weight over frequency scales much larger than
temperature [50].

21For a pseudogap in the single-particle spectral weight, it is important not to assume a Migdal
theorem [138, 139], and include vertex corrections [7].



448 A.-M.S. Tremblay

Our earlier discussion about Kosterlitz–Thouless physics in Sect. 13.3.2 is valid
in this case as well. In the attractive Hubbard model, the superconducting transition
temperature has a dome shape because at half-filling the symmetry is SO.3/ so
the Tc there vanishes while it is given by the finite Kosterlitz–Thouless Tc [143]
elsewhere. The pseudogap temperature on the other hand decreases monotonically
from half-filling where it is largest. This exemplifies the fact that symmetry and
dimension are important to understand pseudogap physics at weak to intermediate
coupling [140].

13.6 Open Problems

At weak to intermediate coupling, TPSC gives the best agreement with benchmark
QMC methods. Its strength, compared with all other methods, resides in a non-
perturbative treatment of the Hubbard model that satisfies the Pauli principle and
the Mermin–Wagner theorem, in addition to a number of other exact constraints.
Also, one works in the infinite size limit so the effect of collective fluctuations
is not limited to a small lattice like in dynamical mean-field theory [26] and its
generalizations22 [144, 145].

The main weakness of TPSC is the difficulty to extend the method beyond
the one-band Hubbard model. One needs to find enough sum-rules to determine
the irreducible vertices. This can be seen as a challenge and an opportunity for
creativity.

For example, to include nearest-neighbor Coulomb repulsion, one needs a way
to evaluate functional derivatives of pair correlation functions to obtain irreducible
vertices. It has been possible achieve this [129], as discussed in Sect. 13.4.2, but
every new problem is different. As another example, take the case of more than one
band. Then the irreducible vertices become a matrix in band index and one does not
have enough obvious sum-rules to evaluate all the matrix elements [146].

In the presence of, say, antiferromagnetism the number of irreducible vertices
also multiplies and one faces the same type of challenge. To treat long-range
ordered states with TPSC, it might be easier to start with simpler broken symmetries
such as ferromagnetism or the Pomeranchuk instability [147]. The interest of
treating long range order is clear. For example, the renormalized classical regime
of antiferromagnetic fluctuations is presently inaccessible if T is much smaller than
T �: Starting from the ordered state may offer an alternative [62].

The question of the interplay of disorder and interactions is a difficult but
topical one. Far from the Anderson disorder-induced metal–insulator transition, the
impurity averaging technique [148] may prove a useful way to introduce disorder in
TPSC. One may then answer the question of what happens to the � > �th criterion

22See contributions of Vollhardt, Sénéchal, Potthoff and Jarrell in this volume.
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for pseudogap when the mean-free path becomes shorter than the thermal de Broglie
wavelength.

Climbing the ladder of difficult problems, the case of strong coupling [26, 144,
145] is a real challenge. At strong coupling the self-energy is singular at small
frequencies. In fact it diverges as 1=! at half-filling. This is inconsistent with the
starting point of TPSC where the self-energy is constant. Perhaps there is a way
to start from the self-energy in the atomic limit inspired by methods that allow for
multiple poles to zeroth order [12], or some other way [149], but it is an unsolved
problem for now.

Some problems, by contrast, appear straightforward but they can be very tedious.
For example, in the presence of incommensurate magnetic fluctuations where singlet
d -wave pairing does not occur, can triplet pairing take over? One can proceed along
the lines of the derivation for d -wave superconductivity [110] but with matrix source
fields to generate triplet pairing in the Nambu formalism. The irreducible pairing
vertex would again be obtained from functional derivatives of a matrix˙.2/:

Paring in the attractive Hubbard model is much more straightforward, as we have
seen. It appears at the first step, without the need to generate irreducible vertices
from˙.2/:Nevertheless, to study the triplet channel in the attractive Hubbard model,
one needs to introduce near-neighbor attraction V . That leads to the problems
mentioned above in the repulsive case. As a curiosity, one could also investigate
whether functional derivatives of ˙.2/ in the attractive Hubbard model can mediate
the formation of order in some particle–hole channel. This might be a first step
towards developing a method to take into account the different channels on the same
footing in TPSC [150], as is done in renormalization group approaches [151, 152].
It has been found recently within the renormalization group that in quasi one-
dimensional systems there is a strong interference between antiferromagnetism and
unconventional superconductivity [100].

