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All-optical switching in a photonic crystal with a defect containing an
N-type four-level atomic system

V. G. Arkhipkin* and S. A. Myslivets†

L. V. Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russia
(Received 27 September 2012; published 17 December 2012)

We study the transmission spectra of a one-dimensional photonic crystal with a defect containing a
four-level atomic medium that exhibits a greatly enhanced third-order susceptibility while having a vanishing
linear susceptibility dependent on the electromagnetically induced transparency. Two ways of controlling the
transmission of a photonic crystal are discussed: via absorption, i.e., nonlinear (two-photon) absorption of the
probe field enhanced by constructive quantum interference, and via dispersion, which comes down to shifting
the resonance frequency of the defect mode for the probe field by varying the refractive index based on the
giant Kerr nonlinearity (cross-phase modulation). We demonstrate that such systems enable nonlinear all-optical
switching at ultralow intensities of the coupling and switching laser fields.
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I. INTRODUCTION

Linear and nonlinear optical properties of an atomic
medium can be controlled by means of coherence and quantum
interference [1,2] effects induced by resonant laser fields,
which lead to a variety of interesting phenomena for funda-
mental research and practical applications. Much attention has
been paid to electromagnetically induced transparency (EIT)
and its effect on the linear and nonlinear susceptibilities of
optical media [3–7]. Due to the vanishing linear absorption,
significant reduction of group velocity, and enhancement of
nonlinear polarizability in an EIT medium, nonlinear optics
can be studied at low light levels [3,4,6,7]. To this end, quantum
systems are used having various level configurations such
as � and double-� schemes [3], tripod schemes [8], Y- [9]
and N-type schemes [10], and others. In four-level systems,
EIT can be controlled using additional laser radiation [6,7].
For media with an N-type configuration of levels under EIT
(Fig. 1), turning on a third field (switching) of frequency ω3

can induce nonlinear absorption of the probe field at ω1 [6] and
cross-Kerr nonlinearity, referred to as giant Kerr nonlinearity
[7]. Experimental studies of these effects have been reported
in quite a few papers [11–15].

EIT combined with a photonic crystal (PC) provides a
new tool for manipulating light and achieving a complex
functionality due to their unique properties [16]. From that
point of view, PCs with micro- and nanodefects, otherwise
called micro- and nanocavities [17], are of a particular interest.
Structures like that have recently attracted much attention due
to their ability to strongly confine light for long times in a very
tiny spatial region [18]. This enables the initially low-energy
laser radiation to interact even with single atoms [19]. It has
been shown that in PCs with a defect containing an EIT
medium, the defect-mode Q factor for the probe radiation
can greatly increase, whereas the width of the transmission
spectrum narrows [20–22]. An all-optical switch has been
suggested in [23] based on a PC microcavity with a giant
Kerr nonlinearity. Switching occurs due to the shift of the
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transmission band (defect mode) under applied additional
external laser radiation. Such photonic crystal structures are
of great interest for integration of various optical functions
and fundamental studies in optical physics. For example,
they can be used to miniaturize controlled optical filters,
for high-precision sensors and atomic clocks, as well as for
all-optical switching, and quantum memory in EIT.

This paper reports a theoretical study of the optical
properties of a multilayer PC with a defect containing an
N-shaped four-level system (Fig. 1), where additional laser
radiation of frequency ω3 (the switching field) is used to
effectively control the EIT in order to modify the spectral
characteristics of the PC. Due to the effect of light localization
in the defect, the intensity of the switching field entering the PC
can be very low. Two mechanisms of controlling the probe light
pulses passing through the PC are considered: an absorptive
mechanism, i.e., due to nonlinear absorption of the probe field,
and a dispersive mechanism that comes down to the shifting
of the resonance frequency of the defect mode for the probe
field resulting from the change of the refractive index owing
to the giant Kerr nonlinearity. Spatial nonuniformity of the
interacting fields is taken into consideration, unlike the cases
of [20,23]. It is shown that in the first case the energy of the
switching field can be lower than in the case of the dispersive
mechanism, and can correspond to that of single photons (even
of one single photon) in the pulse.

