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Abstract Novel concepts of nonlinear-optical (NLO) pho-
tonic metamaterials (MMs) are proposed. They concern
with greatly enhanced coherent NLO energy exchange be-
tween ordinary and backward waves (BWs) through the
frequency-conversion processes. Two different classes of
materials which support BWs are considered: crystals that
support optical phonons with negative group velocity and
MMs with specially engineered spatial dispersion. The pos-
sibility to replace plasmonic NLO MMs enabling mag-
netic response at optical frequencies, which are very chal-
lenging to engineer, by the ordinary readily available crys-
tals, are discussed. The possibility to mimic extraordinary
NLO frequency-conversion propagation processes attributed
to negative-index MMs (NIMs) is shown in some of such
crystals, if optical phonons with negative group velocity and
a proper phase-matching geometry are implemented. Here,
optical phonons are used as one of the coupled counterparts
instead of backward electromagnetic waves (BEMWs). The
appearance of BEMWs in metaslabs made of carbon nan-
otubes, the possibilities and extraordinary properties of BW
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second harmonic generation in such MMs is another option
of nonmagnetic NIMs, which is described too. Among the
applications of the proposed photonic materials is the possi-
bility of creation of a family of unique BW photonic devices
such as frequency doubling metamirror and Raman ampli-
fiers with greatly improved efficiency.

1 Introduction

Optical NIMs form a novel class of electromagnetic me-
dia that promises revolutionary breakthroughs in photon-
ics. The possibilities of such breakthroughs originate from
backwardness, the extraordinary property that electromag-
netic waves acquire in NIMs. Unlike ordinary, positive-
index materials, the energy flow S and the wave-vector k
are counter-directed in NIMs. This determines their unique
linear and NLO propagation properties. Usually, NIMs are
nanostructured metal–insulator composites comprised of the
nanoscopic metal resonators that enable magnetic response
at optical frequencies. Extraordinary features of coherent
NLO energy conversion processes in NIMs that stem from
wave-mixing of ordinary and backward EMWs, and the pos-
sibilities to apply them for compensating the outlined losses
have been reviewed [1, 2]. A remarkable feature is dis-
tributed feedback behavior which allows for sharp resonance
concentration of generated fields in a microscopic zones and
great increase of the conversion efficiency. Essentially dif-
ferent properties of three-wave mixing (TWM) and second
harmonic generation (SHG) have been shown.

While the physics and applications of NIMs are being
explored worldwide at a rapid pace, current mainstream
focuses on fabrication of specially shaped nanostructures
which enable negative optical magnetism. It is a challeng-
ing task that relies on sophisticated methods of nanotech-
nology. Engineering of a strong fast quadratic and cubic
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NLO response by such mesoatoms also presents a chal-
lenging goal not yet achieved. This paper considers alter-
native possibilities to advance the state of the art of the
nonlinear photonic materials through the development of
novel paradigms for quantum engineering of coherent non-
linear NIMs. Two approaches are discussed. One grounds
itself on replacing one of the coupled EM waves by the
negative-dispersive phonons, which is possible by making
use of readily available dielectric crystals. The other option
considers metamaterials where backwardness of one of the
coupled propagating EM waves originates from deliberately
engineered spatial dispersion of the nanoscopic metamate-
rial building blocks. None of such constituents itself must
possess nanoresonator properties providing negative optical
magnetism.

