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Abstract The Hamiltonian approach to the General Relativity is formulated as a
joint nonlinear realization of conformal and affine symmetries by means of the Dirac
scalar dilaton and the Maurer–Cartan forms. The dominance of the Casimir vacuum
energy of physical fields provides a good description of the type Ia supernova luminos-
ity distance—redshift relation. Introducing the uncertainty principle at the Planck’s
epoch within our model, we obtain the hierarchy of the Universe energy scales, which is
supported by the observational data. We found that the invariance of the Maurer–Cartan
forms with respect to the general coordinate transformation yields a single-compo-
nent strong gravitational waves. The Hamiltonian dynamics of the model describes the
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effect of an intensive vacuum creation of gravitons and the minimal coupling scalar
(Higgs) bosons in the Early Universe.

Keywords Conformal cosmology · General relativity · Hamiltonian dynamics ·
Casimir energy

1 Introduction

The Standard Model (SM) of electroweak and strong interactions [1–3] describes
well practically all physical phenomena up to the energy of at least 100 GeV. Accord-
ing to the accepted wisdom, the physical content of the SM (in the lowest order of
perturbation theory) is completely covered by fields and particles as representations
of the Poincaré group (with positively defined Hilbert space scalar product) and the
Lorentz classification of variables used for calculation of weak transitions between
these states [4].

The unification of the SM with a gravitational theory is a longstanding fundamental
problem. It seems natural in this case to require that both theories should be treated
on equal footing. The main difficulty of the unification lies in the different theoretical
levels of their presentation: quantum for the SM and classical for the gravitational
theory. However, both these theories have common roots of their origin (mechanics
and electrodynamics) and obey the principles of relativity confirmed by numerous
experimental observations. Note that there is also enormous progress in observational
cosmology [5–7] which enters into the era of precise science; it means that a typical
accuracy of standard parameter determination is about a few per cent. Evidently, one
of the major aims of the unification is to develop a cosmological model which could
pass the vitality test by the cosmological data. Last but not least, this model should
allow one to develop a renormalizable quantized version.

The first step in this direction is due to Fock [8]. He introduced the Dirac electron as
a spinor representation of the Lorentz group into the General Relativity (GR) by means
of the Einstein interval as the sum of squared linear forms. These forms are known
as four components of a simplex of the reference frame in the tangent Minkowskian
space-time. The next step was made in [9], where it was shown that infinite-parametric
general coordinate transformations introduced by Einstein [10,11] can be converted to
the finite-parametric conformal group and the affine group of all linear transformations
of four-dimensional space-time, including the Poincaré group. The conformal sym-
metry as a basis for the construction of the GR was independently introduced by Deser
and Dirac [12,13]. In particular, Dirac formulated the conformal-invariant approach
to the GR [13] as a new variational principle for the Hilbert action [14] introducing
a dilaton (scalar) field, in addition to gμν . Further it was shown [15] that in the case
of the dynamical affine symmetries the method of nonlinear realization of symmetry
groups [16,17] leads to the Hilbert action of Einstein’s gravitational theory expressed
in terms of the Fock simplex components.

A particular conformal cosmological model, based on the ideas discussed above,
have been developed in papers [18–21]. It was shown that the model leads to a viable
cosmology being in agreement with observations. For example, a good description
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of the modern supernovae type Ia data was constructed [18,19] in the assumption of
a rigid state dominance. The initial data conditions on the dilaton and an additional
scalar field have been employed as a source of the conformal symmetry breaking.
This field led to the rigid state dominance at the classical level. In the present paper
we shall attempt to go beyond the classical level and show that the Casimir vacuum
effect in a finite-size Universe could provide both the scale invariance breaking and
the rigid state dominance, required in our model to describe the SNe Ia data. Therefore
we substantially change the basis of the whole model. For this reason we reformu-
lated below the model and re-derived its phenomenological consequences. Note that
recently different approaches to construction of conformal-invariant models of grav-
ity and cosmology have been suggested in the literature, see e.g. papers [22–24] and
references therein.

The goal objective of our paper is to construct a self-consistent gravitational model
of the Universe based on the affine and conformal symmetries in the framework of the
Dirac variational principle. Our approach enables us: (i) to develop the Hamiltonian
description of the cosmological evolution, (ii) to obtain exact solution of constraints,
and (iii) using this solution to gain cosmological quantum effects, including the vac-
uum creation processes at the Planck epoch. The content of the paper is as follows.
Section 2 is devoted to the Hamiltonian approach to our gravitation model, clear-
ing up its symplectic structure. Here we also establish the Planck epoch hierarchy of
the Universe energy scales defined by the Casimir vacuum energy and the quantum
uncertainty principle. In Sect. 3, we analyze the properties of strong affine gravita-
tional waves in a dynamical approximation, when all static Newton-like potentials
are neglected. The conformal cosmological (CC) model is briefly discussed and an
intensive vacuum creation of gravitons is described. Section 4 describes gravitational
interactions of fermions. In Sect. 5 we compare the vacuum creation of gravitons with
the Higgs particle one. The main results are summarized in Sect. 6. In “Appendix A”,
we briefly reconsider the Dirac Hamiltonian approach in infinite space-time, reformu-
lated in terms of the Maurer–Cartan forms in order to compare it with our construction
in Sect. 2. In “Appendix B” we present the dilaton cosmological perturbation theory.
“Appendix C” is devoted to the conformal cosmology.

2 Conformal Hamiltonian dynamics

2.1 Nonlinear realization of affine and conformal symmetries

Let us define a conformal version of the GR as a nonlinear realization of joint confor-
mal and affine A(4) symmetries in the factor space A(4)/L with the Lorentz subgroup
L of the stable vacuum (here we use the concepts of the theory [16,17]). Recall that
the affine group A(4) is the group of all linear transformations of the four-dimensional
manifold xμ → x̃μ = xμ + yμ + L [μν]xν + R{μν}xν , where yμ is a shift of coor-
dinate and L [μν] and R{μν} are antisymmetric and symmetric matrices respectively
(here Greek indices μ, ν, . . . run from 0 to 3). A nonlinear realization of A(4) is based
on finite transformations G = ei P·x ei R·h defined by means of the shift operator P ,
proper affine transformation R and the following Goldstone modes: four coordinates
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xμ and ten gravitational fields h [9]. This realization can be obtained with the aid of
the Maurer–Cartan forms1 in the following way

GdG−1 = i[P(α) · ωP
(α) + R(α)(β) · ωR

(α)(β)
︸ ︷︷ ︸

shifts of simplex in K=A(4)/L

+ L(α)(β) · ωL
(α)(β)

︸ ︷︷ ︸

rotations in K=A(4)/L

], (1)

ωP
(α)(d) = e(α)μdxμ, (2)

ωR
(α)(β)(d) = 1

2

(

eμ

(α)de(β)μ + eμ

(β)de(α)μ

)

, (3)

ωL
(α)(β)(d) = 1

2

(

eμ

(α)de(β)μ − eμ

(β)de(α)μ

)

. (4)

Here, ωP
(α)(d), ωR

(α)(β)(d) are shifts of a simplex of the reference frame in the coset

space A(4)/L , and ωL
(α)(β)(d) is responsible for the rotation of the simplex. The explicit

dependence of the decomposition coefficient eμ

(α), e(β)μ (known as tetrades [8]) on the
gravitational fields h was obtained in Refs. [15,26]. Note that there are two types
of indices: one belongs to the subgroup L and the other (bracket Greek indices
(α), (β), . . . run from 0 to 3) to the coset A(4)/L . In this approach, the Maurer–
Cartan forms with the coset indices are main objects of the Poincaré transformations
and classification of states. According to the general theory of non-linear realiza-
tions [16,17] we should express all measurable quantities via the coset variables with
bracket-indices.

To construct a GR model in this approach, one needs to consider the covariant dif-
ferentiation of a set of fields � transformed by means of the Lorentz group generators
L�

(α)(β)

D(γ )� = D�

ωP
(γ )

=
[

∂(γ ) + 1

2
iv(α)(β),(γ )L�

(α)(β)

]

�, (5)

where ∂(γ ) = (e−1)μ(γ )∂μ. Here, the linear form v(α)(β),(γ ) is constructed by means
of the Maurer–Cartan forms (3), (4),

v(α)(β),(γ ) =
[

ωL
(α)(β)(∂(γ )) + ωR

(α)(γ )(∂(β)) − ωR
(β)(γ )(∂(α))

]

. (6)

Similarly, the covariant expression for the action of the Goldstone fields h can be
obtained with the aid of the commutator of the covariant differentiation of a set of the
fields � [27]

[

D(δ)D(γ ) − D(γ )D(δ)

]

� = i R(4)
(α)(β),(δ)(γ )L�

(α)(β)�/2. (7)

1 These forms were introduced in the GR by Fock and Cartan [8,25].
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The Riemann curvature tensor is defined as [15]:

R(4)
(α)(β),(γ )(δ) = ∂(γ ) v(α)(β),(δ) + v(α)(β),(ζ ) v(δ)(ζ ),(γ )

+ v(α)(ζ ),(δ) v(β)(ζ ),(γ ) − ((γ ) ↔ (δ)) (8)

The joint conformal realization of the affine and conformal groups A(4)×C symmetry
allows to separate the dilaton field D [13] as the Goldstone mode accompanying the
spontaneous conformal symmetry breaking via a scale transformation:

eμ

(α) = ẽ μ

(α)e
D. (9)

Using the correspondence principle to the classical gravitation theory and the min-
imal derivative number postulates, we obtain the conformal-invariant action:

WC[D, ẽ(α)ν] = −M2
C

3

8π

∫

d4x

[

√−g̃

6
R(4)(g̃ ) e−2D

−e−D ∂μ

(

√−g̃ g̃μν ∂νe−D
)

]

, (10)

where MC is the conformal Newton coupling constant.
In this case the measurable interval ˜ds

2
is determined by the conformal metric g̃μν

expressed via the tetrades ẽ(α)μ:

g̃μν = ẽ(α)μ ⊗ ẽ(α)ν → ˜ds
2 = g̃μνdxμdxν . (11)

Note that the standard Hilbert–Einstein action

WE[g] = −(M2
Pl/16)

∫

d4x
√−gR(4)(g) (12)

with the standard Einstein interval

ds2
E = gμνdxμdxν (13)

can be reproduced:

WC[D, ẽ(α)ν] = WE[g], if

{

gμν = e2Dẽ(α)ν ⊗ ẽ(α)ν

MPl = MC
(14)

In the action (10) we have joined two approaches: the Dirac’s dilaton conformal
theory and the Fock tetrades with the affine symmetry. Although there is a formal cor-
respondence (14), some physical consequences, as will be shown below, are different.
We point out that in our approach there is a new set of dynamical variables {̃eμ

(α), D}
which are subject to the affine and conformal symmetry constraints. In particular, the
conformal invariant interval ˜ds

2
substitutes the standard one ds2

E. It will be shown
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below that the new variables enable to us to find explicit solutions for all symmetry
constraints in the framework of the Dirac approach [28,29]. One of the key assump-
tions of our approach to the GR is that measurable quantities are identified with the
conformal field variables ˜F(n). These variables are obtained from the standard ones
F(n) by means of the Weyl transformation F(n) = ˜F(n)enD , where n is the conformal
weight [30]. Therefore, we name our approach as a conformal general relativity (CGR)
approach to the gravitation theory.

