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Abstract. We study under-barrier tunneling for a pair of energetically bound
bosonic atoms in an optical lattice with a barrier. We identify the conditions
under which this exotic molecule tunnels as a point particle with the coordinate
given by the bound pair center of mass and discuss the atomic co-tunneling
beyond this regime. In particular, we quantitatively analyze resonantly enhanced
co-tunneling, where two interacting atoms penetrate the barrier with higher
probability than a single atom.
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1. Introduction

The phenomenon of under-barrier tunneling is one of the most exciting predictions of quantum
mechanics, which does not fit the classical picture of the world. As a bright example of a pure
quantum effect, it has been considered in all textbooks on quantum mechanics, which might give
the impression that under-barrier tunneling has been exhaustively studied already in the early
days of quantum mechanics. However, the theoretical description of under-barrier tunneling is
simple only for a point particle in one dimension. If we have a composite object, the problem
of tunneling becomes very involved. Systematically, this problem was first addressed in nuclear
physics (see [1] and references therein). It was found that the tunneling probability for the
composite object may considerably differ from that for the point particle of the same mass.

In this work, we revisit the problem of the under-barrier tunneling for a composite object
which has become experimentally available only recently—the pair of interacting bosonic atoms
in an optical lattice, where two atoms stay close to each other due to an energetic constraint [2].
Note that such atomic pairs exist for both attractive and repulsive inter-atomic interactions if
one satisfies the necessary condition that the interaction energy |U | exceeds the single-atom
tunneling energy J . Following [2], we shall refer to this exotic two-atom molecule as the
bound pair. It admits a simple yet rigorous description [3–6], which greatly facilitates theoretical
studies on different aspects of composite object tunneling.

The other motivation for studying the under-barrier tunneling of the bound pair is the
problems of many-particle tunneling in correlated systems [7, 8] and macroscopic tunneling of
a Bose–Einstein condensate of cold atoms [9–12]. In particular, the recent paper [12] analyzes
numerically the under-barrier tunneling of a bright soliton consisting of N � 1 condensed
atoms. Since the bound pair can be considered to be a bright soliton with N = 2 atoms [3, 13],
a rigorous analysis of the bound-pair tunneling is a first step in the microscopic understanding
of macroscopic tunneling.

The structure of this paper is as follows. In section 2, we recall the main results on
eigenstates of the bound pair in the absence of an external potential and introduce a simple
two-state model, which suffices to describe the mobility of the bound pair. Section 3 is devoted
to the under-barrier tunneling within the framework of the two-state model. We identify the
conditions under which the bound pair tunnels as a point particle with the coordinate given by
the center of mass of the bound pair and uncover the effect of resonant tunneling, which is
entirely due to the internal degrees of freedom of the composite object. The main drawback
of the two-state model is that it neglects the dissociation process where the barrier breaks the
pair into two unbound atoms. For this reason, in section 4 we simulate the tunneling process
numerically without using any approximations. We summarize our findings in section 5.

2. Two-state and one-state models

As mentioned in the introduction, the strongly interacting bosons in a lattice form bound
pairs, where two bosons occupy the same site. Such a pair can move across the lattice by
virtually breaking the bond. At the formal level this is the second-order tunneling, which
was experimentally studied in [14]) and, thus, is a composite object with well-defined kinetic
energy. The dispersion relation E(κ) for the bound pair can be easily calculated numerically
by diagonalizing the Hamiltonian of the Bose–Hubbard model (see equation (1)) with N = 2
particles. For the purpose of future references, figure 1(a) shows the result of this diagonalization
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Figure 1. The band spectrum of the system (1) for J = 1 and (U0,U1)= −(2, 0)
(left panel) and (U0,U1)= −(5, 3) (right panel). The lattice comprises 11 sites
with periodic boundary conditions. The red lines are equation (5) (left panel) and
equation (4) (right panel).

for a lattice comprising 11 sites, where we additionally parameterize the Bose–Hubbard
Hamiltonian by the Peierls phase θ : â†

l+1âl → â†
l+1âl exp(iθ). In figure 1(a) the bound pair of two

bosons is associated with the lower band, while the upper band is the spectrum of two hard-core
bosons. The problem can also be solved analytically, either exactly or by using a perturbative
approach. In the rest of this section we discuss the dispersion relation E(κ) and the eigenstates
of the bound pair within the perturbative approach, which better fits our aims of studying the
tunneling process.