2 Enhancing coherent energy transfer between
electromagnetic waves through backward optical
phonons

Extraordinary features of coherent NLO energy conversion
processes in NIM that stem from wave-mixing of ordinary
and backward EMWs, and the possibilities to apply them
for compensating the outlined losses have been shown [6–
15]. Essentially different properties of three-wave mixing
(TWM) and four-wave mixing (FWM) processes on the one
hand and second harmonic (SHG) and third harmonic gen-
eration (THG) on the other have been revealed [1–6, 16–18].
Ultimately, NLO with BW enables a great enhancement of
energy-conversion rate at the otherwise equal nonlinearities
and intensities of input waves. Herein, we propose funda-
mentally different scheme of TWM of ordinary and back-
ward waves (BWs). It builds on the stimulated Raman scat-
tering (SRS) where two ordinary EM waves excite backward
elastic vibrational wave in a crystal, which results in TWM.
The possibility of such BWs was predicted by L.I. Mandel-
stam in 1945 [19], who also had pointed out that negative
refraction is a general property of the BWs. The idea un-
derlying the proposed concept and its basic justification is
described below (see also [20]). The goal is to show the
possibility to replace the NI plasmonic composites, which
are challenging to fabricate, with readily available ordinary
crystals, some of which have been already extensively stud-
ied, and thus to mimic the unparallel properties of coherent
NLO energy exchange between the ordinary and backward
waves.

The basic idea is as follows. The dispersion curve ω(k) of
phonons in the crystals containing more than one atom per
unit cell has two branches: acoustic and optical. For the opti-
cal branch, the dispersion is negative in the range from zero
to the boundary of the first Brillouin zone (Fig. 1). Hence,
the group velocity of optical phonons, vgr

v , is antiparallel

Fig. 1 Negative dispersion of optical phonons and two phase match-
ing options for short- and long-wave vibrations: (a) co-propagat-
ing, (b) contra-propagating fundamental (control) and Stokes (signal)
waves. Insets: relative directions of the energy flows and the wave-vec-
tors

with respect to its wave-vector, kph
v , and phase velocity, vph

v ,
because

S = vgU, vg = (k/k)[∂ω/∂k], ∂ω(k)/∂k < 0. (1)

Optical vibrations can be excited by the light waves due
to the two-photon (Raman) scattering. The latter gives the
ground to consider such a crystal as the analog of the
medium with negative refractive index at the phonon fre-
quency and to examine the processes of parametric interac-
tion of three waves, two of which are ordinary EM waves
and the third is the wave of elastic vibrations with the direc-
tions of the energy flow and of the wave-vector opposite to
each other. Here, we will consider only lowest-order Raman
process [21, 22]. The waves are given by the equations

El,s = (1/2)εl,s(z, t)e
ikl,s z−iωl,s t + c.c., (2)

Qv = (1/2)Q(z, t)eikvz−iωvt + c.c. (3)

Here, εl,s , Q, ωl,s,v and kl,s,v are the amplitudes, frequen-
cies and wave-vectors of the fundamental, Stokes and vibra-
tional waves; Qv(z, t) = √

ρx(z, t), with x the displacement
of the vibrating particles and ρ the medium density. With ac-
count for the energy and momentum conservation,

ωl = ωs + ωv(kv), �kl = �ks(ωs) + �kv,

one obtains the following equations for the slowly varying
amplitudes in the approximation of the of first order of Q in
the polarization expansion:
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Here, v
gr
l,s,v are the projections of the group velocities of

the fundamental, Stokes and vibration waves on the z-axis;
N is the number density of the vibrating molecules; α is
the molecule polarizability; τ is phonon lifetime; and ω0 is



Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials 837

phonon frequency for kv = 0. The dispersion ωv(kv) can be

approximated as ωv =
√

ω2
0 − βk2

v (see [21]). Then, in the

vicinity of kv = 0, velocity v
gr
v is given by v

gr
v = −βkv/ωv =

−β/v
ph
v , where v

ph
v is the projection of the phase velocity of

the vibrational wave on the z-axis and β is the dispersion
parameter for the given crystal.