Proceeding along the lines of [36] for the conductivity, it is also clearly possible
to compute other transport quantities, such as the thermopower, but this is a serious
computational challenge.

There are roadblocks, but there are also opportunities for original solutions and
breakthroughs.
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330. See also Cluster dynamical
mean-field theory341

Charge structure factor, 419
Charge transfer (CT) gap, 154
Chemical potential, 104, 119, 121, 122, 132
Clausius–Clapeyron equation, 220
Cluster dynamical mean-field theory, 341
Cluster kinematics, 368
Cluster mean-field approach, 304
Cluster perturbation theory, 237, 304, 345

periodic, 240
Clusters, 240
Coarse-graining approximation, 274
Coexistence region, 221
Coherent backscattering, 227
Coherent potential approximation, 212, 227
Cold atoms, 445
Collapse of diagrams, 208
Collapse-and-revival oscillations, 231
COM. See Composite operator method
Commutation relations, 105, 106

canonical, 104
non-canonical, 106, 109, 119

Composite operator method, 102, 103, 106,
117, 123, 124, 138

Compressibility
infinite, in 1D Hubbard model, 354
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Conserving approximations, 85, 424
Conserving T-matrix approximation, 90
Constants of motion, 113
Constrained local-density approximation, 223
Continued fraction, 251
Contraction, 115
Convex functionals, 333
Correlation functions, 115

bosonic, 119, 127
charge, 118, 128
fermionic, 127
pair, 118
spin, 118, 127

Correlations
charge, 107, 121, 129, 136
spin, 107, 121, 136

Correlators. See Correlation functions
Coulomb interactions, 268
CPA. See Coherent potential approximation
CPT. See Cluster perturbation theory
Critical temperature, 130, 131, 137, 138
Crossover to 3d, antiferromagnetic fluctuations,

441
CT-QMC. See Quantum Monte Carlo method

continuous-time
CTMA. See Conserving T-matrix

approximation
Cuprates, 116, 117, 132, 137, 139,

264, 432
Current, conservation, 127

D-wave
channel, 136
symmetry, 137

Dense point spectrum, 227
Density as a basic variable, 3, 5, 23
Density functional theory, 1, 8, 26, 222
Density of states, 119, 206, 210, 226
Density-matrix renormalization group, 217
Detailed balance, 357
DFT. See Density functional theory
Diagonalize, 105
Diagram technique, 156
Diagrammatic approximations, 120
Dispersion equation, 156
Dispersion relation, 204, 206, 219

for GFs, 176
Distance function, 347, 352
Distribution function

Bose, 113
Fermi, 112

DMFT. See Dynamical mean-field theory

DMRG. See Density-matrix renormalization
group

Double occupancy, 119, 121, 122, 127
Dynamical cluster approximation, 276, 333

vs. CDMFT, 367
vs. SFA, 369

Dynamical impurity approximation, 327, 352,
361

Dynamical mean field, 216, 343
Dynamical mean-field theory, 203, 212, 273,

304
DMFT equations, 216
Dynamical single-site problem, 212
Dynamical spin susceptibility, 189
Dynamical variational principles, 303
Dyson equation, 110, 111, 181, 216, 230

generalized, 111

ED. See Exact diagonalization
Effective action, cluster, 343
Ehrenfest’s theorem, 5
Eigenenergy, 105
Eigenoperator, 105

eigenenergy, 105
Energy bands, 118, 119, 126, 135
Energy gap, 43, 46
Energy matrix, 109, 109–112, 135
Ensemble

canonical, 109
grand-canonical, 109
micro-canonical, 113

Entropy, 119, 125, 221, 445
Equations of motion, 105, 108, 112, 134, 135,

137
approach, 120
hierarchy, 107, 108, 126

Ergodicity, 113
of the dynamics, 113, 114, 127

of the basis, 113
ETPSC. See Extended Two-particle-Self-

Consistent Approach
Euler equations, 347
Exact diagonalization, 146, 217, 246
Exchange energy, 107

processes, virtual, 107, 134
Exchange hole, 6, 7
Exchange-correlation

energy, 8, 9, 11, 13
hole, 11, 12

Excitations
charge, 124
spin, 124
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Extended Two-particle-Self-Consistent
Approach, 442