To facilitate the theoretical analysis it is convenient to consider the Bose–Hubbard model
which also includes interactions in neighboring sites:

ĤBH = −
J

2

∑
l

(
â†

l+1âl + h.c.
)

+
U0

2

∑
l

n̂l(n̂l − 1)+ U1

∑
l

n̂l+1n̂l . (1)

Inclusion of the latter term explicitly introduces excited states of the bound pair; see figure 1(b).
We note that we do not assign the interaction constant U1 any physical meaning (needless to
say, there could be physical cases when U1 6= 0: see, e.g., [15]): our motivation for introducing
the constant U1 is to separate in the parameter space the process of under-barrier tunneling from
the dissociation process which may take place when the bound pair hits the barrier. At the final
step of the analysis we let U1 tend to zero, thus recovering the standard Bose–Hubbard model.
The perturbative approach to the energy spectrum of the bound pair essentially amounts to a
truncation of the Hilbert space of the operator (1) to the subspace which includes only the Fock
states where two bosons occupy either the same site or two neighboring sites. Then, denoting
by 9(1)

l the probability amplitude to find two bosons at the site l and by 9(2)
l the probability
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amplitude to find them at sites l and l + 1, the eigenvalue equation for the bound pair takes the
form (Ĥ09)l = E9l , where

(Ĥ09)l = −

√
2J

2

[(
0 0
1 0

)
9l−1 +

(
0 1
1 0

)
9l +

(
0 1
0 0

)
9l+1

]
+

(
U1 0
0 U0

)
9l . (2)

The solutions to this eigenvalue problem are plane waves,9l = C(κ)ei κl , where the vector C(κ)
satisfies the following 2 × 2 eigenvalue equation:(

1 −J
(
1 + ei κ

)
/
√

2
−J

(
1 + e−i κ

)
/
√

2 0

)
C = EC, 1= |U0 − U1|. (3)

From (3) we have

E(κ)= U0 +
1

2
±

√(
1

2

)2

+ 2J 2 cos2
(κ

2

)
. (4)

In what follows, we refer to equations (2)–(4) as the two-state model.
It is worth stressing that the two-state model provides only an approximation to the

exact eigenstates of the bound pair. How good this approximation is depends on the system
parameters. In general, the two-state model is a good approximation for both the ground and
excited bands if |U1|, |U0| � J and 1� |U1|, |U0|. If |U1| is decreased, yet |U0| � J , it is still
a reasonable approximation for the ground band (minus sign in equation (4)). This includes
the case U1 = 0 where the excited band is ‘dissolved’ into the spectrum of unbound bosons. In
this case, according to our numerical analysis, |U0| should be at least twice as large as J . Then
the admixture of the truncated Fock states (i.e. those belonging to the truncated subspace of the
Hilbert space) with the exact ground state of the bound pair does not exceed 5%. For smaller
|U0|, the contribution of these Fock states cannot be neglected and one has to diagonalize the
Hamiltonian (1) in the whole Hilbert space [4], which results in the dispersion relation

E(κ)= −

√
U 2

0 + 4J 2 cos2 (κ/2). (5)

In figure 1 we plot the analytical results (5) and (4) by the red lines.
If the band gap 1� J the problem can be simplified further, resulting in the one-state

model. The procedure goes as follows. First we restrict ourselves to the ground band and
introduce the Wannier states 8l of the bound pair by integrating its translationally invariant
eigenstate 9κ over the quasimomentum in the first Brillouin zone:

8l =

∫ π

−π

9κe
−i κldκ =

∫ π

−π

C(−)(κ)ei(l ′−l)κdκ. (6)

