
Front. Phys., 2012, 7(1): 3–7

DOI 10.1007/s11467-011-0202-3

RESEARCH ARTICLE

Simulating cyclotron-Bloch dynamics of a charged particle in a 2D

lattice by means of cold atoms in driven quasi-1D optical lattices

Andrey R. Kolovsky1,2

1 Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia

2 Institute of Engineering Physics, Siberian Federal University, 660041 Krasnoyarsk, Russia

E-mail: andrey.r.kolovsky@googlemail.com

Received June 6, 2011; accepted June 23, 2011

Quantum dynamics of a charged particle in a two-dimensional (2D) lattice subject to magnetic and
electric fields is a rather complicated interplay between cyclotron oscillations (the case of vanishing
electric field) and Bloch oscillations (zero magnetic field), details of which has not yet been com-
pletely understood. In the present work we suggest to study this problem by using cold atoms in
optical lattices. We introduce a one-dimensional (1D) model which can be easily realized in labora-
tory experiments with quasi-1D optical lattices and show that this model captures many features of
the cyclotron-Bloch dynamics of the quantum particle in 2D square lattices.
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1 Introduction

A charged particle in two-dimensional (2D) periodic po-
tentials, which is subjected to in-plane electric field and
normal to the plane magnetic field is a problem of lasting
fundamental interest because of its relation to the quan-
tum Hall effect. This problem was considered in several
different approximations in the solid-state physics liter-
ature with the main emphasis on the energy spectrum
of the system or, more precisely, on the electron density
of states, which is a measurable quantity. Among these
approximations the most popular is the tight-binding
approximation, which amounts to a truncation of the
Hilbert space of the single-particle Hamiltonian to the
lowest Bloch band. In the case of zero electric field this
approximation results in the celebrated Hofstadter’s but-
terfly spectrum [1], which is parametrized by the Peierls
phase α – number of the magnetic flux quanta through
the unit cell of the lattice [2]. In the opposite case of zero
magnetic field the spectrum is the so-called Wannier–
Stark ladder [3, 4], which is parametrized by the angle θ
between the electric field vector and the crystallographic
axis of the lattice. The case when both fields are present
is more subtle and, to the best of our knowledge, was
analyzed for the first time only in 1995 [5].

Complementary to the spectral problem is the wave-
packet dynamics of the particle. The main question one

addresses here is whether a localized packet remains lo-
calized in the course of time or it spreads over the lattice.
If for electrons in a solid crystal this problem is of pure
academic interest, it appears to be of experimental rel-
evance for cold atoms in optical lattices because in this
system the wave-packet dynamics can be easily tracked
by taking a picture of the atomic cloud after a given
evolution time. A recent example is Ref. [6] where the
authors realized the Aubry–André model [7] (which coin-
cides with Harper’s Hamiltonian [8] for the model param-
eter λ = 2) by loading cold atoms into the quasiperiodic
one-dimensional (1D) optical lattice. It was confirmed
that the atomic cloud remains localized for large λ and
spreads over the lattice for small λ.

Present research in cold atoms physics is also focused
on the problem of generating synthetic magnetic fields,
which could impart a Lorenz-like force to otherwise neu-
tral atoms in motion (see, for example, the recent pa-
per [9] and references therein). Since the electric field for
cold atoms is easily mimicked by, for example, the grav-
itational force, this will open a perspective for studying
the 2D wave-packet dynamics in the Hall configuration.
Theoretically, this problem was analyzed in much details
in our recent publications [10, 11]. The main message of
the present work is that many (although not all) theoret-
ical predictions of Refs. [10, 11] can be verified by using
the driven 1D lattice instead of the 2D lattice with an
artificial magnetic field. The proposed experiment is a
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modification of the laboratory setup [6], where one sub-
stitutes one of the stationary lattices by a moving lattice.

2 Wave-packet dynamics in the Hall
configuration

To make the paper self-consistent we summarize the re-
sults of Refs. [10, 11]. Using the tight-binding approxi-
mation the 2D wave-packet dynamics in the Hall configu-
ration is governed by the following Schrödinger equation:

i�ψ̇l,m = −Jx

2
(ψl+1,m + h.c. )

−Jy

2
(
ei2παlψl,m+1 + h.c.

)

+ea(Fxl + Fym)ψl,m (1)

In this equation ψl,m are the wave function probability
amplitudes for the lattice site (l,m), Jx and Jy the hop-
ping matrix elements along the x and y axis (in what
follows we assume Jx = Jy ≡ J for simplicity), e the
charge, a the lattice period, Fx and Fy components of
the electric field vector F , α = eBa2/(hc) the Peierls
phase, and we use the Landau gauge A = B(0, x) for the
vector potential.