The paper is organized as follows. In Sec. II we discuss the
susceptibility of a four-level N-type medium at the probe wave
frequency in the presence of two strong fields. In Sec. III we
present the results of computation of the spectral properties of
a one-dimensional photonic crystal with a defect containing
an N-type atomic medium. Section IV concludes the paper.

II. SUSCEPTIBILITY OF A FOUR-LEVEL N-TYPE
MEDIUM TO THE PROBE WAVE

An energy level diagram of the N-type four-level atomic
system is shown in Fig. 1. The level |0〉 is the ground state
and |2〉 is a metastable state. Initially, only the ground state is
populated while all the other levels are not. Transitions |0〉-|1〉,
|1〉-|2〉, and |2〉-|3〉 are allowed, and the |0〉-|2〉 transition is
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FIG. 1. Energy-level diagram of an N-type four-level atom
interacting with a weak probe field (ω1) and two strong fields: the
coupling (ω2) and the switching (ω3) fields. δ1,2,3 denote the frequency
detuning from one-photon resonances for the probe, coupling, and
switching fields, respectively.

dipole forbidden. A resonant coupling laser of frequency ω2

and amplitude E2 driving the transition |1〉-|2〉 and a weaker
probe beam of frequency ω1 and amplitude E1 driving the
transition |0〉-|1〉 create standard �-type EIT. A switching laser
of frequency ω3 and amplitude E3 drives the |2〉-|3〉 transition.
We take all the fields to be monochromatic and |E1| � |E2,3|,
and assume that the atoms remain in the ground state for the
whole time.

The absorption and refractive indices for the probe field
are determined by the imaginary and the real parts of the
macroscopic susceptibility χ (ω1). The latter can be calculated
from the density matrix equations by finding an exact solution
for the strong fields and a first-order perturbation theory
solution for the probe field (see, e.g., [5,6]):

χ (ω1) = iχ0
γ10

2

�20�30 + |�3|2
�10�20�30 + �10|�3|2 + �30|�2|2 , (1)

where �10 = γ10/2 − iδ1, �20 = γ20/2 − i(δ1 − δ2), �30 =
γ30/2 − i(δ1 − δ2 + δ3), δ1 = ω1 − ω10, δ2 = ω2 − ω12, and
δ3 = ω3 − ω32 are the frequency detunings; ωij and γij are the
frequencies and widths of the respective transitions; 2�k =
dijEk/h̄ is the Rabi frequency; Ek (k = 1,2,3) is the field am-
plitude; dij are the matrix elements of electric dipole moments
of transitions; χ0 = |d01|2N/h̄γ10 = χ0mN , where χ0m is
the resonant microscopic susceptibility; and N is the atomic
concentration.

When �3 = 0 (the switching field is off) the susceptibility
(1) takes the form

χ (ω1) = i
χ0

2

�20γ10

�20�10 + |�2|2 . (2)

Formula (2) describes an EIT phenomenon [3] which
occurs due to interference of quantum transitions under a
strong coupling field. The destructive interference results in
an inhibited resonance (one-photon) absorption and a high
dispersion of the refractive index for the probe field. The
effect is observed under a two-photon (Raman) resonance
δ1 − δ2 = 0 and |�2|2 � γ10γ20/4 [1]. One of the most
important consequences of EIT is the reduced group velocity
of the probe pulse (slow light) [3].

The spectral dependences Im χ and Re χ normalized to
the linear resonance susceptibility χ0 are shown in Fig. 2
for various Rabi frequencies of the switching field �3 and

frequency detuning δ3. With �3 = 0 (the switching field is
off), there is a transparency window in the center due to EIT
[Fig. 2(a)]. Once a third field is on, an additional resonance
(peak) is observed in the center of the window [Figs. 2(a)
and 2(b)]. As the switching field power increases, the central
peak becomes higher, while the side peaks become lower and
undergo a shift. Note that the smaller is γ30, the lower is the
intensity of the switching field at which the central peak is
observed.