The Wannier states (6) are localized functions with the center of gravity at the site l.
(For example, for J = 1, U0 = −4 and U1 = 0 we have |90〉 ≈ 0.157| . . . , 0, 1, 1, 0, 0, . . .〉 +
0.975| . . . , 0, 0, 2, 0, 0, . . .〉 + 0.157| . . . , 0, 0, 1, 1, 0 . . . , 〉.) Next we calculate matrix elements
of the Hamiltonian (2) for the Wannier states separated by m sites: Im = 〈8l+m|Ĥ0|8l〉. This way
we obtain the effective Hamiltonian where the bound pair is considered to be a point particle:

Ĥeff = −
1

2

∑
m

Im

∑
l

(
b̂†

l+m b̂l + h.c.
)
. (7)
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In the limit 1� J we have I1 = 2J 2/1 and one can safely neglect the next to neighboring
hopping. Obviously, this situation corresponds to the case when the dispersion relations (4)
and (5) are approximated by the cosine function (which in practice requires 1> 4J ).

3. Under-barrier tunneling for the two-state model

The one-state model (7) introduced in the previous section gives us the reference frame for
studying the under-barrier tunneling of the bound pair. To be specific we shall consider a
Gaussian barrier, εl = V exp(−l2/2σ 2), and a plane wave coming from minus infinity. Since the
Gaussian barrier is well localized within the finite interval |l|< L ∼ σ , we can find the tunneling
probability by using, for example, the transfer matrix method (see the appendix). Alternatively,
one finds the tunneling probability by simulating the scattering process for a localized wave
packet on the basis of the time-dependent Schrödinger equation:

i∂tψl = −
1

2

∑
m

Im(ψl+m +ψl−m)+ 2εlψl, εl = V exp(−l2/2σ 2). (8)

As the initial conditions for (8) it is convenient to choose a wide Gaussian with the given group
velocity, ψl(t = 0)= G(l − l0) exp(i κl). If the width of this initial packet is large enough, the
result of time-dependent simulations practically coincides with that obtained on the basis of the
stationary Schrödinger equation.

A remark concerning the sign of the parameter V is in order. In what follows we consider
both positive and negative V , i.e. potential barriers and wells. In fact, for a particle in a lattice
the notions of ‘barrier’ and ‘well’ are equivalent to each other to some extent. This becomes
especially clear in the case of neighboring hopping (Im = I1δm,1), where scattering of the plane
wave with the quasimomentum κ on the well (V < 0) is equivalent to scattering of the plane
wave with the quasimomentum κ ′

= π − κ on the barrier (V > 0). (Note that for κ = π/2 this
implies a symmetric function Pt(V ) for the tunneling probability.) Also, by considering both
positive and negative V we cover the case of repulsive interactions as well, with the obvious
substitution V → −V when the sign of interaction constants is changed.

All remarks above about the one-state model equally apply to the two-state model. Here,
instead of (8), one deals with the Schrödinger equation

i∂t9l = (Ĥ09)l +

(
εl + εl+1 0

0 2εl

)
9l, (9)

where 9l is a two-component vector and the Hamiltonian Ĥ0 is defined in equation (2). Our
particular interest is in the scattering of a plane wave transmitting in the ground energy band. As
an example, figure 2 shows the tunneling probability for the plane wave with κ = π/2 for three
different values of the parameter 1. In panels (b) and (c) of this figure, we have additionally
plotted the tunneling probability obtained on the basis of the one-state model.

A remarkable prediction of the two-state model as compared to the one-state model is
the appearance of narrow transparency windows for negative V . Usually, such windows are
associated with resonant tunneling in multi-barrier structures. In our case (a single barrier or
well) we meet a different type of resonant tunneling, where the bound pair tunnels through
the upper band or, more precisely, through a localized state of the bound pair in the excited
state, as is pictorially shown in figure 3. This interpretation of enhanced tunneling is strongly
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Figure 2. Two-state model: tunneling probability as a function of V for fixed
κ = π/2 and 1= 1, 2, 4 from top to bottom. The scattering potential is εl =

V exp(−l2/2σ 2), σ = 0.65. The open circles are predictions of the one-state
model.