Below we will use the natural units:

MPl
√

3/(8π) = c = h̄ = 1. (15)

2.2 Conformal formulation of the Dirac-ADM foliation 4 → 1 + 3

Thus, we have defined the action and the variables of our model. In order to obtain
physical results we have to resolve within the Hamiltonian approach the constraints
arisen due to the affine and conformal symmetries.

Let us reformulate the Dirac-ADM foliation [28,31] in terms of the simplex com-
ponents and the dilaton.2 The simplex components [ω̃(0), ω̃(b)] (here all Latin indices
run from 1 to 3) can be written as

ω̃(0) = e−2D Ndx0, (16)

ω̃(b) = ẽ(b)i dxi + N(b)dx0, (17)

where N(b) = N j ẽ j (b) are the shift vector components, and N (x0, x j ) is the lapse
function. Here ω̃(b) are the linear forms defined via the triads ẽ(b)i with a unit spatial
metric determinant

|̃e j (b)| = 1, (18)

i.e., the Lichnerowicz gauge [32–34]-type for the triads. This gauge connects the scalar
dilaton field D with a logarithm of the Einstein metric determinant:

D = −(1/6) ln |g(3)
i j |. (19)

Recall that this component was distinguished by Dirac in his Hamiltonian approach
to the Einstein GR [28,29].

The group of invariance of the GR for the Dirac-ADM foliation is known as the
kinemetric subgroup of the general coordinate transformation [35,36]

x0 → x̃0 = x̃0(x0), (20)

xk → x̃ k = x̃ k(x0, x1, x2, x3). (21)

2 Although the Dirac Hamiltonian approach to the Hilbert action in terms of the Dirac-ADM metric com-
ponents is well known [28,31], for the sake of comparison we present in “Appendix A” the modification of
this approach in terms of the Maurer–Cartan forms.
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This group admits the decomposition of the dilaton into the sum of the zeroth and
nonzeroth harmonics:

D(x0, x1, x2, x3) = 〈D〉(x0) + D(x0, x1, x2, x3). (22)

This is one of the key points in our construction. The introduction of the zeroth mode
〈D〉(x0) is consistent with the Einstein cosmological principle of averaging of all
scalar fields of the theory over a finite volume V0 = ∫

V0
d3x [37]

〈D〉(x0) = V −1
0

∫

V0

d3x D(x0, x1, x2, x3). (23)

In virtue of Eqs. (22) and (23), we obtain the orthogonality condition

∫

V0

d3x D(x0, x1, x2, x3) ≡ 0. (24)

This condition enables to us to consider the zeroth and nonzeroth components as
independent ones.

The invariance of the action with respect to the reparameterization of the coordinate
time parameter (20) guides us to suppose that the zeroth dilaton mode 〈D〉(x0) can be
chosen as an evolution parameter in the field space of events [〈D〉, D, e j

(b)] [20]. Note
that by definition the zeroth dilaton harmonics (obtained by averaging it over a finite
volume) coincides with the cosmological scale factor logarithm [38,39]

〈D〉 = − ln a = ln(1 + z). (25)

The factorization of the lapse function

N (x0, x j ) = N0(x0)N (x0, x j ) (26)

by the spatial volume average [20]

〈N−1〉 ≡ 1

V0

∫

V0

d3x
1

N (x0, x1, x2, x3)
= N−1

0 (x0). (27)

yields the diffeo-invariant proper dilaton time interval dτ connected with the world
time interval dt and the conformal one dη as

dτ = N0(x0)dx0 = a−2dη = a−3dt. (28)
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Here, we used the obvious normalization condition for the diffeo-invariant lapse func-
tion

〈N−1〉 ≡ 1

V0

∫

V0

d3x
1

N (x0, x j )
= 1. (29)

This classification of time-intervals (dilaton, conformal, and world ones) enables one
to introduce the corresponding Hubble parameters

Hτ ≡ −∂τ 〈D〉, (30)

Hη ≡ −∂η〈D〉, (31)

Ht ≡ −∂t 〈D〉. (32)

The choice of the zeroth dilaton mode 〈D〉 as an evolution parameter has two
consequences in the Hamiltonian approach. First, the zeroth dilaton mode canonical
momentum density

P〈D〉 = 2

V0

∫

V0

d3x
√−gg00 d

dx0 〈D〉 ≡ 2
d

dτ
〈D〉 = 2v〈D〉 = Const. 	= 0 (33)

can be treated as a generator of the Hamiltonian evolution in the field space of
events [40,41]. Here v〈D〉 is the corresponding velocity, by construction it coincides
with Hτ introduced in Eq. (30). We stress that the scale-invariance (D → D + �)
admits only a constant P〈D〉.

The second consequence of the orthogonality condition (24) is that the nonzeroth
harmonics D(x0, x1, x2, x3) do not depend on the evolution parameter. Therefore, the
canonical momentum of dilaton nonzeroth modes is equal to zero:

PD/2 = vD =
[

(∂0 − Nl∂l)D + ∂l N l/3
]

/N = 0. (34)

Note that in the Dirac approach, the condition vD = 0 was also introduced as an addi-
tional second class constraint [28,43], see “Appendix A”. In this case the nonzeroth
modes play the role of gravitational Newton-type potentials as the lapse function and
the shift vector do.

This result fixes the longitudinal shift vector component (A.24). As a result, we
have

∫

d3xv〈D〉 · vD = 0, (35)

that follows from of Eqs. (22), (23), and (24). The orthogonality conditions (24) and
(35) preserve the definite metrics in the Hilbert space of states [4,42].
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Thus taking into account Eqs. (10), (22) and (25), we have the following action:

WC = WUniverse
︸ ︷︷ ︸

=0 for V0=∞
+ Wgraviton + Wpotential, (36)

WUniverse = −V0

τ0
∫

τI

dx0 N0
︸ ︷︷ ︸

=dτ

[

(

d 〈D〉
N0dx0

)2

+ ρv
τ

]

, (37)

Wgraviton =
∫

d4x
N

6

[

v(a)(b)v(a)(b) − e−4D R(3)(̃e)
]

, (38)

Wpotential =
∫

d4x N

⎡

⎢

⎢

⎣

4

3
e−7D/2�(3)e−D/2

︸ ︷︷ ︸

Newtonian potentials

⎤

⎥

⎥

⎦

, (39)

where all definitions are given in the “Appendix A” devoted to the Dirac Hamiltonian
approach to the GR in terms of the tetrades [see Eqs. (A.1)–(A.10)]. In particular,
N0 is the collective lapse function (27), v(a)(b) are given by Eq. (A.6), and the three-
dimensional curvature R(3)(̃e) is defined by Eq. (A.7).

The action (36) and its representation with the aid of two last terms Wgraviton and
Wpotential are well known. We just reformulated the action in terms of conformal and
affine variables [given below in a definite Dirac-ADM frame: 4 → 3+1 (16) and (17)
and 3 → 2+1 (68), (69), and (70)]. The term WUniverse was suggested in Ref. [20]
due to the separation of the dilaton zeroth mode. Here we introduce a new term,
ρv

τ as a vacuum graviton energy contribution (and other contributions from fields if
they are taken into account). The effect of this new term will be discussed below.
In “Appendix C” we show also that this term allows to obtain a good description of
supernovae data developed earlier in the conformal cosmological model [18,19]. In
the later one the contribution of the auxiliary scalar field was exploited instead of ρv

τ .
Strong gravitational waves within our model will be discussed in Sect. 3.

The introduction of the finite volume V0 = ∫

V0
d3x < ∞ in WUniverse creates

a dimensional parameter, and therefore, it breaks the conformal symmetry. Accord-
ing to the general wisdom [16,17], the symmetry breaking leads to appearance of a
Goldstone mode [42,44]. It is just the zeroth harmonic 〈D〉. Note, however, that the
Hamiltonian dynamics governed by the equations of motion must obey the conformal
symmetry (see below).

Thus, the action (36), complemented by the condition (34) and field-space evolu-
tion generator (33), provides the framework of the Hamiltonian dynamics in terms
of the variables (16), (17). This dynamics enables one to determine the perturbation
series N = 1 + δ . . . with the consistent constraint

∫

d3xδ = 0 in the frame of refer-
ence co-moving with the local volume element according to the constraint (34) (see
“Appendix B”).
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2.3 The empty Universe limit

At the beginning of Universe, in the limit of the tremendous values of the z-factor
(a → 0), the action WUniverse dominates. Therefore, it is natural to neglect the last two
terms in Eq. (36), i.e., we consider an empty space.