The existence of three resonances can be explained in terms
of “quasilevels” determined as follows [1,5]. The denominator
in (1), D = �10�20�30 + �10|�3|2 + �30|�2|2, is a cubic
polynomial over δ1. Applying a factorization D = (δ1 −
z1)(δ1 − z2)(δ1 − z3), where zi (i = 1,2,3) are the roots of
the cubic equation D = 0, and making a decomposition to
simple fractions, the susceptibility (1) can be cast into a very
convenient form for interpretation [5]:

χ (ω1) = iχ0
γ10

2

(�20�30 + �3|2)

(z1 − z2)

[
(z1 − z3)−1

δ1 − z1

− (z2 − z3)−1

δ1 − z2
+ (z2 − z3)−1 − (z1 − z3)−1

δ1 − z3

]
. (3)

The parameters zi are called quasilevels. They determine
the position and the width of new resonances. Expression (3)
suggests that in the general case there can be three resonances,
and the susceptibility has the nature of an interference [3,5,24].
In every particular case the interference pattern depends on the
intensity of the coupling and the switching fields, frequency
detunings, and relaxation parameters. The position and the
number of resonances, as can be seen, depend on the relation
between the Rabi frequency of the switching field and its
detuning δ3. Note that the central peak [Fig. 2(a)] corresponds
to the case when δ1 = δ2 = δ3 = 0, i.e., all the three fields are
on resonance.

Figures 2(c) and 2(d) illustrate the Re χ dependences on
the normalized probe field detuning under different conditions.
One can see that the Re χ behavior is also strongly dependent
on the Rabi frequency �3 and the detuning δ3.

For the sake of better understanding the physics behind the
spectral dependencies of Im χ (ω1) and Re χ (ω1), consider the
case of a weak switching field |δ3| � |�3|,γ30. In this case,
the susceptibility (1) takes the form

χ (ω1) = χ
(1)
1 (ω1) + χ

(3)
33 (−ω1,ω3, − ω3,ω1)|E3|2, (4)

where χ
(1)
1 (ω1) is the linear susceptibility of the medium for

the probe responsible for EIT; χ
(3)
33 is the nonlinear third-

order susceptibility, the real part of which is called the Kerr
susceptibility (to be more exact, the cross-Kerr susceptibility).
Note that Re χ

(3)
33 leads to the effect of cross-phase modulation

of the refractive index for the probe radiation.
When δ1 = δ2 = 0, |�2|2 � γ10γ20/4, the susceptibilities

in (4) take the simple forms

χ
(1)
1 (ω1) = iχ0

γ10γ20

4|�2|2 , (5)

χ
(3)
33 (ω1) = |d01|2|d23|2N

8h̄3

1

|�2|2
(

i
γ30

2δ2
3

− 1

δ3

)
. (6)

063816-2



ALL-OPTICAL SWITCHING IN A PHOTONIC CRYSTAL . . . PHYSICAL REVIEW A 86, 063816 (2012)

−2 0 2
0

0.2

0.4

0.6

0.8

1

(a) 

δ
1
/γ

10

Im
 χ

/χ
0

Ω
3
=0

Ω
3
=0.5γ

10

Ω
3
=γ

10

−2 0 2
0

0.2

0.4

0.6

0.8

1

(b) 

δ
1
/γ

10

Im
 χ

/χ
0

δ
3
=0.5γ

10

δ
3
=γ

10

δ
3
=3γ

10

−2 0 2
−0.5

0

0.5

(c) 

δ
1
/γ

10

R
e 

χ/
χ 0

Ω
3
=0

Ω
3
=0.5γ

10

Ω
3
=γ

10

−2 0 2
−0.5

0

0.5

(d) 

δ
1
/γ

10

R
e 

χ/
χ 0

δ
3
=0.5γ

10

δ
3
=γ

10

δ
3
=3γ

10

FIG. 2. (Color online) The dispersive behavior of the imaginary (a),(b) and real (c),(d) parts of the nonlinear susceptibility χ (ω1) as the
probe frequency detuning varies. �2 = γ10, δ2 = 0, γ10 = γ30 = 2π × 10 MHz, γ20 = 0.01γ10. (a),(c) δ3 = 0. (b),(d) �3 = γ10.