For the sake of clarity, the continuous wave case and the
approximation of the constant field El is considered. The
latter is appropriate for the relatively week Stokes and vi-
brational waves. Then (5) and (6) take the form

dQ/dz = −ig1ε
∗
s − Q/

(
τv

gr
v

)
, dεs/dz = ig2Q

∗. (7)

Here,

g1 = −N(∂α/∂Q)εl/
(
4ωvv

gr
v

)
, (8)

g2 = (
πω2

s /ksc
2)N(∂α/∂Q)εl . (9)

In the case of Fig. 1(a), (7) exhibit three fundamental dif-
ferences as compared with TWM of co-propagating waves
in ordinary materials: an opposite sign with g1 which stems
from v

gr
v < 0, an opposite sign with Q/(τv

gr
v ) because the

phonon flow is against the z-axis, and the boundary condi-
tions for Q to be defined at z = L, i.e. at the opposite edge
of the slab as compared to that for εs . This leads to funda-
mental changes in their solutions and, consequently, in the
spatial and output behavior of the Stokes signal. Alterna-
tively, in the given constant εl approximation, the equations
become identical and the behavior standard for the case of
Fig. 1(b). The solution to (7) is found in the form

Q∗ = A1e
β1z

′ + A2e
β2z

′
, εs = A3e

β1z
′ + A4e

β2z
′
, (10)

where β1,2 = 1 ∓ iR with R =
√

g∗
1g2l2

p − 1; z′ = z/lp ,

lp = −2v
gr
v τ . The amplitudes A1−4 and their relationships

are determined by the boundary conditions. Transmission
factors for co-propagating, T

�
s (z), and counter-propagating

(g2 < 0), T
↑↓
s (z), fundamental and Stokes waves are found

as

T �
s =

∣∣∣∣
ez′ {R cos[R(L′ − z′)] + sin[R(L′ − z′)]}

R cos(RL′) + sin(RL′)

∣∣∣∣
2

, (11)

T ↑↓
s = ∣∣{β1e

[β2(L
′−z′)] − β2e

[β1(L
′−z′)]}/2R

∣∣2
, (12)

where L′ = L/lp , T
�
s = |εs(z)/εs(z = 0)|2 and T

↑↓
s =

|εs(z)/εs(z = L)|2.
Equations (11) and (12) display spatial distributions

which are controlled by the field εl and are in a strict contrast
to each other. It is explicitly seen for the ultimate loss-free
case (lp → ∞). Then

T �
s (z = L) → 1/ cos2(gL), (13)

T ↑↓
s (z = 0) → [

exp
(
2|g|L)]

/4, (14)

where g = √
g∗

1g2. Equation (11) depicts a series of sharp
giant resonance enhancements of the output signal for

Fig. 2 (a) Transmission of the Stokes wave T
�
s (z = L) vs. intensity

of the fundamental control field in the vicinity of first “geometrical”
resonance (co-propagating El and Es geometry). Such extraordinary
resonance appears because of backwardness of the coupled vibration
wave. (b) Comparison of the output intensities of the Stokes wave vs.
intensity of the control field for co-propagating (the blue, solid line)
and contra-propagating (the red, dashed line) fundamental (control)
and Stokes (signal) waves

g → (2j + 1)π/2L (j = 0,1,2, . . .). On the contrary, the
coupling scheme of Fig. 1(b) is equivalent to scattering
on acoustic phonons and on optical phonons with posi-
tive group velocity. Correspondingly, (12) displays typi-
cal exponential growth with no resonances with respect
to intensity of the fundamental control field. In general
case, the denominator in (11) can be turned to zero if
g2l2

p > 1. The threshold value of intensity of the control

field is Imin = (cnsλs0ωv/8π3lpτ )|N∂α/∂Q|−2, where λs0

is Stokes wavelength in the vacuum.
For a given intensity of the control field Il > Imin, the

crystal thickness corresponding to the first resonance is
L′ = [π − tan−1(R)]/R. Figure 2(a) depicts transmission in
the vicinity of the first “geometrical” resonance. In the res-
onance, T

�
s → ∞, which is due to the approximation of

constant control field. Conversion of the control field to the
Stokes one and excited molecule vibrations would lead to
saturation of the control field which limits the maximum
achievable amplification. Strong amplification in the max-
imums indicates the possibility of self-oscillations and thus
creation of mirrorless optical parametrical oscillator with
unparalleled properties. In the case of Fig. 1(b), ks < 0 and
the denominator in (12) cannot be equal to zero. This results
in exponential spatial dependence with no resonances de-
picted in Fig. 2(b) (the red, dashed line). Figure 2(b) shows
that, in the vicinity of the resonance, three-wave coupling
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of waves with co-directed wave-vectors and contra-directed
energy flows of vibrational and Stokes waves provides for
much higher efficiency of coherent energy conversion than
in the standard schemes. Figure 2 indicates the possibility to
fit in the effective conversion length within the crystal of a
given thickness and to significantly concentrate the gener-
ated Stokes field nearby its output facet. Such atypical ex-
traordinary behavior in readily available crystals may find
exciting applications.