The main conclusion of Ref. [10] is that the system (1)
has two qualitatively different dynamical regimes, de-
pending on the inequality relation between the electric
field magnitude and the quantity Fcr = 2παJ/(ea). In
the strong field regime, F > Fcr, the time evolution of
a localized wave-packet is defined by the Bloch dynam-
ics. For vanishing magnetic field these would be Bloch
oscillations, where the packet oscillates near its initial
position with the Bloch frequencies ωx,y = eaFx,y/� and
amplitudes proportional to Jx,y/(eaFx,y). The obvious
exception from this oscillatory behavior is the case where
the vector F points the x or y direction. Here the packet
spreads ballistically in the orthogonal to the field direc-
tion, with the rate defined by the hopping matrix ele-
ment. A finite magnetic field (nonzero α) “generalizes”
this exclusion to the cases where the vector F points
rational directions, i.e., Fx/Fy = r/q with r, q being co-
prime numbers [11]. However, now the rate of ballistic
spreading in the orthogonal direction is suppressed by
the factor proportional to [J/(eaF )]r+q−1. In practice
this functional dependence of the suppression coefficient
implies that the wave packet spreading can be detected
only for rational directions with small prime numbers r
and q.

In the opposite limit of weak electric fields, F < Fcr,
the time evolution of a localized wave-packet is defined
by the cyclotron dynamics. Namely, the packet moves in
the orthogonal to F direction with the drift velocity v∗,

v∗ = ea2F/(hα) = Fc/B (2)

in close analogy with a charged particle in free space un-
der the effect of the crossing electric and magnetic fields.
However, the presence of the lattice imposes a restriction:
this regime occurs only for the subspace of initial condi-
tions spanned by the family of transporting states. For
generic initial conditions the packet typically splits into
several sub-packets moving in the orthogonal direction
with different (both positive and negative) velocities.

3 The 1D approximation

In this section we introduce the 1D approximation to
the above 2D problem. First we use the unitary trans-
formation, ψl,m(t) → exp[−i(ωxl + ωym)t]ψl,m(t), after
which the electric field appears as periodic driving of the
system with Bloch frequencies ωx and ωy:

i�ψ̇l,m = −Jx

2
(
e−iωxtψl+1,m + h.c.

)

−Jy

2

(
ei(2παl−ωyt)ψl,m+1 + h.c.

)
(3)

Let us now assume a situation where the wave function is
uniform along the y axis, i.e., ψl,m(t) = L−1/2bl(t). This
reduces (3) to the following 1D Schrödinger equation for
the complex amplitude bl:

i�ḃl = −Jx

2
(e−iωxtbl+1 + h.c.) − Jy cos(2παl − ωyt)bl

(4)

Although the above assumption is rather specific, it was
shown in Ref. [10] that |bl(t)|2 well approximates the in-
tegrated probability Pl(t) =

∑
m |ψl,m(t)|2 also in the

case of a localized 2D wave packet, if its size exceeds the
magnetic period d = a/α. Thus we can use the results
of Refs. [10, 11] to explain dynamical regimes of the sys-
tem (4) and, vice versa, to verify theoretical predictions
of the cited papers by studying the wave-packet dynam-
ics of this 1D system. Note that in terms of Eq. (4) the
weak and strong field regimes correspond to slow driving,
ω < ωcr,

ω =
√
ω2

x + ω2
y , ωcr = 2παJ/� (5)

and fast driving, ω > ωcr, respectively.
The system (4) coincides with that studied in the lab-

oratory experiment [6] with two minor modifications.
First, now the secondary (in terminology of Ref. [6] lat-
tice moves with the constant velocity relative to the pri-
mary lattice. This can be done by linearly chirping the
frequencies of two counter-propagating waves which form
the secondary lattice [12]. Second, the hopping term in
Eq. (4) contains an oscillatory phase. This phase can be
introduced by the same techniques which one uses to in-
duce Bloch oscillations of cold atoms (for example, by
employing the gravitational force for vertically oriented
lattices).
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4 The regime of slow driving

A way to check that the 1D system (4) correctly cap-
tures the features of the 2D system (1) in the weak field
regime (which now assumes ω < ωcr) is to propagate the
transporting state. In the 2D lattice it moves with the
drift velocity (2) in the orthogonal to F direction. For
the considered system (4) this means that one can con-
struct a coherent wave packet, which will travel across
the lattice with the constant velocity

v = aωy/(2πα) (6)

Figure 1(a) shows the result of numerical simulation for
the initial Gaussian wave packet,

bl(t = 0) ∼ exp[−l2/(2σ2)]

with the width σ = (2πα
√
Jy/Jx)−1/2. This packet ap-

proximates the ground Wannier state for the potential
V (l) = −Jy cos(2παl) and is a 1D analogue of the 2D
transporting state with the same dispersion in the or-
thogonal direction [13]. It is seen in Fig. 1(a) that the
packet indeed moves with the velocity given in Eq. (6).

To create the narrow coherent atomic wave-packet
might be a problem in a laboratory experiment. For this
reason from now on we focus on the case of thermal
atomic cloud, which corresponds to a wide incoherent
Gaussian wave packet. We simulate the dynamics of this
incoherent packet by assigning random phases to proba-
bility amplitudes of the initial Gaussian packet and av-
eraging the result over different realizations of these ran-
dom phases. The right panel in Fig. 1 shows the typ-
ical evolution of a wide incoherent packet. Unlike the
case of a narrow coherent packet, now the first moment
M1 =

∑
l|bl|2 remains constant while the dispersion

σ(t) =
√
M2 −M2

1 grows linearly in the limit of large
times.