From (5) and (6) one can see that χ
(1)
1 is purely imaginary

due to the exact two-photon resonance, and Im χ
(1)
1 /χ0 � 1,

and it is χ
(3)
33 that gives a nonlinear contribution to the

absorption and the refractive index of the probe wave. So,
when there is no third field, virtually no absorption of the
probe radiation occurs owing to EIT [Fig. 2(a), solid line].
The switching on of �3 results in a nonlinear absorption
of the probe field (dashed and dash-dotted lines) because
Im χ (ω1) = Im(χ (3)

33 )|E3|2 � Im χ
(1)
1 . Using (6), it can be

shown that the magnitude of this absorption can be comparable
to the linear absorption in a two-level system and Re χ

(3)
33

can be many orders of magnitude higher than the Kerr
susceptibility in a conventional three-level cascade scheme
with a two-photon resonance (under similar conditions)
[10]. Therefore Re χ

(3)
33 is referred to as the giant Kerr

susceptibility.
In the dressed-state basis |+〉 = (|1〉 + |2〉)/√2 and |−〉 =

(|1〉 − |2〉)/√2, the nonlinear absorption of the probe field
can be interpreted as absorption of two photons h̄ω1 and h̄ω3

(two-photon absorption) enhanced by constructive quantum
interference [3,6,7,25]. In this case, one-photon absorption is
inhibited by EIT.

The giant Kerr nonlinearity and nonlinear absorption have
been studied experimentally in hot and cold atoms as well
as in Bose condensates [11–15]. The feasibility of all-optical
switching of the probe radiation by using a weak switching
field (tens to hundreds of photons per switching pulse) has
been demonstrated. We note that this scheme allows the group
velocity of the probe pulse to be controlled in the range from
vg � c to vg < 0 [26].

In what follows, we will discuss the effect of absorptive
and Kerr nonlinearities on the spectral properties of a one-
dimensional PC with a defect containing N-type atomic
systems.

III. SPECTRAL PROPERTIES OF PC WITH A DEFECT
CONTAINING AN N-TYPE ATOMIC MEDIUM

A. The model and basic approximations

Let us consider a one-dimensional PC with the structure
(HL)MHDH(LH)M . Here H and L refer to dielectric layers
with high (H) and low (L) refractive indices nH and nL, and
the widths dH and dL; the structure period is t = dH + dL; M

is the number of bilayers (periods); D is the defect layer with
the refractive index nD and the width d. The defect layer is
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FIG. 3. (Color online) (a) PC defect mode without an EIT medium. The arrows indicate the positions of the interacting wavelengths.
(b) Spatial distribution of the intensity I/I0 of the coupling (solid curve) and switching (dashed curve) fields in the defect layer as functions of
the normalized (to the layer width dD) coordinate z; z = 0 and z = 1 correspond to the defect boundaries; I0 is the input intensity.

filled with a medium comprised of four-level N-type atoms,
which we will assume to be immobile and noninteracting with
each other. Initially, only the lowest state |0〉 is populated.

Three plane monochromatic waves of frequencies ω1,2,3

and amplitudes E1,2,3 are normally incident on the PC and
propagate along the z axis from left to right. We will proceed
on the assumption that the probe field amplitude (E1) in the
defect layer is much smaller than the amplitudes of the driving
(E2) and switching (E3) fields. Within this approximation, the
refractive index for the probe field inside the defect in the
presence of two strong fields can be defined as

nD = n = 1 + i2πχ0
γ10

2

�20�30 + |�3|2
�10�20�30 + �10|�3|2 + �30|�2|2 .

(7)

For the numerical simulation, we used parameters typical
of the D lines of a sodium atom. The probe wavelength
corresponds to the transition around the D1 line λ = 589.6 nm,
and the levels |0〉 and |2〉 correspond to superfine splitting at
the transition frequency ω21 = 2π × 1.8 GHz. We will assume
the refractive indices for the coupling and switching fields to
be equal to unity in the defect.