Such unusual properties are in a striking contrast with
those attributed to commonly known counterparts, the crys-
tals where only phonons with positive group velocity exist
[21, 22]. Such NLO properties are also different from those
inherent in the phase-matched mixing of EM and acous-
tic waves for the case where the latter has energy flux and
wave-vector directed against EM waves [23]. The elabora-
tion of the proposed concept will allow to utilize the revealed
properties for creation of a family of unique photonic de-
vices such as optical switches, filters, amplifiers and cavity-
free optical parametric oscillators based on ordinary Raman
crystals without the requirement of its periodical poling at
the nanoscale (see[24] and references therein).

Estimations made for the model which is pertinent to
the diamond crystal ωv = 1332 cm−1 and the vibrational
transition width (cτ )−1 = 1.56 cm−1 [25–27], have shown
that the required excitation intensities are above the typical
crystal breakdown threshold in the continuous wave regime.
However, the cross section of the Raman scattering is in-
versely proportional to the squared frequency offset from the
intermediate single-photon resonance. Therefore, the thresh-
old intensity Imin can be reduced by seven to eight orders
compared to its off-resonance values by approaching such a
resonance. The breakdown threshold can be increased and
required intensity reduced for pulsed lasers with the pulse
length shorter than the phonon relaxation rate.

3 Backward waves, carbon nanoforest and second
harmonic generation

Herewith, we suggest more general approach to generating
backward electromagnetic waves, which is free from the
limitations inherent to current mainstream approach. The
latter relies on plasmonic nanoresonators which ensure neg-
ative optical magnetism. The basic idea is as follows. In a
loss-free isotropic medium, energy flux S is directed along
the group velocity vg :

S = vgU, vg = gradkω(k). (15)

Here, U is energy density attributed to EMW. It is seen that
the group velocity may become directed against the wave-
vector depending on sign of dispersion ∂ω/∂k. Similar prop-
erty was discussed in the preceding section, however applied

Fig. 3 (a) Geometry of free-standing CNT. (b) Dispersion—the fre-
quency vs. slow-wave factor for the slab of CNTs with open ends.
(c) Group delay factor vs. the phase velocity slow-wave factor for the
same modes as in panel (a). Black (flat) curve corresponds to the high-
frequency mode, blue curve to the low-frequency mode. The tip of blue
curve is cut. Its maximum corresponds to the stop-light regime

to elastic vibrational waves. Such an approach to engineer-
ing of BEMW discussed, e.g., in [28, 29] has not attracted
significant research efforts so far. The search and elaboration
of the particular MM with spatial dispersions that enables
BEMW remains the topical problems of the day. Appear-
ance of BEM modes in nanoarrays and layered structures
has been shown recently [30, 31]. Obviously, many other
options should exist. Each of them leaves open questions,
both fundamental and specific to each potential material and
application. Below, we propose and give a preliminary anal-
ysis pertinent to one such option that seems promising in
the context of nonlinear propagation coherent energy con-
version processes, such as generation of backward second
harmonic.