Recall that in our approach there are two independent variables: the dilaton zeroth
mode 〈D〉 and the global lapse function N0. The variation of action (37) with respect
to the dilaton zeroth mode leads to the equation of motion:

δWUniverse

δ〈D〉 = 0 ⇒ 2∂τ [∂τ 〈D〉] = dρv
τ

d〈D〉 . (40)

The variation with respect to the global lapse function leads to the energy constraint

δWUniverse

δN0
= 0 ⇒ [∂τ 〈D〉]2 = ρv

τ . (41)

This constraint preserves the conformal symmetry of equation of motion (40) with
respect to transformations 〈D〉 → 〈D〉 + C , if

ρv
τ ≡ H2

τ = H2
0 = Const. (42)

The solution of Eqs. (41), (42), determines Eq. (25) in terms of the dilaton time

〈D〉 ≡ ln(1 + z) ≡ − ln a = H0τ, (43)

which describes the evolution of the redshift with respect to the dilaton time inter-
val dτ .

Note that our Eqs. (40), (41) do not differ from the original Friedmann’s ones
written in terms of conformal coordinates and observable quantities for a rigid state.
Indeed, taking into account Eqs. (28), (43), one finds that Eq. (41) has the rigid state
form in terms of the conformal variables (see also “Appendix C”)

[∂ηa]2 = ρcr/a2, (44)

where

ρcr = H2
0

3M2
Pl

8π
= H2

0 (45)

is the critical density. This equation leads to the definition of the rigid state horizon

dhor(a) = 2

a
∫

aI →0

da
a√
ρcr

= a2

H0
. (46)

123



Conformal and affine Hamiltonian dynamics

The evolution of the cosmological scale factor in terms of the conformal time-interval
given by Eqs. (28), (44) yields the coordinate distance—redshift relation for the photon
at its light cone ds2

C = dη2 − dr2 = 0

e−〈D〉 = a(η) = √

1 + 2H0(η − η0); r = η − η0, (47)

as the solution of Eqs. (41) and (42) in terms of the conformal variables (28). It coin-
cides with the Friedmann solution of his equation (C.2) for the dominant rigid state.
Here η is the instant of the photon emission by a cosmic atom and η0 is the time of the
photon detection at the Earth. In the CGR, the cosmological scale factor (47) provides
the cosmic evolution of atomic masses m(η) = a(η)m0 which gives the redshift of
the cosmic atom spectrum lines: the far is an atom, the more is its redshift. Therefore,
the redshift is produced by the ratio λ(η)/λ(η0), where λ(η) is the photon wave length
of the photon emitted by cosmic atom with the mass m(η) = a(η)m0 and detected at
the Earth, where an etalon atom at the Earth has the mass m0.

If a measurable photon time is identified with the conformal one, the square root
of the conformal time in Eq. (47) means that the Universe was in the 1/a2 regime
(44) in the epoch of the chemical evolution. The estimation of the primordial helium
abundance [45,46] takes into account the square root dependence of the z-factor on the
measurable time-interval (1 + z)−1 ∼ √

tmeasurable. In the standard cosmology, where
the measurable time-interval is identified with the Friedmann time, this square root
dependence of the z-factor is explained by the radiation dominance. In the conformal
cosmology, where the measurable time-interval is identified with the conformal time,
the square root dependence of the z-factor is explained by the universal rigid state
(1 + z)−1 = aI

√
1 + 2HI (η − ηI ) [46].

Thus, we found that the empty Universe evolves in time as a rigid state. Below we
demonstrate that the same 1/a2 dependence is also a feature of the Casimir vacuum
energy.

2.4 Conformal Casimir energy and the Universe horizon

Let us again consider the Early Universe. We assume that at the instant of creation
the world was empty and finite in size. Therefore, its energy can be associated with
the quantum Casimir energy of all physical fields in the given space. We shall treat all

these fields as massless since m(a)
a→0−→ 0 in the Early Universe epoch.

The Casimir energy of a massless field f

H( f )
Cas =

∑

k

√
k

2

2
= γ̃ ( f )

dCas(a)
. (48)

depends on the geometry, size dCas, topology, boundary conditions, and spin (in par-
ticular, for a sphere of diameter dCas the number of γ̃ ∼ 0.1 ÷ 0.03) [42,47,48]. For
simplicity we assume that the Universe has a spherical volume limited by the horizon.
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It is natural to suggest that the energy of a massless field is proportional to the
inverse visual size of the Universe dCas(a). Assuming the same dependence for all
fields, we define the total Casimir energy density of the Universe summing over all
fields

ρv
η(a) =

∑

f

H( f )
Cas

V0
= C0

dCas(a)
. (49)

The key assumption of our model is that the Casimir dimension dCas(a) is equal to the
Universe visual size [its horizon (C.3)]

dCas(a) ≡ dhor(a) = 2

a
∫

aI →0

da
[

ρv
η(a)

]−1/2 = 2C0
−1/2

a
∫

aI →0

da d1/2
Cas . (50)

Equation (50) has the solution

d1/2
Cas(a) = [C0]−1/2a → dCas(a) = a2

C0
. (51)

Comparing Eqs. (46), (51), one obtains

C0 = H0. (52)

Thus, in our approach, the parameter C0 is equal to the Hubble parameter H0 which
can be determined from observations. Neglecting all matter effects, we obtain a new
simple cosmological model. Below we will show that the dominance of the rigid state
can persist even after an intensive creation of primordial particles.

2.5 Hierarchy of cosmological scales

In this Section we employ the Planck least action postulate to the empty Universe
action; define the initial value of the cosmological scale factor, and consider a hierar-
chy of cosmological scales in correspondence with their conformal weights.

Let us consider the Early Universe at the rigid state horizon (46). A hypothetical
observer measures the conformal horizon dhor = 2rhor(z) as the distance that a pho-
ton covers within its light cone. The latter is determined by the zero interval equation
dη2 −dr2 = 0 during the photon lifetime in the homogeneous Universe, which is sub-
ject to the condition ηhor = rhor(z) = 1/[2H0(1 + z)2], in accordance with Eqs. (43)
and (51). This means that the four-dimensional space-time volume restricted by the
horizon is equal to

V (4)
hor = 4π

3
r3

hor(z) · ηhor(z) = 4π

3 · 16H4
0 (1 + z)8

. (53)
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It is natural to assume that at the instant of the Universe origin the world was essen-
tially quantum. In this case, the Universe action can differ from the zero classical one
by the least action (or quanta), which presumably be small and be governed by the
Planck postulate of the least action for quantum systems. Therefore, we suppose that
action (37) is subjected to the Planck’s least action postulate at aPl = (1 + zPl)

−1

WUniverse = ρcrV
(4)
hor (aPl) = M2

Pl

H2
0

1

32(1 + zPl)8 = 2π. (54)

Using the present day (τ = τ0) observational data for the Planck mass and the Hubble
parameter at h � 0.7 [5]

MC e〈D〉(τ0) = MPl = 1.2211 · 1019GeV, 〈D〉(τ0) = 0,

d

dτ
〈D〉(τ0) = H0 = 2.1332 · 10−42GeV · h = 1.4332 · 10−42GeV, (55)

we obtain from (54) the primordial redshift value

a−1
Pl = (1 + zPl) ≈ [MPl/H0]1/4 [4/π ]1/8/2 � 0.85 × 1015. (56)

In other words, the Plank mass and the present day Hubble parameter value are related
to each other by the age of the Universe expressed in terms of the cosmological scale
factor.

In field theories characteristic scales, associated with physical states, are classified
according to the Poincaré group representation [4,49]. In our approach the Poincaré
classification of energies arises from the decomposition of the mean particle energy

ωτ = a2
√

k2 + a2 M2
0 conjugated to the dilaton time interval. We express this decom-

position in the form

〈ω〉(n)(a) = (a/aPl)
(n) H0, (57)

based on Eq. (56,) where 〈ω〉(0)
0 = H0, 〈ω〉(2)

0 = k0, 〈ω〉(3)
0 = M0, 〈ω〉(4)

0 = M0Pl.
This equation enables one to introduce the conformal weights n = 0, 2, 3, 4 which

correspond to: the dilaton velocity vD = H0, the massless energy a2
√

k2, the mas-
sive one M0a3, and the Newtonian coupling constant MPla4 (54), respectively. One
can also include in this classification the scale of the nonrelativistic particle H0 =
a1

Pl ×10−13 cm−1 with the unit conformal weight of its energy ωnonr.
τ = a1k2/M0. As

a result, the redshift leads to a hierarchy law of the present day (a = 1) cosmological
scales

ω
(n)
0 ≡ 〈ω〉(n)(a)

∣

∣

∣

(a=1)
= (1/aPl)

(n)H0 (58)

shown in Table 1.
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Table 1 The hierarchy law of the cosmological scales in GeV (M∗
Pl = √

3/(8π)MPl)

n n = 0 n = 1 n = 2 n = 3 n = 4

ω
(n)
0 H0 � 1.4 · 10−42 R−1

Cel.S. � 1.2 · 10−27 k0CMB � 10−12 φ0 � 3 · 102 M∗
Pl � 4 · 1018

Table 1 contains the scales corresponding to the Celestial System size (n = 1),
the Cosmic Microwave Background mean wave-momentum (n = 2), the electro-
weak scale of the SM (n = 3), and the Planck mass (n = 4). We conclude that the
observational data testify that the cosmic evolution (57) of all these mean energies
with conformal weights (n = 0, 1, 2, 3, 4) has a common origin which could be the
Casimir vacuum energy.

Thus, the application of the Planck least action postulate provides the initial value
aPl given by Eq. (56) in our model. The Poincaré classification of different states,
according to their conformal weights, reveals a hierarchy of energy scales in agree-
ment with observations.

2.6 The exact solution of energy constraint in the CGR

Let us consider the complete action (36) in variables given by the Dirac-ADM foliation.
There are two treatments of the equation NδW/δN = 0.

The first one belongs to Arnowitt, Deser and Misner [31], who consider this equa-
tion as the definition of the energy component of the total energy-momentum tensor
related to the Riemannian time x0. This treatment leads to the concept of non-local-
izable energy. However, the latter is not a diffeo-invariant quantity and can not be
associated with any observable, since x0 is the object of the diffeomorphisms (20).