Falicov–Kimball model, 217, 230
Fermi level, 136
Fermi liquid, 134, 211, 219, 221, 231

behavior, 87, 92
picture, 133
theory, 103, 139

Fermi surface, 50, 119, 132, 133
Fermi surface discontinuity, 211, 231
Fermi velocity, 47, 48
Fermion path integral, 308
Finite-size scaling, 265, 369
Finite-temperature Lanczos method, 123
FLEX. See Fluctuation exchange

approximation
Fluctuaction-dissipation theorem, 115
Fluctuation corrections, 83
Fluctuation exchange approximation, 217, 411,

422, 424, 429, 431, 438, 443
Fluctuations

cahrge, 105
charge, 136
pair, 136

Frequency matrix, 178
Frustrated Heisenberg model, 97
Frustration, 443
FTLM. See Finite-temperature Lanczos

method
Functional renormalization group, 95

for iron pnictides, 395
for two-dimensional Hubbard model, 388

Generalized Dyson equation, 156
Generalized mean-field approximation

(GMFA), 178
Generalized Wick’s theorem, 156
Generating functional, 377, 425
Geometrical averaging, 228
Green’s function, 110, 111, 115, 116, 127, 208,

210, 230
causal, 112, 114
CPT, 239
non-interacting, 111
thermalization of the, 231

Group 12 dimers, 15
Gutzwiller approximation, 38, 57, 122, 123
Gutzwiller factor, 39, 49, 57
Gutzwiller projection, 33, 35
Gutzwiller wave-function approximation, 123
Gutzwiller-Brinkman-Rice approach, 218

GWA. See Gutzwiller approximation
GWF. See Gutzwiller wave-function

approximation

Half-metallic ground state, 166
Hamiltonian

algebraic properties, 139
symmetry properties, 139

Hartree approximation, 268
Hartree–Fock method, 3, 7, 9, 13, 14, 205,

212
Hartree–Fock–Slater calculations, 13
Heavy-fermion materials, 367
Heisenberg model, 122
Heisenberg picture, 104
Higher loop corrections, 399
Hole pocket, 132, 133
Holstein model, 269
Holstein-Hubbard model, 269
Hot spots, 264
Hubbard X-operators, 147

algebra, 151
diagram technique, 156

Hubbard bands, 144, 218, 225
Hubbard I solution, 120, 121, 156
Hubbard model, 32, 79, 84, 107, 116, 129, 136,

139, 204, 272, 409
2-site, 134
and frustration, 443
attractive, 366, 446
extended, 268
multiband, 266
near-neighbor interaction, 442
in nonequilibrium, 230
one-band, 263
one-dimensional, 258, 265, 353

Hubbard operators, 117
Hund’s rule exchange, 222
Hybridization expansion, 358
Hybridization function, 215, 229, 230, 343

Impurity solver, 217, 246
In-gap states, 158
Incommensurability, 129
Incommensurability amplitude, 130, 131
Infrared exponents, 87, 89
Insulating phase, 221
Insulator-metal transition (IMT), 166
Internal energy, 119, 123, 124, 136
IPT. See Iterated perturbation theory
Ising model, 107, 116
Iterated perturbation theory, 217
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Kanamori renormalization of U , 416
Kernel polynomial method, 256
Kinematic interaction, 181
Kinks, 132
Kinks in the dispersion relation, 219
Kondo breakdown, 367
Kondo energy scale, 107
Kondo model, 104
Kondo problem, 212
Kondo-like singlet, 108
Kotliar and Ruckenstein representation, 72, 79
Krylov space, 249
Kubo-Mori relaxation function, 176

LA. See Ladder approximation
La2�x.Ba; Sr/xCuO4 , 130
La1�xCaxMnO3, 165
La2CuO4, 129, 148
Ladder approximation, 122, 123
Lanczos method, 249

band, 252
for the Green function, 250

La2�xSrxCuO4, 131, 137, 138
Laue function, 242
LDA. See Local density approximation
LDA+DMFT method, 222
LDA+GTB, 147
LDA+U method, 222
Lehmann representation, 244
Lifshitz quantum phase transitions, 163
Limit of high dimensions, 206
LMA. See Local moment approach
Local density approximation, 222
Local density of states, 227
Local moment approach, 217
Loop, fermionic, 120
Luttinger’s sum rule, 325, 423
Luttinger–Ward functional, 88, 306

Magnetic phases, 81, 84
Magnetic resonance mode, 196
Mean-field approximation, 77
Mean-field-like approximation, 104
Mermin-Wagner theorem, 114
Mermin-Wagner-Hohenberg theorem, 411, 416

violation by RPA, 413
Metal-insulator transition, 217, 220, 227, 228
Metallic phase, 221
Method, Green’s function, 106
Metropolis algorithm, 357
m-matrix, 109, 118
Momentum distribution function, 119