Figure 3. Pictorial representation of the resonant tunneling. Letters ‘d’ and
‘c’ label the ground and excited energy bands of the bound pair; ‘b’ is the
energy band of two bosons with one of them captured in the well and ‘a’ is
for unbounded bosons.

supported by numerical simulations of the wave-packet dynamics, where we observe a temporal
population of the upper band when the packet passes through the well. This is shown by the
dashed line in figure 4, where the upper curve is the total occupation probability of Fock states

New Journal of Physics 14 (2012) 075002 (http://www.njp.org/)

http://www.njp.org/


7

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

t/T
J

P
F

oc
k

Figure 4. The total occupation probability of Fock states with two bosons in the
same site (top curves), Fock states with two bosons in neighboring sites (middle
curves) and Fock states with two bosons separated by empty sites (bottom
curves). The dashed, dash-dotted and solid lines distinguish between the two-
state model, the three-state model (see the discussion at the end of section 4) and
the original system. Parameters are J = 1, (U0,U1)= −(4, 2) (hence 1= 2),
σ = 0.65 and V = −2.2.

with two bosons in the same site and the middle curve is the total occupation probability of Fock
states with two bosons in the neighboring sites.

The number and width of resonances seen in Pt(V ) crucially depend on the system
parameters, in particular, on the width σ of the potential well. If σ is increased, we observe
more resonances and they are narrower. The decrease of 1 makes resonances wider. It should
also be mentioned that, for the currently considered Gaussian potential, the resonances appear
in pairs, as seen in figure 2(c), and the pair can merge into the single wide resonance, as is the
case depicted in figures 2(a) and (b).

4. The full system

Next we discuss the degree of validity of the two-state model. Indeed, the two-state model
neglects the coupling to the truncated Fock states, which are associated with unbound bosons.
If this coupling is strong (as in the case U1 ≈ 0, where the upper band of the two-state model
is embedded into the energy band of hard-core bosons) it may essentially affect the tunneling
process and even open new scattering channels where the bound pair dissociates. For this reason
we simulate the tunneling process on the basis of the Bose–Hubbard model (1), i.e. without
using any approximations. In this numerical experiment we propagate the wide Gaussian packet
constructed from eigenstates of the bound pair for a time approximately two times longer than
that required for the packet to hit the potential barrier. Figure 5 shows a typical result for
U0 = −2, U1 = 0 and V = −2. The figure depicts probabilities of finding the system in the
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Figure 5. Result of numerical simulations for the wave-packet dynamics of
the original system for J = 1, U0 = −2, U1 = 0, σ = 0.65 and V = −2. The
figure encodes (by using the gray-scaled mapping) the probability of finding two
bosons at sites l and m.

Fock state with one boson at the site l and the other one at the site m. (Note that m > l in the
considered case of identical particles.) It is seen in figure 5 that the initial packet splits into
four packets where two of them, which are located at the main diagonal, are associated with the
bound pair and the other two are the dissociated pair with one boson staying in the potential
well. (For the chosen parameters the dissociation is energetically allowed because the boson
in the well accumulates almost the whole bound energy.) Summing up probabilities for these
four packets, which are well separated in the Fock space, we find the tunneling, reflection and
dissociation probabilities.

To systematically study the effect of the Hilbert space truncation (i.e. the effect of unbound
bosons), we fixed the parameter 1= |U0 − U1| and vary the interaction energy U1, where
the limiting case corresponds to U1 = 0. The parameter κ , which defines the group velocity
of the incoming wave packet, is fixed at κ = π/2 and the parameter σ , which defines the width
of the potential barrier, is σ = 0.65 (then the scattering potential essentially comprises three
lattice sites). The results of our numerical simulations are depicted in figure 6 by symbols, which
are connected by a dotted line to guide the eyes. Open circles show the tunneling probability and
asterisks the dissociation probability. (The reflection probability, which is obviously given by
Pr = 1 − Pt − Pd, is not shown.) By inspection of the numerical data we can draw the following
conclusions: (i) There are practically no deviations from the predictions of the one- and two-
state models for the main transparency window around V = 0. Thus, here the bound pair tunnels
just like a point particle. (ii) The system exhibits resonant tunneling at V ≈1, as predicted by
the two-state model. This is a clear manifestation of the complex structure of the tunneling
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Figure 6. Tunneling (open circles) and dissociation (asterisks) probabilities
versus V . The system parameters are κ = π/2, J = 1, σ = 0.65 and (U0,U1)=

−(8, 6) (top), −(4, 2) (middle), and −(2, 0) (bottom). The solid line is the
prediction of the two-state model.

object. (iii) As compared to the two-state model the resonant tunneling is suppressed. It is
interesting to note that the tunneling is suppressed independently of whether the dissociation
channel is open or closed. (iv) If the dissociation channel is open, we observe strong back action
of the resonant tunneling on the dissociation process, which manifests itself in a local deep in
Pd = Pd(V ).