Any individual field (i = 1,2,3) in the j layer (j cor-
responds to the layers H, L, and D) can be treated as a
superposition of the direct (incident) and returning (reflected)
waves:

Ei,j (z) = Ai,j (z) exp (iqi,j z) + Bi,j (z) exp (−iqi,j z), (8)

where Ai,j and Bi,j are the amplitudes of the direct and
returning waves; qi,j = kini,j , ki = 2π/λi , and ni,j is the
refractive index for the ith wave in the j th layer. The
amplitudes of the direct and the returning waves can be found
from the appropriate wave equations by applying the re-
currence relations technique [27–29]. The transmission (T )
and the reflection (R) coefficients for the probe wave are
determined by

T = |A1L|2/|A10|2, R = |B10|2/|A10|2. (9)

Here A10 and A1L are the input and output amplitudes of
the probe wave and B10 is the amplitude of the probe wave
reflected from the entrance face of the PC.

The transmission spectra of the probe wave have been
calculated for various Rabi frequencies of the switching field
for a PC having the following parameters: M = 5, nHdH =
nLdL = λ0/4, nDdD = λ0/2, nH = 2.35, and nL = 1.45. Here
the wavelength λ0 = 589.6 nm corresponds to the center of
the band gap of the PC. The optical width of the defect
layer dDnD is chosen such that for the indicated parameters
the defect mode occurs in the center of the band gap and its
spectral width is broad enough for all three waves to fall within
this transmission band. Figure 3(a) shows the transmission
spectrum of the PC for the probe field in the absence of an
EIT medium (nD = 1) in the defect layer. The arrows show
the positions of all the field frequencies with respect to the
defect mode. Figure 3(b) shows the spatial distribution of the
coupling (solid curve) and switching (dashed curve) intensity
I (z) scaled to the input intensity I0 in the PC. One can see
that the fields are localized in the defect layer. Because of the
closeness of the frequencies ω1 and ω2, the spatial distribution
of the probe field virtually coincides with that of the coupling
field.

B. Use of nonlinear absorption to modify the transmission
spectrum of the PC

Let us first consider the feasibility of modifying spectral
properties of PCs due to nonlinear absorption when the
coupling and the switching fields are on resonance, i.e.,
δ2 = δ3 = 0. The PC parameters have been chosen such that
the |1〉-|0〉 transition frequency coincides with the defect-mode
resonance frequency.

The transmission of a PC strongly depends on the ab-
sorption and dispersive properties of the medium placed in
the defect. As the field in the defect is enhanced owing to
localization, a lower input intensity can be used than in a
conventional cell. Since the space distribution of the fields in
the defect is nonuniform, the Rabi frequencies of the driving
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FIG. 4. (Color online) (a) Im n dependence on the probe field detuning and the normalized coordinate z in the defect layer for g3 = 0.1γ10.
(b) Im n distribution inside the defect layer under resonance conditions δ1 = 0 for various g3 values. g2 = 0.05γ10, γ10 = γ30 = 2π × 10 MHz,
γ20 = 0.01γ10, χ0 = 8.4 × 10−3.

and the switching fields depend on the spatial coordinate z:
�2,3 = �2,3(z). Hence the refractive index for the probe wave
is also a function of the z coordinate. Below we will use
� for the Rabi frequency inside the defect and g for the
Rabi frequency when entering the PC: �(z) = gF (z), where
F (z) = I (z)/I0.

Figure 4(a) shows the typical dependence Im n as a function
of the probe detuning and the coordinate z in the defect layer
for given values of the Rabi frequencies g2,3 when entering
the PC. In most of the defect a splitting into three resonances
is observed. The largest splitting takes place in the center of
the defect, where the fields reach their maximum. Near the
boundaries of the defect, where the coupling and switching
fields are close to zero, there is no splitting. Here, Im n is
determined by the linear absorption. As will be shown below,
the linear absorption zones, although rather small, produce a
noticeable effect on the PC transmission.