Momentum-shell renormalization group, 383
Mott gap, 265
Mott insulators, 35, 37
Mott transition, 360

doping driven, 363
Mott–Hubbard gap, 154
Mott–Hubbard transition, 80

Nambu representation, 136
NCA. See Non-crossing approximation
Nodal quasiparticles, 45
Non-crossing approximation, 88, 95, 115, 131,

217
Non-equilibrium, 95
Non-equilibrium DMFT, 229
Non-ergodic constant, 177
Non-Fermi liquid, 134

behavior, 87
Non-perturbative conserving approximations,

325
Normal-state self-energy, 402
Normalization matrix, 109, 109–112
N -patch renormalization group, 386
NRG. See Numerical renormalization group
Number operator

charge, 107
electronic, 107
spin, 107

Numerical renormalization group, 217

Occupation factor, 153
ODLRO, 43, 44
One-loop approximation, 120
One-particle irreducible vertices, 380
Operator

basis, 105, 106, 106–117, 125, 126, 134,
137

bosonic, 106–108, 112–115, 125
closed, 105, 105, 107, 109–111, 114,

134
fermionic, 105–108, 110, 112, 117, 134
truncated, 107, 107–110, 114, 115, 117,

126, 131
Bose, 106
bosonic, 106, 107, 109, 111, 113, 126, 131
canonical, 104, 104, 107, 109
charge, 131
composite, 106, 106–111, 114–117, 120,

126, 134, 136, 138
current of, 105, 105, 107–109, 117, 126,

137
eigenoperator. See Eigenoperator
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Fermi, 106
fermionic, 105, 106, 108, 109, 111, 117,

131
non-canonical, 105
number, 104
number-like, 105, 105
orthogonality, 109
pair, 131
residual current of, 109, 111, 115, 117, 126,

131, 137
spin, 131
weight, 109

Optical lattices, 204, 228
and entropy, 445

Order
long-range, 113, 114
parameter, 137

Ordering
charge, 136
spin, 136

Organic superconductors, 362
Ornstein–Zernicke, 418
Orthogonality catastrophe, 87

Parameter
fermionic, 132
self-consistent, 107

Parquet approximation, 217
Particle-hole asymmetry, 35, 49
Particle-hole channel, 281, 417, 421, 426
Particle-hole symmetry, 121, 135
Particle-particle channel, 283, 417, 421
Pauli amplitude, 120
Pauli principle, 115, 120, 121, 411, 415, 426

and Moriya, 441
as a sum rule, 414
influence on charge fluctuations, 419
verified by TPSC, 414
violation by RPA, 413

Periodization, 257
Periodized DMFT, 332
Perturbation theory, strong coupling, 238
PES. See Photoemission spectroscopy
Phantom arc, 133
Phase separation, 291
˚ derivability, 277, 443
Phonons, 269
Photoemission spectroscopy, 224
Point group, 348
Polchinski equation, 379
2-pole approximation, 117, 130, 131
4-pole approximation, 117, 134
Pomeranchuk effect, 220

Prethermalization, 231
Probability distribution function, 227
Processes, virtual, 108, 114
Projected wavefunction, 31, 38, 56
Projection technique, 177
Propagator

bosonic, 131
charge, 119, 131
fermionic, 119, 131, 132
pair, 119, 131
spin, 119, 129, 131

Pseudogap, 132, 263, 363, 410, 422, 429, 432
and superconductivity, 447

Pump-probe spectroscopy, 229

QMC. See Quantum Monte Carlo method
Quantum cluster methods, 224
Quantum critical behavior, 442
Quantum critical point, 285
Quantum criticality, 285
Quantum Monte Carlo method, 212, 217, 256,