Fig. 1 Space–time plot of the dynamics of the narrow coherent
(a) and a wide incoherent (b) Gaussian wave-packets. Parameters
are Jx = Jy = 1, α = 1/10, ω = 0.1, and ωx/ωy = 0. The time is
measured in units of the tunneling period TJ = h/J .

5 The regime of fast driving

The characteristic feature of the cyclotron-Bloch dynam-
ics for F > Fcr is the strong dependence of the rate of
spreading on the field direction or, what is the same,
on the ratio between the two Bloch frequencies. The
1D system (4) fairly reproduces this dependence. As an
example, in Fig. 2 we depict the coefficient A for the
asymptotic linear growth of the wave-packet dispersion,
σ(t) ≈ At, as a function of the frequency ω for ωx/ωy = 0
and ωx/ωy = 1. In the former case, the rate of bal-
listic spreading is seen to approach the constant value
A = Jx/(

√
2�), while in the latter case it decreases as

A =
Jx

2�

(
Jy

�ω

)ν

(7)

where ν = 1. In the general case of arbitrary rational ra-
tio ωx/ωy = r/q the exponent is ν = r+q−1 and one has
to evolve the system for algebraically large times to reach
the asymptotic regime. Finally, for irrational ωx/ωy there
is no asymptotic linear growth in σ(t) but oscillations in
time (see Fig. 3).

Fig. 2 The proportionality coefficient A = A(ω) for the asymp-
totic linear growth of the wave-packet dispersion, σ(t) ≈ At/TJ ,
for ωx/ωy = 0 and ωx/ωy = 1. The dashed lines are analytical
estimates for large ω according to Ref. [11].

Fig. 3 The wave packet dispersion as the function of time for
ωx/ωy = 1 (dash-dotted line), ωx/ωy = 18/19 (solid line), and
ωx/ωy = (

√
5 − 1)/4 (dashed line). The other parameters are the

same as in Fig. 1(b) yet ω = 1.
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6 Finite evolution times

In the preceding sections we discussed asymptotic dy-
namics of the system. Clearly, in a laboratory experiment
the system evolution is restricted to some maximal time
interval, which may be not large enough to speak about
the asymptotic regime. Nevertheless, all effects men-
tioned above are well observed also for short evolution
times. To support this statement Fig. 4 shows the wave-
packet dispersion at t = 30TJ as the function of ω for
three different ratios between driving frequencies. Two
dynamical regimes, which are separated by the critical
frequency (5), can be easily identified and for ω > ωcr

one clearly sees the difference between rational and irra-
tional ωx/ωy. In addition to Fig. 4, the panels (b)–(d) in
Fig. 5 depict populations of the lattice sites at the end
of numerical simulations for ω = 1. (Tiny wiggling of
the curves is an artifact due to the Monte Carlo method
of simulating the dynamics of an incoherent packet.)
We note that particular shapes of the packets seen in
the figure are rather sensitive to variations of the sys-
tem parameters and the evolution time. This sensitivity,

Fig. 4 The wave-packet dispersion at t = 30TJ as the function of
ω for ωx/ωy = 1 (d), ωx/ωy = 1/3 (c), and ωx/ωy = (

√
5−1)/4 ≈

0.309 (b).

Fig. 5 Population of the lattice sites at the end of numerical sim-
ulation for ω = 1. Panels (b)–(d) correspond to the three cases
considered in Fig. 4, the panel (a) shows the initial packet.

however, disappears for integrated characteristics like the
wave-packet dispersion.

7 Conclusions

We have studied numerically the dynamics of non-
interacting cold atoms in the driven 1D optical lattice
with a particular driving. This driving assumes the pres-
ence of a static force, which we characterize by the pa-
rameter ωx – the Bloch frequency, and a shallow sec-
ondary lattice with a larger period d = a/α, which moves
at constant velocity aωy relative to the deep primary lat-
tice. It is shown that this system well reproduces many
features of the cyclotron-Bloch dynamics of the quan-
tum particle in a 2D lattice. In particular, we find two
qualitatively different dynamical regimes of the 1D sys-
tem, depending on the driving frequencies. In the first
regime (slow driving, ω ≡

√
ω2

x + ω2
y < ωcr) a cloud

of non-condensed atoms spreads ballistically across the
lattice with a rate proportional to the frequency ωy. In
the second regime (fast driving, ω > ωcr) the size of the
atomic cloud oscillates in time if ωx/ωy is an irrational
number, while for rational ωx/ωy = r/q these oscillations
are accompanied by slow ballistic spreading with a rate
inversely proportional to the frequency ω in the power
ν = r + q − 1.

We conclude the paper by a remark concerning the
commensurability condition between the lattice periods,
i.e., the rationality condition on the parameter α. This
condition is known to play a crucial role in the case of
stationary lattices [6, 7]. Unlike this situation, for driven
lattices we did not find the commensurability condition
on the lattice periods to be of any importance, although
we do not exclude a possibility that it might be impor-
tant in some particular situations.
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