The second treatment belongs to Wheeler and DeWitt (WDW) [41], who consider
this equation as an algebraic first class energy constraint. Its resolution yields the
WDW evolution generator. This generator is identified with the canonical momentum
of a time-like variable in the field space.

We conform to the rules of the second route. In particular, in our approach the
crucial step is the identification of this diffeo-invariant time-like evolution parameter
in the WDW field space-time with the zeroth harmonic of the dilaton field [20]. The
corresponding canonical momentum is treated as the evolution generator (33) in the
Dirac-ADM Hamiltonian approach to the GR. Recall that the zeroth and nonzeroth
harmonics of the dilaton field are separated by two projection operators: the “average”
〈D〉 over the volume and the “deviation” D = D − 〈D〉: D = 〈D〉 + D defined
by Eqs. (22)–(29). This projection removes the interference between the independent
degrees of freedom due to the orthogonality condition (24); for example, one has

1

V0

∫

V0

d3x

(

〈D〉 + D

)2

= 〈D〉2 + 1

V0

∫

V0

d3x D
2
. (59)
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Thus, the GR equations obtained by the variation of action (36) after the separation

N
δWC[D = 〈D〉 + D]

δN
=

〈

N−1 [∂0〈D〉]2 + N
[

vD

]2
〉

, (60)

differ from the equations obtained by the variation of this action before the separation

N
δWC[D]

δN

∣

∣

∣

∣

D=〈D〉+D

= 〈N [vD]2〉
∣

∣

∣

D=〈D〉+D
. (61)

Here vD is given by Eq. (A.5) in “Appendix A”. The logic of the second route requires
that in the Hamiltonian approach we have to choose the definite order of operations:
the decomposition and the variation of the action.

As a result, the decomposition (22) of the dilaton into two independent harmonics
(variables) requires the action to be a function of these two independent variables. The
variation of the action with respect to the lapse function N δWC

δN = 0 gives

[∂τ 〈D〉]2 − ρv
τ

N − N ˜H = 0. (62)

Here we used Eqs. (26) and (27) to define

N
δ

δN

1

N0
= N

δ

δN

⎡

⎢

⎣

1

V0

∫

V0

d3x
1

N

⎤

⎥

⎦
= − 1

N
= − 1

N N0
,

N
δ

δN
N0 = N 2

0

N
= N0

N ,
[d〈D〉]2

N 2
0 (dx0)2

= [∂τ 〈D〉]2,

where we dropped arguments for simplicity. Eq. (62) has the additional term
([∂τ 〈D〉]2 − ρv

τ )/N in the comparison with the original Einstein equation N ˜H = 0
[50–53].

Constraint (62) determines the diffeo-invariant lapse function

N =

〈
√

˜H
〉

√

˜H
(63)

by means of the Hamiltonian density ˜H = − 2
3 e−7D/2�e−D/2 + Hg [see Eq. (A.15),

(A.17)] and its spatial average 〈
√

˜H〉 = V −1
0

∫

d3x

√

˜H. The additional term solves
problems of the GR associated with the unambiguous definition of the energy and the
lapse function [20]. Moreover, it leads also to novel physical consequences for the
large-scale structure of the Universe, discussed in detail in the next Section and in
“Appendix B”.
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In virtue of this result, by averaging over spatial volume Eq. (62), we obtain the
equation for the WDW evolution generator (33):

(∂τ 〈D〉)2 ≡ 1

4
P2〈D〉 = ρv

τ + Hg
τ /V0 = ρ

g
tot. (64)

Here Hg
τ is the Hamiltonian constructed with the aid of two last terms of action (36).

The solution of Eq. (64) provides the exact time-redshift relation

τ =
〈D〉0
∫

〈D〉I

d〈D〉 [

ρ
g
tot

]−1/2
. (65)

Thus, the Hamiltonian approach to the CGR provides the exact solution of the
energy constraint in terms of the conformal field variables connected with the Einstein
ones by the scale transformation

˜F (n) = enD F (n), (66)

where (n) conformal weights (n = −1, 0, 3/2, 2) for scalars, vectors, spinors, and
tensors, respectively.

The explicit solution of the constraint, Eq. (63), results in the constraint-shell
interval

˜ds
2=e−4D〈√H〉2

H dτ 2 −
(

ẽi(a)dxi − N (a)dτ
)2

. (67)

From the requirement that the squared time interval is a positive definite it follows
that we deal with a field theory with positive-definite metrics of fields in the Hilbert
space H > 0. This positive-definite metrics is emerged due to condition (34) which
is a result of the dilaton decomposition Eq. (22).

The basic cosmological problems are to solve the Hamiltonian equations of motion
with respect to the dilaton 〈D〉 and to establish the relation (65) with observational
quantities.

We stress that the solution (65) of the energy constraint (62) is analogous to the cor-
responding Einstein equation obtained in the homogeneous approximation. Note that
Eq. (63) defines the relation between the lapse function and matter, see “Appendix B”
and Ref. [21].

3 Affine gravitons and their properties

3.1 Affine graviton

Let us consider the graviton action (38) in order to resolve the constraints arising due
to invariance of the action under the general coordinate transformations (21) (i.e.
diffeo-invariance).
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In the constraint-shell interval (67) only the simplex components ω(a)(d) =
ẽi(a)dxi are constrained variables. They obey the condition of the diffeo-invariance.
It is one of the main differences of the CGR from the GR.

The choice of the symmetry condition in the CGR leads to the result that fol-
lows from the theorem [54]: any arbitrary two-dimensional space metric dl2 =
h ABdx Adx B, (A, B = 1, 2), can be represented by diffeomorphisms x A → x̃ A =
x̃ A(x1, x2) in a diagonal form. The result consists in the fact that a kinemetric-invariant
nonlinear plane wave moving in the direction k with the unit determinant det h = 1
contains only a single metric component.

In the frame of reference k = (0, 0, k3) one has ẽ1
(1) = eg(x(3),τ ), ẽ2

(2) = eg(x(3),τ ),

and ẽ3
(3) = 1; all other (non-diagonal) components ẽi

(a) are equal to zero. Thus, we
obtain

ω(1) = d X(1) − [X(1)]dg, (68)

ω(2) = d X(2) + [X(2)]dg, (69)

ω(3) = dx3 = d X(3), (70)

where a single-component affine graviton g = g(X(3), τ ) is a function depending on
the time and a single spatial coordinate X(3) in the tangent space X(b). The solutions
of the equation δW

δg = 0 → g = g(η, X) can be expressed via the tangent coordinates:

X(1) = eg(x(3),τ )x1 (71)

X(2) = e−g(x(3),τ )x2. (72)

Equations (68) and (69) mean an expansion (or contraction) of the hypersurface
X(A) (A = 1, 2) perpendicular to the direction of the gravitational wave propagation
X(3). A gravitation wave changes the particle velocity via the Hubble like law: the
more base, the more additional velocity induced by the graviton.

The exact local Hamiltonian density for the affine graviton is given by (A.17)

Hg =
[

6P2
(a)(b) + 1

6
R(3)( ẽ )

]

, (73)

where R(3)(e) and P2
(a)(b) are defined by Eqs. (A.8) and (A.11), respectively. For the

frame of reference k = (0, 0, k3), we have [27]:

R(3)( ẽ ) = (∂(3)g)2, P2
(a)(b) = 1

9
[∂τ g]2 . (74)

There is a difference of the diffeo-invariant affine graviton from the a metric graviton
gT T

i j = gT T
ji in the GR [27]. While the affine graviton has a single degree of free-

dom, the metric graviton has two traceless and transverse components that satisfy four
constraints

123



V. N. Pervushin et al.

gT T
ii = 0, (75)

gT T
i3 = gT T

3i = 0. (76)

In general case of the CGR ẽ(b)i = eT
(b)i , both the transverse constraint

∂i eT
(b)i = 0 (77)

and the unit determinant one

|eT
(b)i | = 1 (78)

(as the analog of the Lichnerowicz gauge in the metric formalism [32–34]) admit to
generalize Eqs. (68), (69), and (70) for the linear forms,

ω(b)(d) = eT
(b)i dxi

= d[eT
(b)i x i ] − x j deT

(b) j

= d X(b) − X(c)eT i
c deT

(b)i

= d X(b) − X(c)

[

ωR
(b)(c) + ωL

(b)(c)

]

(79)

in the tangent coordinate space. Here X(b) can be obtained by the formal generalization
of Eqs. (68), (69), and (70) by means of the Leibniz rule eT

(b) i d[xi ] = d[eT
(b) i x i ] −

xi deT
(b)i . The diffeomorphism-invariance admits the choice of the gauge in Eq. (79)

ωL
(b) (c) = 0. (80)

Similar result is valid for a general case of arbitrary wave vector k = 2π

V 1/3
0

l, where

X(3) is replaced by X(k) = kX/
√

k2. The single-component graviton g(τ, X) consid-
ered as the tensor massless representation of the Wigner classification of the Poincaré
group [4] can be decomposed into a series of strong waves (in natural units)

ωR
(a)(b)(∂(c)) = i

∑

k2 	=0

eikX
√

2ωk
kc

[

εR
(a)(b)(k)g+

k (η) + εR
(a)(b)(−k)g−

−k(η)
]

. (81)

Here εR
(a) (b)(k) satisfies the constraints

εR
(a)(a)(k) = 0, (82)

k(a)ε
R
(a)(b)(k) = 0, (83)
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similar to (75), (76). The variable ωk = √
k2 is the graviton energy and the affine

graviton

gk =
√

8π

MPlanckV 1/2
0

gk (84)

is normalized to the units of volume and time (like a photon in QED [27]).
In the mean field approximation

N (x0, x j ) = 1, N j = 0, D = 0, (85)

˜ds
2 = [dη]2 − [ω(b) ⊗ ω(b)], (86)

when one neglects all Newtonian-type interactions, the action of an affine graviton
reduces to the form of the exact action for the strong gravitational wave [27]

W g
lin =

∫

dτLg
τ , (87)

Lg
τ = v2

(a)(b) − e−4DR(3)

6
=

∑

k2 	=0

v
g
kv

g
−k − e−4Dk2gkg−k

2

=
⎡

⎣

∑

k2 	=0

pg
−kv

g
k

⎤

⎦ − Hg
τ , (88)

where v
g
k = ∂τ gk is the derivative with respect to the dilatonic time interval (28) and

Hg
τ =

∑

k2 	=0

pg
k pg

−k + e−4〈D〉k2gkg−k

2
(89)

is the corresponding Hamiltonian.
Thus, in the mean field approximation (85) the diffeo-invariant sector of the strong

gravitational plane waves coincides with a bilinear theory given by Eqs. (87)–(89). In
this approximation our model is reduced to a rather simple theory which is bilinear
with respect to the single-component graviton field as discussed also in Ref. [21]. Note
that we consider here the tangential space, and the chosen variables allow to obtain
the simple solutions. The main postulated condition here was the requirement of the
diffeo-invariance of the graviton equation of motion. While in the standard GR the
symmetry properties are required only for the interval, we impose the symmetry with
respect to diffeomorphisms also on the Maurer–Cartan forms.
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3.2 Comparison with metric gravitons

It is instructive to compare the properties of the affine and metric gravitons, which
was done first in Ref. [21].