Let us discuss the suppression of the resonant tunneling in some more detail. We found
this suppression to be fairly reproduced if the Hilbert space of the two-state model is enlarged
by including the Fock states, where two bosons are separated by one empty site. In other words,
instead of the two-state model one considers a three-state model. The dash-dotted lines in
figure 4 show population dynamics for the considered three families of Fock states. It is seen that
it practically coincides with that for the full system. Note that the third state remains practically
unpopulated during the tunneling process. Nevertheless, the presence of this third state appears
to be important. This statement is also supported by the transfer matrix analysis, where the
inclusion of this state considerably modifies the resonant tunneling (see the appendix).

5. Conclusions

We studied the tunneling of an interactively bound pair of two bosons in a 1D lattice through
a narrow potential barrier/well. This system is, perhaps, the simplest composite object that
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can be created in the laboratory. We address the question of under which conditions this
composite object tunnels like a point particle. Loosely speaking, these conditions amount
to the requirement that the microscopic interaction constant U0 entering the Bose–Hubbard
Hamiltonian is larger than the height of the potential barrier (the case of repulsive interactions)
or the depth of the potential well (attractive interactions). If this condition is satisfied, the pair
can be considered to be a point particle. Note that the effective Hamiltonian for this ‘point
particle’ contains next to neighboring hopping, which is absent in the original Bose–Hubbard
Hamiltonian. This takes into account the finite size of our composite object when it is treated as
a point object [1, 16].

If the above condition is violated, one meets two phenomena which are entirely due to
internal degrees of freedom of the composite object. These are (i) resonant tunneling and
(ii) dissociation. Under conditions of resonant tunneling the bound pair can tunnel through
the barrier, which the single boson cannot penetrate. (Here we refer to the case of repulsive
interactions.) Assuming the shape of the barrier to be fixed, resonant tunneling takes place in a
rather small region of the parameter space spanned by the quasimomentum κ of the incoming
plane wave (or, equivalently, by the group velocity of the incoming wave packet) and the
height V of the potential barrier. In contrast, the parameter region where the external potential
breaks the pair by capturing one boson at the barrier is relatively large. For a generic form of
the external potential and U1 = 0, the region of resonant tunneling is usually embedded into
the dissociation region and, thus, resonant tunneling and dissociation coexist. We observed a
strong mutual influence of these processes, which results in a suppression of both tunneling and
dissociation.

In the present work we calculated the tunneling and dissociation probabilities by simulating
the wave-packet dynamics of the bound pair4 where, as the physical object, we had in mind ultra-
cold atoms in the 1D optical lattice with the scattering potential created by an additional laser
beam crossing the lattice at the right angle. For this reason we considered a Gaussian shape of
the potential barrier/well. It seems unlikely that one can obtain a compact analytical expression
for the tunneling and dissociation amplitudes for this scattering potential. However, there are
good prospects in developing the analytic theory for particular shapes of the barrier/well, which
includes the impurity-like potential εl = V δl,0 and the box-like potential εl = V (δl,0 + δl,1). The
advantage of the latter potential is that the well size and the size of the bound pair in the excited
state match exactly and, thus, the resonant tunneling and dissociation regions do not overlap.