Figure 3(a) depicts a periodic array of carbon nanotubes
(CNT) vertically standing on the surface of a perfect electri-
cal conductor (PEC) with the CNT ends open to air, which
can be seen as perfect magnetic conductor (PMC). Such
CNT arrays form finite-thickness slabs which have been fab-
ricated by many research groups and used as field emitters,
biosensors, antennas and in nanoelectronics. As shown in
Ref. [32], EM waves traveling through such CNT “nanofor-
est,” along x or y directions, possess a hyperbolic dispersion
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and relatively low losses in the THz and mid-IR ranges. One
of the most important consequences from the hyperbolic-
type dispersion law is the possibility for propagation of both
forward and backward EM waves. Consider EMW propa-
gating along the x-axis. In such a one-dimensional case, (15)
reads as vgr = ∂ω/∂kx . We also introduce group ngr = c/vg

and phase nph = c/vph slow-wave factors. The latter one is
a refractive index. For the given case of surface waves prop-
agating in the slab of CNT with open ends, whose fields
attenuate in air, the dispersion is given by the equation [33]:

tan (kzh) =
√

k2
x − k2/kz. (16)

Such a dependence can be understood from considering a
planar waveguide formed by perfect PEC and PMC planes
and tampered with a CNT array. The array axis is orthog-
onal to the walls of the waveguide. Then, the propagation
constant along the waveguide is given by

k⊥ =
√

εzz

[
k2 − (mπ/2h)2

]
, (17)

where m is a positive integer, h is the height of the waveg-
uide (CNT) and k is the wavenumber in free space [34]. If
εzz < 0, BW propagation is allowed when k < mπ/2h and
forbidden for k > mπ/2h. The relation between the wave-
vector component kx and wavenumber k is

k2
x = [(

k2 − k2
p

)(
k2 − k2

z

)]
/
[
k2], (18)

where kz = mπ/(2h), m is the integer determining a number
of field variations along CNT, and kp is plasma wave-vector.
One can show that dk2⊥/dk2 < 0, if kz/k > 1 and kp/k > 1.

Numerical analysis of (16) is depicted in Fig. 3(b) for
the case of CNT radius r = 0.82 nm, the lattice period
d = 15 nm and EM modes with m = 1 and m = 3. The
appearance of positive dispersion for small slow-wave fac-
tors is caused by interaction of BW in the CNT slab with
the plane wave in air. Indeed, coexistence of the positive
(ascending dependence) and negative (descending depen-
dence) dispersion for different frequencies proves that such
a metamaterial supports both ordinary and backward EMW.
It also proves that resonant plasmonic structures, like split-
ring resonators, exhibiting negative ε and μ are not the nec-
essary requirement for the realization of BW regime in mid-
IR range. The possibility of considerable increased band-
width of BEMW compared to most plasmonic MM made of
nanoscopic resonators which gives the ground to consider
CNT arrays as a promising perfect backward-wave meta-
material. The slow-wave factor for both modes is shown in
Fig. 3(c). The magnitude of ngr goes to infinity at nph ≈
1.85, which indicates the stop-light regime for the low-
frequency mode. Particularly, Fig. 3(c, b) shows the possi-
bility of phase matched SHG. The possibilities of indepen-
dent quantum engineering of corresponding nonlinearities
were shown in Refs. [1, 11, 13–15]. The attractive feature
of given approach is the feasibility of tailoring the outlined
properties.

4 Conclusions

While the physics and applications of NIM are being ex-
plored worldwide at a rapid pace, current mainstream fo-
cuses on fabrication of specially shaped nanostructures
which enable negative optical magnetism. It is challenging
task that relies on sophisticated methods of nanotechnology.
Engineering a strong fast quadratic and cubic NLO response
by such mesoatoms also presents a challenging goal not yet
achieved. This paper proposes to advance the state-of-the-
art of the nonlinear photonic materials through development
of novel paradigms for enhanced coherent nonlinear cou-
pling of EMW which is accompanied by efficient frequency
conversion. Such an approach has become achievable only
recently owing to fast developments in the fundamental elec-
tromagnetics, nanophotonics and in nanotechnology. It also
paves the way to realization of exotic coherent NLO pro-
cesses in some of readily available crystals. Among the
potential applications are microscopic frequency-doubling
nonlinear-optical mirrors and sensors, all-optical switching
elements, frequency mixers, filters, amplifiers, and sources
of entangled counter-propagating photons.
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