Note that nonlinear absorption [the central peak in Fig. 4(a)]
is virtually the same over the entire length of the defect even
though the fields are distributed nonuniformly. This unusual
behavior can be explained as follows. With the use of Eq.
(7) it can be shown that under resonance conditions and for
|�2|2 � γ10γ20/4 and |�3|2 � γ30γ20/4, the expression for
Im n takes the form

Im n ∼ γ10

γ10 + γ30|�2(z)|2/|�3(z)|2 . (10)

From Eq. (10) it is seen that Im n(z) depends on the relation
between the Rabi frequencies of the coupling and switching
fields. The |�2(z)|2/|�3(z)|2 ratio varies insignificantly over
most of the defect, as can be seen in the inset in Fig. 4(b).

Figure 5 shows the PC transmission spectra for the probe
field at various input Rabi frequencies g3. In the absence of
the coupling and the switching fields, there is a deep dip in the
center (the solid curve in the inset in Fig. 5) associated with
resonance absorption at the |0〉-|1〉 transition (see, e.g., [28]
and references therein). With the coupling field on and g3 = 0,
a narrow resonance is observed in the transmission curve (the
dashed curve in the inset in Fig. 5), which is attributed to
EIT [20,21]. Switching on a third field reduces transmission

because of the absorption, the mechanism of which was
discussed above. By varying the power of the switching field,
the transmission of the PC can be modified as shown in Fig. 5

Figure 6 shows the probe field transmission coefficient as
a function of the Rabi frequency g3 of the switching field
entering the PC under resonance conditions δ1 = δ2 = δ3 = 0.
The initial concentration of atoms is chosen such that the
transmission of the probe radiation is close to zero in the
absence of the coupling field. With the coupling field on,
maximum transmission is observed due to EIT. When the
switching field is turned on, the transmission is reduced by
induced nonlinear absorption. The transmission decreases with
increasing g3.

Let us estimate the input intensity I3 of the switching field
required to reduce the PC transmission to half the value for the
case corresponding to the solid curve in Fig. 6. From the figure,
we can see that it approximately corresponds to g3 = 0.012γ10.
For the input intensity we find I3 = 3.6 μW/cm2, whereas the
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FIG. 5. (Color online) PC transition spectra for various Rabi
frequencies of the switching field g3. The rest of the parameters
are as in Fig. 4. The inset shows transmission spectra for �2,3 = 0
(solid curve) and for g3 = 0 under EIT (dashed curve).
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FIG. 6. (Color online) Transmission coefficient of the probe field
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γ30 = 2π × 10 MHz.

driving field intensity required for EIT, g2 = 0.05γ10 is I2 =
60 μW/cm2. These intensities, as indicated by the estimates,
correspond to single photons in a 10 μs pulse per the area λ2.

C. Use of giant Kerr nonlinearity to modify PC transmission

Let us discuss the effect of the dispersive part of the
refractive index (7) on the PC transmission spectrum. As
shown above in Sec. II, turning on an off-resonant switching
field generates a nonlinear (Kerr) contribution to the refractive
index, which can be large enough to shift the defect mode in
the spectrum and to reduce transmission of the probe wave.
Figure 7(a) shows the transmission spectrum for the case of
Kerr (dispersive) nonlinearity in the defect layer as a function
of the input Rabi frequency g3 of the switching field at the fixed
detuning δ3 = 30γ30. The transmission spectra corresponding
to g3 = 0 (dotted curve) and g3 = 0.42γ10 (dash-dotted curve)
are given in Fig. 7(b). It can be seen that as the amplitude

of the switching field grows, the transmission peak shifts and
gets wider and smaller. The shift of the transmission spectrum
is associated with the change in the refractive index while
the transmission attenuation occurs due to linear resonance
absorption near the boundaries of the defect (the EIT has
disappeared) and residual nonlinear off-resonant absorption of
the probe field. The contribution from the latter, as indicated
by calculations, appears to be significant.

In our case, the drop in the transmission maximum is
much more pronounced than in [23] because such factors as
nonuniform spatial distribution of the coupling and switching
fields and nonlinear off-resonant absorption of the probe
field have been taken into account. Note that in [23] it was
assumed that a single atom was placed in the center of the
defect, and the detuning was chosen to be δ3 � γ30, so the
nonlinear off-resonance absorption of the probe field was
neglected. The solid curve [Fig. 7(b)] shows the transmission
of the PC with uniform spatial distribution of the fields. The
dashed curve corresponds to a hypothetical case when spatial
nonuniformity of the coupling and switching fields and the
nonlinear off-resonance absorption are ignored (γ30 = 0).