The action of metric gravitons in the accepted GR [55,56] coincides with the affine
one (87) in the lowest order of the decomposition over k2/M2

Pl

W GR
non−lin = W g

lin + Wnon−lin, (90)

if we keep only diagonal graviton components. It is well-known [43] that the accepted
action (90) is highly nonlinear even in the approximation (85).

In the approximation (85), we keep only the dynamical part ωR
(cb) [which enters

into the action (87)] and the present day value of the cosmological scale factor a =
e−〈D〉 = 1. Let us compare the affine gravitons (79) with the commonly accepted
metric gravitons, given by the decomposition [55,56]

˜ds
2
h = (dη)2 − dxi dx j

(

δi j + 2hT T
i j + . . .

)

. (91)

In the accepted case, the graviton moves in the direction of vector k, its wave amplitude
cos{ωkx(k)} depends on the scalar product x(k) = (k · x)/ωk.

The graviton changes the squared test particle velocity
(

ds
dη

)2 ∼ dxi dx j

dη dη
εα

i j in the

plane, orthogonal to the direction of motion. Here εα
i j is the traceless transverse tensor:

εα
i i = 0 and kiε

α
i j = 0. All these effects are produced by the first order of series (91)

dl2
h = 2dxi dx j hT T

i j (t, x)

= dxi dx jεα
i j

√
6 cos{ωkx(k)}(H0/ωk)�

1/2
kh + O(h2), (92)

where H0 is the Hubble parameter, �kh = ωk Nkh/[V0ρcr] is the energy density of the
gravitons in units of the cosmological critical energy density (45). One observes that
in the accepted perturbation theory the contribution of a single gravitational wave to
the geometrical intervals, Eq. (92), is suppressed by the factor H0/ωk.

In our version the linear term of the spacial part of Eq. (79) takes the form

dl2
g = 2d X(b) X(c)ω

R
(c)(b) = d X(b) X(c)ε

α
(c)(b)

√
6 cos{ωk X(k)}H0�

1/2
kh .

Evidently, two models (the GR and the CGR) differ by an additional factor which can
be deduced from the ratio

∣

∣

∣

∣

dl2
h

dl2
g

∣

∣

∣

∣

=
∣

∣

∣

∣

dxi dx j
(

hT T
i j

)

(d X(b) X(c)ω
R
(c)(b))

∣

∣

∣

∣

� 1

r⊥ ωk
∼ λg

r⊥
. (93)

Here r⊥ = √|X⊥ |2 is the coordinate distance between two test particles in the
plane perpendicular to the wave motion direction and λg is the graviton wave length.
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Therefore, in the CGR there is the effect of the expansion of the plane perpendicular
to the affine wave motion direction.

As a result, in the CGR the total velocity of a test classical particle in the central
gravitational field of a mass M and of a strong gravitational wave is the sum of three
velocities at the cosmic evolution a 	= 1. The first term is the standard Newtonian
(N) velocity, the second is the velocity of the graviton expansion (g) in the field of a
gravitational wave, and the third one is the velocity of the Hubble evolution (H):

|v|2 = ∣

∣

dlg

dη

∣

∣

2 =

⎡

⎢

⎢

⎢

⎣

nN

√

rg

2R⊥
︸ ︷︷ ︸

Newtonian velocity

+ ng

√

R⊥ H0
√

�g
︸ ︷︷ ︸

graviton expansion

+ nHγ H0 R⊥
︸ ︷︷ ︸

Hubble evolution

⎤

⎥

⎥

⎥

⎦

2

. (94)

Here, R⊥ = r⊥a(η) is the Friedman distance from the central mass, H0 is the Hubble
parameter, rg(R⊥) = M/M2

Pl is a constant gravitational radius, and

⎧

⎨

⎩

nN = (0,−1, 0),

ng = (+1/
√

2,−1/
√

2, 0),

nH = (1, 0, 0)

(95)

are the unit velocity vectors. Their scalar products are nN · ng 	= 0, nN · nH =
0, nN · ng 	= 0, and nN · nH = 0. The graviton energy density �g is given in units of
the cosmological critical energy density ρcr.

The last two terms provide possible sources of a modified Newtonian dynamics. One
observes that the interference of the Newtonian and the graviton-induced velocities in
(94) vn−g interf � 4

√

�grg H0 does not depend on the radius R⊥.
The third term could imitate the Dark Matter effect in COMA-type clusters with

|R| ∼ 1025cm, in accordance with the validity limit of the Newtonian dynamics,
rg/Rlimit < 2(Rlimit H0)

2, discussed in [57,58]. The factor γ = √
2 is defined by the

cosmological density [59].
Thus, in our model strong gravitational waves possess peculiar properties which

can be tested by observations and experiments.

3.3 Vacuum creation of affine gravitons

Here we are going to study the effect of intensive creation of affine gravitons. We will
briefly recapitulate the derivation given in Ref. [21] and further, using the new results
of Sect. 2.5, estimate the number of created particles.

The approximation defined by Eqs. (87)–(89) can be rewritten by means of the
conformal variables and coordinates, where the action

W g
lin =

η0
∫

ηI

dη
[

−V0(∂η〈D〉)2e−2〈D〉 + Lg
η

]

(96)

123



V. N. Pervushin et al.

is given in the interval ηI ≤ η ≤ η0 and spatial volume V0. Here the Lagrangian and
Hamiltonian

Lg
η =

∑

k2 	=0

e−2〈D〉 v
g
kv

g
−k − k2gkg−k

2
=

⎡

⎣

∑

k2 	=0

pg
−kv

g
k

⎤

⎦ − Hg
η, (97)

Hg
η =

∑

k2 	=0

e2〈D〉 pg
k pg

−k + e−2〈D〉ω2
0kgkg−k

2
(98)

are defined in terms of the variables gk, their momenta, and one-particle conformal
energy

pg
k = e−2〈D〉vg

k = e−2〈D〉∂ηgk, ω
g
0k =

√
k2, (99)

respectively. The transformation (squeezing)

pg
k = p̃g

ke−〈D〉[ωg
0k]−1/2, gk = g̃ke〈D〉[ωg

0k]1/2 (100)

leads to the canonical form

Hg
η =

∑

k2 	=0

ω
g
0k

p̃g
k p̃g

−k+ g̃k g̃−k

2
=

∑

k

Hg
k, (101)

Hg
k = ω

g
0k

2
[̃g+

k g̃−
−k+̃g−

k g̃+
−k] , (102)

where

g̃±
k = [̃gk ∓ i p̃k] /

√
2 (103)

are the conformal-invariant classical variables in the holomorphic representation
[59,60].

In virtue of Eqs. (99)–(103), the action (96) takes the form

W g
lin =

η0
∫

ηI

dη
[

−V0(∂η〈D〉)2e−2〈D〉 − Hg
η

]

+
η0

∫

ηI

dη
∑

k2 	=0

p̃−k
[

∂η g̃k + ∂η〈D〉g̃k
]

. (104)

The evolution equations for this action are

∂η g̃±
k = ±iωg

0k g̃±
k + Hη g̃∓

k , (105)
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where Hη = ∂η(ln a) = −∂η〈D〉 is the conformal Hubble parameter (in our model
Hη = H0/a2).

It is generally accepted to solve these equations by means of the Bogoliubov trans-
formations

g̃+
k = αkb+

k + β∗−kb−
−k, (106)

g̃−
k = α∗

kb−
k + β−kb+

−k, (107)

αk = cosh r g
k eiθg

k , β∗
k = sinh r g

k eiθg
k , (108)

where r g
k and θ

g
k are the squeezing parameter and the rotation one, respectively (see

for details reviews [42,55]). These transformations preserve the Heisenberg algebra
O(2|1) [61,62] and diagonalize Eqs. (105):

∂ηb±
k = ±iωg

Bkb±
k , (109)

if the parameters of squeezing r g
k and rotation θ

g
k satisfy the following Eq. [59]:

∂ηr g
k = Hη cos 2θ

g
k , (110)

ω
g
0k − ∂ηθ

g
k = Hη coth 2r g

k sin 2θ
g
k , (111)

ω
g
Bk = ω

g
0k − ∂ηθ

g
k

coth 2r g
k

. (112)

A general solution of the classical equations can be written with the aid of a complete
set of the initial data b±

0k:

b±
k (η) = exp

⎧

⎨

⎩

±i

η
∫

η0

dη ω
g
Bk(η)

⎫

⎬

⎭

b±
0k. (113)

On the other hand, quantities b+
0k(b−

0k) can be considered as the creation (annihila-
tion) operators, which satisfy the commutation relations:

[b−
0k, b+

0k′ ] = δk,−k′ , [b−
0k, b−

0k′ ] = 0, [b+
0k, b+

0k′ ] = 0, (114)

if one introduces the vacuum state as b−
0k|0〉 = 0. Indeed, relations (114) are the results

of: (i) the classical Poisson bracket {P
˜F , ˜F} = 1 which transforms into

[̃g−
k , g̃+

−k] = δk,k′ ; (115)

(ii) the solution (113) for the initial data; iii) the Bogoliubov transformations (106),
(107).
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With the aid of Eqs. (106)–(108) and (113)–(115) we are able to calculate the
vacuum expectation value of the total energy (101), (102)

〈0|Hg
η(a)|0〉 =

∑

k

ω
g
0k|βk|2 =

∑

k

ω
g
0k

cosh{2r g
k (a)} − 1

2
. (116)

The numerical analysis [21] of Eqs. (110)–(111) for unknown variables (r g
k , θ

g
k )

with the zero boundary conditions at a = aI (at the beginning of creation)

r g
k(aI ) = 0, θ

g
k (aI ) = 0 (117)

enables us to suggest an approximate analytical solution for the evolution equations.
Our approximation consists in the following. It arises, if instead of rk one substi-

tutes an approximate value rapr in the vicinity of the soft mode of the Bogoliubov
energy (112) ω0appr = ∂ηθ

g
appr,

rappr = 1

2

X=2θ
g
appr(a)

∫

X I =2θ
g
appr(aI )

d X

X
cosh X � 2〈D〉I , (118)

X (a) = 2θ g
appr(a) = 2

η(a)
∫

η(aI )

dηω0k. (119)

This soft mode provides a transition [21] at the point a2
relax � 2a2

Pl from the unsta-
ble state of the particle creation to the stable state with almost a constant occupation
number during the relaxation time

ηrelax � 2e−2〈D〉I /(2H0) ≡ 2a2
I /(2H0). (120)

At the point of the relaxation, the determinant of Eqs. (105) changes its sign and
becomes positive [63]. Finally, we obtain

〈0|Hg
k|0〉∣∣

(a>arelax)
=ω

g
0k

cosh[2r g
k ] − 1

2
≈ ω

g
0k

4a4
I

. (121)

We have verified that the deviation of the results obtained with the aid of this formula
from the numerical solutions of Eqs. (110)–(111) (see Ref. [21]) does not exceed 7 %.

In virtue of this result, we obtain the total energy

〈0|Hg
η|0〉∣∣

(a>arelax)
≈ 1

2a4
I

∑

k

ω
g
0k

2
≡ Hg

η Cas(a)

2a4
I

, (122)

where Hg
η Cas(a) is the Casimir vacuum energy (45) [42,47,48].
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Thus, the total energy of the created gravitons is

〈0|Hg
η|0〉 � γ̃ H0

4a2a4
I

. (123)

It appeared that the dilaton initial data aI = e−〈D〉I and H0 determine both the total
energy (122) of the created gravitons and their occupation number Ng at the relaxation
time (120):

Ng(arelax) � 〈0|Hg
η|0〉

〈ωg
k 〉 � γ̃ (g)

16a6
I

� 1087, (124)

where we divided the total energy by the mean one-particle energy 〈ωg
k 〉 ≈ 〈ω(2)〉(aI )

defined in Eq. (57). For numerical estimations we use γ̃ (g) ≈ 0.03. The number of
the primordial gravitons is compatible with the number of the CMB photons as it was
predicted in Ref. [56].

The main result of this Section consists in the evaluation of the primordial graviton
number (124). We suppose that the Casimir energy is defined by the total ground state
energy of created excitations, see Eq. (122).

4 Interaction with fermions

In this Section, in order to compare our model with the standard approach based on
the Einstein’s equations, we consider the interaction with matter fields.

Let us consider Einstein’s equations

gμλ

[

R(4)
λν (g) − 1

2
gλν R(4)(g)

]

= −3gμλT matter
λν . (125)

Here

T matter
μν = −δWmatter[g, F (n))]

δgμν

(126)

is the matter energy momentum tensor in the units (15).
These equations are derived by means of the variation of the Hilbert action

δWH/δgμν = 0, where

WH(g, F (n)) =
∫

d4x

[

−√−g
R(4)(g)

6

]

+ Wmatter[g, F (n)]. (127)

Equations (125) for the metric components g00 and g0 j were treated as four first class
constraints (in the Dirac definitions [28,29]). They are consequences of the general
coordinate transformations x → x̃ = x̃(x) considered as diffeomorphisms.
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In order to realize the Weyl’s idea of conformal symmetry, Dirac had employed the
conformal transformations

g = e−2Dg̃, (128)

F (n) = enD
˜F (n) (129)

in the Hilbert action with the aid of the scalar dilaton D. As a result, he revealed the
hidden conformal symmetry of the GR [13]. The identification of the new conformal
(widetilde) fields with the observational quantities, including the metric components
g̃, ˜F (n) is the basic idea of the conformal cosmology [18,64,65].

In order to include fermions, we use the Fock simplex in the tetrade formalism [8]:

Wmatter[g, �] =
∫

d4x
√−g

[−�iγ(β) D(β)� − m0��
]

, (130)

where γ(β) = γ μe(β)μ are the Dirac γ -matrices, summed with tetrades e(β)ν , and m0
is the present-day fermion mass. The covariant derivative

D(σ ) = ∂(σ) + i

2
[γ(α), γ(β)]v(α)(β),(σ ) (131)

is given by Eqs. (5) and (6).
Next, we use the Dirac-ADM foliation (4 → 3 + 1) of the tetrades with the lapse

function and the shift vector [28,29] given in Sect.2. The Dirac’s Hamiltonian approach
to the theory begins from the determination of the first class primary constraints. They
mean the zero momenta of the time metric components N , N j . The first class primary
constraints lead to the first class secondary constraints

PN = ∂LH

∂(∂0 N )
= 0 ⇒ δWH

δN
= 0, (132)

PN j = ∂LH

∂(∂0 N j )
= 0 ⇒ δWH

δN j
= 0, (133)

where LH is the Lagrangian of the Hilbert action WH = ∫

d4xLH. The first class sec-
ondary constraints are supplemented by the second class constraints (A.21) and (A.22)
related to gauge fixing.

The relations between the Conformal and the Standard models can be illustrated
using the mass part of the fermion action

Wm[g, �] = −
∫

d4x
√−gm0��, (134)

and the set of its transformations into conformal variables:

gμν = e−2Dg̃μν, � = e3D/2
˜�,

√−g̃ = √

g̃00 = e−2D N , |g(3)
i j | = e−3D.

(135)
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As a result, we obtain

Wm[N , ˜�, D] = −
∫

d4x
√−g̃ m0˜�˜�e−D = −

∫

d4x N m0˜�˜�e−3D. (136)

One can see that the variations of the action with respect to N and D

N
δWm[N , ˜�, D]

δN
,

δWm[N , ˜�, D]
δD

(137)

is nothing else but a linear combination of the Einstein’s equations (125), i.e. varia-
tions of the action (130) in g. Thus, the classical tests of general relativity including:
perihelion precession of Mercury, deflection of light by the Sun, gravitational redshift
of light, and gravitational lensing are completely fulfilled in our case. This correspon-
dence between the GR and its dilatonic version was already discussed by Dirac [13].
Obviously, separation of the dilaton field into zeroth and non-zeroth harmonics sug-
gested in our approach does not change local gravitational interactions with matter,
since in the interactions we have always the whole D = 〈D〉 + D.

5 Vacuum creation of Higgs bosons

In our model the interactions of scalar bosons and gravitons with the dilaton can be
treated on the same footing [20]. Using this fact, we would like to consider the intensive
creation of the Higgs scalar particles from the vacuum.

To proceed we have to add the SM sector to the theory under construction. In order
to preserve the common origin of the conformal symmetry breaking by the Casimir
vacuum energy, we have to exclude the unique dimensionful parameter from the SM
Lagrangian, i.e. the Higgs term with a negative squared tachyon mass. However, fol-
lowing Kirzhnits [66], we can include the vacuum expectation of the Higgs field φ0, so
that: φ = φ0 + h/[a√

2], ∫

d3xh = 0. The origin of this vacuum expectation value
φ0 can be associated with the Casimir energy arising as a certain external initial data
at a = aPl. In fact, let us apply the Plank least action postulate to the Standard Model
action:

WSM(aPl) ∼ λSM φ4
0 a4

PlV
(4)
hor (aPl) = 2π, (138)

where λSM ∼ 1 is the Higgs self-coupling and V (4)
hor (aPl) is given by Eq. (53). The

relation gives φ0 ≈ ā3
Pl H0, in agreement with its value in Table 1.

The standard vacuum stability conditions at a = 1

< 0|0 > |φ=φ0 = 1,
d < 0|0 >

dφ

∣

∣

∣

∣

φ=φ0

= 0 (139)
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yield the following constraints on the Coleman–Weinberg effective potential of the
Higgs field:

Veff(φ0) = 0,
dVeff(φ0)

dφ0
= 0. (140)

It results in a zero contribution of the Higgs field vacuum expectation into the Uni-
verse energy density. In other words, the SM mechanism of a mass generation can be
completely repeated in the framework of our approach to the spontaneous symmetry
breaking.

In particular, one obtains that the Higgs boson mass is determined from the equation
V ′′

eff(〈φ〉) = M2
h . Note that in our construction the Universe evolution is provided by

the dilaton, without making use of any special potential and/or any inflaton field. In
this case we have no reason to spoil the renormalizablity of the SM by introducing the
non-minimal interaction between the Higgs boson and the gravity [67].

In the approximation (85) of theory (36) supplemented by the Standard Model the
Higgs bosons are described by the action

Wh =
∫

dτ
∑

k2 	=0

vh
kvh

−k−hkh−ka2ωh
0k

2

2
=

∑

k2 	=0

ph
−kvh

k − Hh
τ , (141)

where

ωh
0k(a) =

√

k2 + a2 M2
0h (142)

is the massive one-particle energy with respect to the conformal time interval.
There are values of the scale factor a, when the mass term in the one-particle energy

is less than the conformal Hubble parameter value aM0h < H0a−2. As a result, the
Casimir energy for the Higgs particles coincides with the graviton one at the considered
epoch:

Hh
Cas �

∑

k

√
k2

2
= Hg

Cas.