355
and TPSC, 412
continuous-time, 217, 358
Hirsch-Fye, 356

Quasiparticle peak, 218
Quasiparticle weight, 45, 48
Quench, 230

Radial slave boson fields, 75
Randomness, 227
Rare earth elements, 1, 23
“Real materials”, 2
Real-space DMFT, 330
Renormalization group, 123
Renormalization group approaches, 93

and TPSC, 438
Renormalized classical regime, 418, 419, 429,

431, 440–443, 445
Response

charge, 107
functions, 119, 125, 426
spin, 107

RG. See Renormalization group
Roth approximation, 120

Saddle-point projection, 87, 88
Scale of energy, 107, 108, 110, 114, 115, 136

analytical, 107, 108
non-analytical, 107, 107, 108, 114
polynomial, 108
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Scaling of hopping amplitudes, 207, 229
SCLA. See Self-consistent ladder

approximation
Sector

bosonic, 107, 117, 127
charge, 117
fermionic, 107, 127
spin, 117

Self-consistency, 104, 107, 109, 110, 116, 119,
127, 137, 345

two-particle, 409
Self-consistent ladder approximation, 122, 123
Self-energy, 111, 210, 223, 230, 420

irreducible, 111, 114
locality of, 209
matrix, 156
non-crossing approximation, 184
non-perturbative TPSC, 428
polar structure, 114
residual, 111, 114, 115, 131–134

Self-energy-functional approach, 303, 346
Self-energy-functional theory. See Self-energy-

functional approach
SFA. See Self-energy-functional approach
Single-channel instabilities, 399
Single-electron Green function, 153
Single-impurity Anderson model, 71, 77, 88,

107, 213
with finite U , 90

Skeleton diagram expansion, 308, 443
Slater determinant, 3
Slater exchange potential, 6
Sm2�xCexCuO4, 161
Solution, self-consistent, 107
Spatial correlations, long-range, 113
Specific heat, 119, 124, 136

crossing point, 125
Spectral density function, 112
Spectral function, 36, 48, 119, 126, 132, 133,

210
Spectral moments, 107, 126

conservation, 108
Spectral representation

for GFs, 175
of hybridization function, 343

Spectral weight, 132, 133, 153
QMC, TPSC and FLEX, 422
transfer, 110

Spectrum, spin, 129
Spin correlation functions, 164
Spin liquid, 362
Spin structure factor, 419
Spin- and charge-rotation-invariant

formulation, 74

Spin-charge separation, 265
Spin-excitation spectrum , 189
Spin-liquid model, 164
Spin-liquid phase, 159
Spin-rotation invariant representation, 73, 83
Spin-state transition, 167
Spinorial representation, 108, 117
Spontaneous symmetry breaking, 322
SrVO3 , 225
Stochastic DMFT, 227
Strength operator, 156
Stripe phases, 84
Stripes, 268
Strong electronic correlations, 103
Strongly correlated systems, 1, 23, 104, 106,

107, 115, 129, 138, 139
Sub-bands, 110, 118
Sum rule, 36, 48, 52
SUNCA. See Single-impurity Anderson model

with finite U
Superconducting gap equation, 186
Superconductivity, 108, 117, 136, 137, 410,

412, 438
Tc in TPSC, 438
and pressure dependence, 433
coexistence with antiferromagnetism, 364
critical temperature, 365
d-wave by antiferromagnetic fluctuations,

435
d-wave, in CDMFT, 364
in the Hubbard model, 180, 439
pseudogap, 447

Superfluid stiffness, 51
Superlattice, 240, 345
Susceptibility

charge, 120, 127
spin, 120, 127, 129

Symmetry group
of clusters, 253

System
strongly correlated, 104
weakly correlated, 104

Temperature-flow renormalization group, 384
Thermalization, 230
Thermodynamic Green functions (GFs), 175
Thermodynamic limit, 265
Thermodynamical consistency, 321, 424, 443,

444
Thomas–Fermi method, 4, 25
t � J model, 35, 192, 267
TPSC. See Two-Particle-Self-Consistent

Approach
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Transformation
canonical, 104

Transition metal oxides, 203, 224
t � t 0 � t 00 � J model, 149
t � t 0 � U model, 130
Two-band singlet-triplet Hubbard model, 160
Two-loop renormalization group, 404
Two-particle Green’s function, 281
Two-Particle-Self-Consistent Approach, 409

and Singwi, 415
formal derivation, 425
internal accuracy check, 423
physical motivation, 413

Two-site resolvent approach, 115

Ultra-cold atomic gases, 204, 228, 229

V2O3, 218

Variational cluster approximation, 237, 303
VCA. See Variational cluster approximation
Vertex corrections, for conductivity, 446
Virtual states, 157

Wannier functions, 148
Wannier, state, 104
Ward–Takashi identities, 116
Wave-vector, reduced, 345
Weiss field, Hartree approximation, 268
Wetterich equation for 1PI vertices, 380
Wigner–Seitz cell, 6

X-ray absorption spectroscopy, 224
XAS. See X-ray absorption spectroscopy

Zhang-Rice singlet, 150
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