To conclude the paper, we discuss the relation between our dimensional parameters and
parameters of the laboratory experiment [2]. The authors of the cited experiment use the three-
dimensional (3D) optical lattice of the depth Vx = 35, Vy = 35 and 3< Vz < 10 in units of the
recoil energy defined by the lattice. Large values of Vx and Vy suppress tunneling along the
x- and y-directions and, thus, the bound pairs can move only along the z-direction. The ratios
of the interaction constant U0 to the hopping matrix element J are U0/J = 15 for Vz = 10 and
U0/J = 1.5 for Vz = 3, which coincide with the values U0/J used in our numerical simulations.
To study the under-barrier tunneling of bound pairs this setup should be extended by a sheet laser
beam [20] normal to the z-axis, which creates a narrow potential barrier, and the pairs should
be accelerated to a given quasimomentum κ by applying a static force for a given time, which is
a standard technique in experimental studies of atomic Bloch oscillations. These modifications
of the experiment [2] would realize our model, but with one important difference. In this paper,

4 We mention the papers [17–19] that are also devoted to wave-packet dynamics of the bound pair.
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we analyzed the tunneling of a single bound pair, while in the laboratory experiment each of
the 1D lattices contains several bound pairs. We reserve the problem of sequential tunneling of
several bound pairs for future theoretical studies.
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Appendix

The transfer matrix propagates the plane wave solution ψl = exp(i κl) from the asymptotic
region l <−L to the asymptotic region l > L , where the wave function is given by the
superposition of two plane waves,ψl = a exp(−i κl)+ b exp(i κl). Then the tunneling amplitude
is given by t = 1/b∗. This relation is valid independently of whether the wave function is scalar
or vector, although the explicit form of the transfer matrix is different.

We begin with the one-state model (7) where we assume Im = I δm,1 for simplicity:

−
I
2(ψl+1 +ψl−1)+ 2εlψl = Eψl, E(κ)= −I cos κ. (A.1)

It immediately follows from (A.1) that the plane wave can be propagated as(
ψl+1

ψl

)
= Tl

(
ψl

ψl−1

)
, (A.2)

where

Tl =

(
2(2εl − E)/I −1

1 0

)
(A.3)

is the one-step transfer matrix. It is worth noting that the matrix (A.3) is unitary, with the
eigenvalues lying on the unit circle.

The case of the two-state model is more involved. Here equation (A.2) takes the form(
9
(2)
l+1

9
(1)
l+1

)
= Tl

(
9
(2)
l

9
(1)
l

)
(A.4)

and the transfer matrix is given by

Tl =

(
(ab − 1) −b

a −1

)
, (A.5)
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Figure A.1. Tunneling probability as predicted by the one-state (upper left), two-
state (upper right) and three-state (lower row) models. The system parameters are
J = 1, 1= 2 and U1 = −2 in the lower left panel and U1 = 0 in the lower right
panel; the width of the Gaussian scattering potential σ = 0.65.

where a =
√

2(1+ εl + εl+1 − E)/J and b =
√

2(2εl+1 − E)/J . The dispersion relation E =

E(κ) entering equation (A.5) is obtained by solving the Schrödinger equation in the absence
of the scattering potential and is given in equation (4).

Finally, we display the transfer matrix for the three-state model. It has the most compact
form if we propagate the column vector (9(2)

l , 9
(1)
l , 9

(3)
l−1)

T with the shifted index for the third
component. Then the transfer matrix is given by

Tl = A−1 B, (A.6)

where the matrices A and B are as written below:

A =

−1/
√

2 (U0 + 2εl+1 − E)/J 0

−1/2 0 (εl + εl+2 − E)/J

0 −1/
√

2 −1/2

 (A.7)

and

B =

 1/
√

2 0 0

1/2 0 0

(E − U1 − εl − εl+1)/J 1/
√

2 1/2

 . (A.8)
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In this paper, when discussing the tunneling probability, we focused on the particular case
κ = π/2 where the bound pair has the maximum group velocity. It is interesting to compare
the results of the one-, two- and three-state models for other values of the quasimomentum.
This comparison is given in figure A.1, which shows the tunneling probability as a function of
the quasimomentum κ and the amplitude V of the external Gaussian potential (σ = 0.65). The
system parameters are J = 1 and U0 = U1 − 2, which implies1= 2 in the two-state model and
I ≈ 0.5 in the one-state model. (In figure A.1(a) we used I = 0.7321/2, which is one half of the
actual band width.) A narrow window of the resonant tunneling (as predicted by the two-state
model) and partial suppression of this resonant tunneling (as predicted by the three-state model)
are clearly seen in the figure.
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