In this case the calculation of the scalar particle creation energy completely repeats
the scheme for the graviton creation, discussed above.

Assuming thermalization in the primordial epoch, we expect that the occupation
number of the primordial Higgs bosons is of the order of the known CMB photon one

Nh ∼ Nγ = 411 cm−3 · 4πr3
h

3
� 1087. (143)

We point out that this number is of the order of (124). Thus, the CGR provides a
finite occupation number of the produced primordial particles. Note that in other
approaches [42] a subtraction is used to achieve a finite result. Moreover, the number
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of produced particles happens to be of the order of the known CMB photon number.
To our opinion this coincidence supports our model, since the number of photons can
naturally inherit the number of primordial Higgs bosons (if one considers the photons
as one of the final decay products of the bosons). According to our model, the relativ-
istic matter has been created very soon after the Planck epoch at zPl � 1015. Later on it
cooled down and at zCMB � 1000 the CMB photons decoupled from recombined ions
and electrons as discussed by Gamow. In our model the CMB temperature is defined
directly from the Hubble parameter and the Planck mass (related to the Universe age
aPl). It is a result of the continuous cooling of the primordial relativistic matter till the
present day described by Eq. (57).

Note that the obtained occupation number (143) corresponds to the thermalized
system of photons with the mean wave length λCMB (at the temperature T � 3◦ K) in
the finite volume V0 ∼ H−3

0 :

(

Nγ

)1/3 � 1029 � λCMB H−1
0 . (144)

As concerns vacuum creation of spinor and vector SM particles, it is known [42]
to be suppressed very much with respect to the one of scalars and gravitons.

6 Summary

We developed a Hamiltonian approach to the gravitational model, formulated as the
nonlinear realization of joint affine and conformal symmetries proposed long ago
in [9,12,13,15]. With the aid of the Dirac-ADM foliation, the conformal and affine
symmetries provide a natural separation of the dilaton and gravitational dynamics in
terms of the Maurer–Cartan forms. As the result, the exact solution, Eqs. (63)–(65), of
the energy constraint yields the diffeo-invariant evolution operator in the field space.

In the CGR, the conformal symmetry breaking happens due to the Casimir vacuum
energy (48)–(50). This energy is obtained as a result of the quantization scheme of
the Hamiltonian dynamics proposed in Sec. 3. In our approach, the Casimir vacuum
energy provides a good description of SNe Ia data [68,69] in the conformal cosmol-
ogy [18,19]3. The diffeo-invariant dynamics in terms of the Maurer–Cartan forms
with application of the affine symmetry condition leads to the reduction of the gravi-
ton representation to the one-component field. The affine graviton strong wave yields
the effect of expansion (or contraction) in the hypersurface perpendicular to the direc-
tion of the wave propagation. We demonstrated that the Planck least action postulate
applied to the Universe limited by its horizon provides the value of the cosmological
scale factor at the Planck epoch. A hierarchy of cosmological energy scales for the
states with different conformal weights is found. The intensive creation of primordial
gravitons and Higgs bosons is described assuming that the Casimir vacuum energy is
the source of this process. We have calculated the total energy of the created particles,
Eq. (122), and their occupation numbers, Eqs. (124) and (143).

3 In these papers the rigid state was associated with a homogeneous kinetic energy of a free scalar field.
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The presented model is under development. To completely establish or discard it,
one has to consider various other problems, including the quantization of the gravita-
tional field, the CMB power spectrum anisotropy, baryon asymmetry, thermalization
of primordial particles etc. Evidently, these problems require a dedicated studies and
are left for the future.
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Appendix A: dirac Hamiltonian dynamics in terms of the Maurer–Cartan
forms

For the sake of comparison of our approach with the standard Dirac one we refor-
mulate the latter in terms of the Maurer–Cartan forms. In order have a more general
consideration, we include in the action an electromagnetic field Fμν = ∂μ Aν − ∂ν Aμ

and a scalar field Q

˜W [g, A, Q] = −
∫

d4x
√−g

(

1

6
R(4)(g) − 1

4
Fμα Fνβgμνgαβ

+∂μQ∂ν Qgμν

)

. (A.1)

Remind that we use the natural units

h̄ = c = MPlanck
√

3/(8π) = 1. (A.2)

With the aid of the definition of the tetrade components Eqs. (9), we obtain the
action (A.1)

˜W =
∫

d4x N
[

LD + Lg + LA + LQ
]

. (A.3)

Here, the Lagrangian densities are

LD = −v2
D − 4

3
e−7D/2�e−D/2,

Lg = 1

6

[

v(a)(b)v(a)(b) − e−4D R(3)(e)
]

,

LA = 1

2

[

e2Dv2
(b)(A) − e−2D Fi j Fi j

]

,

LQ = e2D(vQ + vD ˜Q)2 − e−2D (

∂(b)
˜Q + ∂(b)D ˜Q

)2 ; (A.4)
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and

vQ = 1

N

[

(∂0 − Nl∂l)˜Q + ∂l N l/3
]

,

vD = 1

N

[

(∂0 − Nl∂l)D + ∂l N l/3
]

, (A.5)

v(a)(b) = 1

N

[

ωR
(a)(b)(∂0 − Nl∂l) + ∂(a)N⊥

(b) + ∂(b)N⊥
(b)

]

, (A.6)

v(b)(A) = 1

N
ei
(a)

[

∂0 Ai − ∂i A0 + Fi j N j
]

are velocities of the metric components and fields, � = ∂i [ei
(a)e

j
(a)∂ j ] is the

Beltrami-Laplace operator, and R(3)(e) is a three-dimensional spatial curvature
expressed in terms of triads e(a)i (for the sake of discussion we use ẽ → e in
“Appendix A”),

R(3) = R(3)(e) − 4

3
ē7D/2�e−D/2, (A.7)

R(3)(e) = −2∂i [ei
(b)σ(c)|(b)(c)] − σ(c)|(b)(c)σ(a)|(b)(a)

+σ(c)|(d)( f )σ( f )|(d)(c), (A.8)

σ(c)|(a)(b) = [ωL
(a)(b)(∂(c)) + ωR

(a)(c)(∂(b)) − ωR
(b)(c)(∂(a))],

ωR
(a)(b)(∂(c)) = 1

2

[

e j
(a)∂(c)e

j
(b) + ei

(b)∂(c)ei
(a)

]

, (A.9)

ωL
(a)(b)(∂(c)) = 1

2

[

e j
(a)∂(c)e

j
(b) − ei

(b)∂(c)ei
(a)

]

, (A.10)

where � = ∂i [ei
(a)e

j
(a)∂ j ] is the Beltrami-Laplace operator.

With help of the Legendre transformations v2/N = pv − N p2/4 we determine
momenta

P(a)(b) = v(a)(b)

3
, (A.11)

PD = 2vD, (A.12)

PQ = 2vQ,

PA(b) = vA(b).

Consequently, the total action (A.3) is

˜W =
∫

d4x
[

PQ
(

∂0 ˜Q + ∂0 D ˜Q
) + P(a)(b)ω

R
(a)(b)(∂0)

+PA(b)∂0 A(b) − PD∂0 D − C
]

, (A.13)

C = NH + N(b)T(b) + A(0)∂(b) PA(b) + λ(0) PD

+λ(b)∂kek
(b) + λA∂(b) A(b), (A.14)
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where N , N(b) and A(0)∂(b) with ∂(b) A(b) = 0 are the Lagrange multipliers of the first
class constraints, λ(0), λ(b) and λA are the multipliers for the second class ones;

H = −δ ˜W

δN
= HD + Hg + HA + HQ, (A.15)

HD = − P2
D

4
− 4

3
e−7D/2�e−D/2, (A.16)

Hg =
[

6P2
(a)(b) + e−4D

6
R(3)(e)

]

, (A.17)

HA = e−2D

2

[

Pi(A) Pi
(A) + Fi j Fi j

]

, (A.18)

HQ = e−2D

[

P2
Q

4
+(

∂(b)Q+∂(b) DQ
)2

]

, (A.19)

T(0)(a) =−ei
(b)

δW

δNi
=−∂(b) P(b)(a)+˜T(0)(a), (A.20)

and ˜T(0)(a) = ∑

F=φ,Q,˜F PF∂(a)F are the energy-momentum tensor components.
Dirac added the second class (gauge) constraints [28,29]:

∂kek
(b) = 0, (A.21)

PD = 0 → ∂0(e
−3D) + ∂l(Nle−3D) = 0. (A.22)

The first three of them fix spatial coordinates [28,29], and PD = 0 is known as the
minimal surface constraint [43] distinguished by the co-moving frame of reference.
Using the decomposition

N(b) = N ||
(b) + N⊥

(b), (A.23)

∂(b)N ||
(b) = ∂ j N j , (A.24)

∂(b)N⊥
(b) = 0, (A.25)

P(b)(a) = P⊥
(b)(a) + ∂(a) f ⊥

(b) + ∂(b) f ⊥
(a) (A.26)

and the solution of the constraint (A.20), one can represent the squared momentum in
Eq. (A.17) as

P2
(b)(a) = (P⊥

(a)(b))
2 + [∂(a) f ⊥

(b) + ∂(b) f ⊥
(a)]2, (A.27)

where f ⊥
(a) satisfies the equations

� f ⊥
(a) = ˜T(0)(a). (A.28)
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The second class constraint (A.22) leads to one more secondary constraint δW/δD =
−TD = 0, namely,

(∂τ − N(b)∂(b))PD = TD, (A.29)

TD = 4

3

[

7N e−7D/2�e−D/2 + e−D/2�[N e−7D/2]
]

−∂D[Hg + HA + HQ]. (A.30)

In Ref. [43] the Hamiltonian approach to GR is defined in the class of functions
gμν(x0, x) = ημν + O(1/|x|), where ημν = Diag :(1,−1,−1,−1). As a result, such
a theory excludes cosmological evolution.