In order to achieve switching, the transmission band has
to be shifted by a magnitude larger than the transmission
bandwidth. However, in this case a higher intensity will be
required for switching compared to the case of nonlinear
resonance absorption.

D. Probe pulse propagation

We now assume the weak probe field to be a Gaussian pulse
E1(t) = E0 exp(−t2/τ 2

p) exp(iω1t), where E0 is the amplitude,
2τp = Tp is the pulse length at the exp (−1) level, and ω1 is
the central (carrier) frequency. The coupling and the switching
fields are continuous monochromatic waves. The spectrum of
the input probe pulse is a Fourier transform of the given pulse:

E1i(ω) = 2−1/2τpE0 exp
[−τ 2

p (ω − ω1)2 /4
]
. (11)
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FIG. 7. (Color online) (a) PC transmission spectrum as a function of the probe field frequency detuning and Rabi frequency of the switching
field for a fixed detuning δ3 = 30γ10; g2 = 0.05γ10, γ10 = γ30 = 2π × 10 MHz; (b) Fragments of the transmission spectrum for g3 = 0 (dotted
curve), g3 = 0.42γ10 (dash-dotted curve). The solid curve shows the transmission of PC with uniform spatial distribution of the fields. The
dashed curve refers to a hypothetical case when spatial non-uniformity of the fields is ignored and γ30 = 0.
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FIG. 8. (Color online) Time dependence of the probe filed pulse.
The dotted curve is the input pulse with the pulse length Tp = 10 μs.
The solid curve is the transmitted pulse under EIT with no switching
field. The dash-dot curve refers to the output pulse in the presence of
a resonant switching field. The dashed curve refers to the transmitted
pulse under off resonant switching field. g2 = 0.05γ10.

Knowing the transmission coefficient T (ω), one can calculate
the spectrum of the past pulse:

Et (ω) = T (ω)E1i(ω)

= 2−1/2τpE0T (ω) exp
[ − τ 2

p(ω − ω1)2/4
]
. (12)

Applying a reverse Fourier transformation, for the output
pulse intensity we obtain

It (t) ∝
∣∣∣∣ 1√

2π

∫ ∞

−∞
Et (ω) exp (−iωt)d ω

∣∣∣∣
2

. (13)

In this approach, the duration of the probe pulse should satisfy
the condition Tpγ20 � 1 [30].

In Fig. 8 the input and output probe pulses calculated with
Eq. (13) are shown as a time function under various conditions.

The dotted curve refers to the pulse entering the PC. In the
case of an empty defect, the output pulse is virtually identical
to the input one. The solid curve refers to the output pulse
under EIT in the absence of the switching field. Applying the
switching field reduces the output pulse amplitude: the higher
the intensity of the switching field, the smaller the amplitude
of the output pulse. The dashed curve refers to the output pulse
with Kerr nonlinearity in the defect.

IV. CONCLUSION

We have studied theoretically the transmission spectra of
a one-dimensional PC with the defect containing an N-type
four-level medium under controlled EIT. Two mechanisms
underlying the PC transmission control have been studied:
absorptive (nonlinear absorption) and dispersive (giant Kerr
nonlinearity). A structure like that can function as an all-optical
switch of light pulses at ultralow intensities of the coupling
and the switching fields. Without a switching pulse, a high
transmission of the probe radiation is observed due to EIT.
When the switching field is turned on, the transmission is
reduced because of the above-mentioned effects. It has been
shown that the lowest switching laser power can correspond
to one photon and single photons of the coupling pulse.
The switch size can be considerably smaller than in a
conventional cell. Since nonlinear absorption depends on a
simultaneous arrival of the probe and the switching pulses, it
may be used to process quantum entangled states [6]. Note
that other configurations of atomic levels can be used to
control PC transmission [31,32], where microwave or radio
frequency fields would act as the switching field. The use
of heterostructure semiconductors as nonlinear media with
controlled EIT is of great interest [33].
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