However, beginning with the pioneering Friedmann results [38,39] and continuing
with the modern development [5,50–53], the cosmological evolution can be incorpo-
rated into the gravitational theory with non-flat space-time within the infrared dynam-
ics of the type of the zeroth mode sector gμν(x0) 	= ημν (see “Appendix C”). In the
paper we follow this direction.

Appendix B: dilaton cosmological perturbation theory

Recall that in general case the local energy density (A.15) is

˜H = −4

3
e−7D/2�e−D/2 +

∑

J=0,2,3,4,6

e−J DTJ (˜F), (B.1)

where � = ∂i [ei
(b)e

j
(b)∂ j ] is the Beltrami-Laplace operator. The sum is over of the

densities of states: rigid (J = 0), radiation (J = 2), matter (J = 3), curvature
(J = 4),Λ-type term (J = 6), respectively, in terms of the conformal fields

˜F (n) = enD F (n), (B.2)

where (n) is the conformal weight.
In this case, the equation of the nonzeroth harmonics (A.30) takes the form [20]

TD − 〈TD〉 = 0, (B.3)

where

TD = 2

3

{

7N e−7D/2�e−D/2 + e−D/2�
[

N e−7D/2
]}

+N
∑

J=0,2,3,4,6

Je−J DTJ . (B.4)

123



V. N. Pervushin et al.

One can solve all Hamiltonian Eqs. (64), (B.1), and (B.3) to define simplex components

ω̃(0) = e−2DN dτ, N = 〈
√

˜H〉
√

˜H
, (B.5)

ω̃(b) = d X(b) − X(c)ω
R
(c)(b) + N(b)dτ. (B.6)

Recall that in the lowest order of perturbation theory with respect to the Newton-type
potential ωR

(c)(b) describes the free one-component transverse strong gravitational wave
considered in Sect. 3. The longitudinal component of the shift vector N(b) is unambig-

uously determined by the constraint (34) that becomes ∂ηe−3D +∂(b)(e−3DN(b)) = 0.

For the small deviations N e−7D/2 = 1 − ν1 and e−D/2 = 1 + μ1 + . . . the first
orders of Eqs. (B.1) and (B.4) take the form

[−�̂ + 14ρ(0) − ρ(1)]μ1 + 2ρ(0)ν1 = T (0),

[7 · 14ρ(0)−14ρ(1) + ρ(2)]μ1 + [−�̂ + 14ρ(0) − ρ(1)]ν1 = 7T (0) − T (1), (B.7)

where

ρ(n) = 〈T(n)〉 ≡
∑

J=0,2,3,4,6

(2J )n(1 + z)2−J 〈TJ 〉, (B.8)

T(n) =
∑

J=0,2,3,4,6

(2J )n(1 + z)2−J TJ . (B.9)

In the first order of perturbation with respect to the Newton coupling constant, the
lapse function and the dilaton take the forms (see also [20])

e−D/2 = 1 + 1

2

∫

d3 y
[

G(+)(x, y)T
(D)

(+)(y) + G(−)(x, y)T
(D)

(−)(y)
]

, (B.10)

N e−7D/2 = 1 − 1

2

∫

d3 y
[

G(+)(x, y)T
(N )

(+) (y) + G(−)(x, y)T
(N )

(−) (y)
]

, (B.11)

where G(±)(x, y) are the Green functions satisfying the equations

[±m2
(±) − �]G(±)(x, y) = δ3(x − y). (B.12)

Here

m2
(±) = H2

0
3(1+z)2

4

[

14(β ± 1)�(0)(a) ∓ �(1)(a)

]

,

β = √

1 + [�(2)(a) − 14�(1)(a)]/[98�(0)(a)],
T

(D)

(±) = T (0) ∓ 7β[7T (0) − T (1)], (B.13)

T
(N )

(±) = [7T (0) − T (1)] ± (14β)−1T (0), (B.14)
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are the local currents, and

�(n)(a) =
∑

J=0,2,3,4,6

(2J )n(1 + z)2−J �J , (B.15)

�J=0,2,3,4,6 = 〈TJ 〉/H2
0 are partial densities of states: rigid, radiation, matter, cur-

vature, Λ-term, respectively; �(0)(a = 1) = 1, 1 + z = a−1 and H0 is the Hubble
parameter.

In the context of these definitions, a full family of solutions (B.10), (B.11) for the
lapse function and the nonzeroth dilaton harmonics of the Hamiltonian constraints
(62)–(65), yield a Newton-type potential. In particular, for a point mass distribu-
tion in a finite volume which corresponds to the nonzero terms with (a)J = 0, 3 in
Eq. (B.8); (b)J = 3 in Eq. (B.9); (c)J = 0, 3 in Eq. (B.15) (otherwise zero), we have

T (0)(x) = T (1)(x)

6
≡ 3

4a2 M

[

δ3(x − y) − 1

V0

]

. (B.16)

As a result, solutions (B.10) and (B.11) are transformed to the Schwarzschild-type
form

e−D/2 = 1 + rg

4r

[

1 + 7β

2
e−m(+)(a)r + 1 − 7β

2
cos m(−)(a)r

]

, (B.17)

N e−7D/2 = 1 − rg

4r

[

14β + 1

28β
e−m(+)(a)r + 14β − 1

28β
cos m(−)(a)r

]

, (B.18)

where rg = M/M2
Pl, β = 5/7, m(+) = 3m(−), and m(−) = H0

√
3(1 + z)�Matter/2.

These solutions describe the Jeans-like spatial oscillations of the scalar potentials
(B.17) and (B.18) even for the case of zero pressure.

These spatial oscillations can determine the clustering of matter in the recombi-
nation epoch, when the redshift is close to the value zrecomb. � 1100. Indeed, if we
use for the matter clustering parameter [that follows from spatial oscillations of the
modified Newton law (B.17), (B.18)] the observational value [70]

rclustering � 130 Mpc � 1

m(−)

= 1

H0[�Matter(1 + zrecomb)]1/2 . (B.19)

one obtains �Matter ∼ 0.2. This estimation is in an agreement with the one, recently
discovered in the quest of the large scale periodicity distribution (see for details in [19]).

Constraint (34) yields the shift of the coordinate origin in the process of the evolu-
tion

N i =
(

xi

r

)(

∂ηV

∂r V

)

, V (η, r) =
r

∫

dr̃ r̃2e−3D(η,̃r). (B.20)
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In the limit H0 = 0 at a0 = 1, the solutions (B.17) and (B.18) coincide with the isotro-
pic Schwarzschild solutions: e−D/2 = 1+rg/(4r), N e−7D/2 = 1−rg/(4r), Ni = 0.
Solution (B.17) doubles the angle of the photon beam deflection by the Sun field. Thus,
the CGR provides also the Newtonian limit in our variables.

Appendix C: conformal cosmology

The distant supernovae data provide a powerful test for all theoretical cosmological
models in spite of the fact that the correctness of the hypothesis about SNe Ia as the
perfect standard candles is still not proven [71]. However, the first observational con-
clusion about accelerating expansion of the Universe and about the existence of the
non-vanishing Λ-term was made with the cosmological SNe Ia data.

Among different theories that passed this test, see e.g. [64,72], there are conformal
cosmological models [18–20,46,73] which assume to explain the long distance SNe
Ia by the long dilaton intervals of the Dirac version of GR [28,29] considered in the
present paper. This type of cosmological model naturally emerges from our approach
to the GR, which is based on the conformal symmetry. In this case the unknown dark
energy of Λ-term is replaced by the well known Casimir vacuum energy of the empty
Universe.

The construction of all observable CC-quantities is based on the conformal postu-
late in accord to which each CC-quantity F (n)

c with conformal weight (n) is equal to
the SC one, F (n)

s , multiplied by the cosmological scale factor to the power (−n):

F (n)
c = a−n F (n)

s . (C.1)

In accord with the conformal postulate (C.1), the CC-time is greater than the SC one,
and all CC-distances, including the CC-luminosity distance �c, are longer than the
SC-ones �s = a�c, because all intervals are measured by clocks of mass Const/a.

The first attempts to analyze SNe Ia data to evaluate parameters of CC models were
made in [18], where only 42 high redshift type Ia SNe [68,69] point were used. Later
a slightly extended sample was analyzed [46]. In spite of a small size of the samples
used in previous attempts to fit CC model parameters, it was concluded that if �Rigid is
significant with respect to the critical density (45), CC models could fit SNe Ia obser-
vational data with a reasonable accuracy. After that a possibility to fit observational
SNe Ia data with CC models was seriously discussed by different authors [64,74,75]
among other alternatives.

In both the cosmological models, the dependence of the scale factor (a) on the
conformal time (η) is given by the Einstein–Friedmann equation [38,39]

(

da

dη

)2

= ρη = H2
0 �(a), (C.2)

�(a) ≡ �Λa4 + �Mattera + �Radiation + �Rigida−2,
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where �(a) is the sum of the partial densities: Λ—term—state, matter, radiation, and

rigid, respectively, normalized by the unit density �

∣

∣

∣

a=1
= 1; H0 is the present—day

value of the Hubble parameter. One obtains from Eq. (C.2) the definition of the horizon

dhor(a) = 2rhor(z) = 2

a
∫

aI →0

da
1

√

ρη(a)
(C.3)

Thus, this distance determines the diameter of the visible Universe “sphere”.
The best fit to the Supernova data [68,69] requires a cosmological constant �Rigid =

0,�Λ = 0.7 and �Matter = 0.3 in the ΛCDM model, where the measurable distance
is identified with the world space interval R = ar .

In the conformal cosmology [18], measurable time and distance are identified with
the conformal quantities (r, η). Therefore, in the CC framework, we have a possibility
to consider the Early Universe evolution [76] using the parameters of the CC dark
energy obtained from the SNe Ia data [68,69]. In our CC model, the dark energy is the
integral of motion ρI Cas � ρ0Cas and has the substantial foundation as experimental
fact.
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