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Giant optical vortex in photonic crystal waveguide with nonlinear optical cavity
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We consider light transmission in a directional photonic crystal waveguide that holds a nonlinear defect with
two resonant dipole modes within the light propagation band. For the defect positioned on the center line of the
waveguide, there are two ways to break the mirror symmetry with respect to either light intensity or light phase.
The latter results in a giant vortex of the Poynting vector of the power current within the defect exceeding the
input current by, at least, two orders of magnitude. We also consider the breaking of symmetry relative to the
mirror reflection with respect to the cross-sectional axis of the waveguide when light is injected equally into both
ends of the waveguide. This leads to different light outputs determined by the vorticity of the optical vortex.
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I. INTRODUCTION

The phenomenon of symmetry breaking is studied around
two decades in the nonlinear optics with the establishment
of one or more asymmetric states that no longer preserve
the symmetry properties of the original state for injection of
input power.1–6 That well correlates with studies in a nonlin-
ear dual-core directional fiber,7–9 the nonlinear Schrödinger
equation in double-well potential10 and a linear discrete chain
(Schrödinger lattice) with two nonlinear sites.11 In all cited
papers, the symmetry was broken because of different light
intensities at the cavities. In Ref. 12, it was found that the
symmetry might be broken because of different phases of
light oscillations in the nonlinear cavities that gives rise to a
Josephson-like Poynting vector (PV) of power current between
the cavities.

In the present paper, we consider symmetry breaking in the
one-dimensional directional photonic crystal (PhC) waveguide
that holds a single nonlinear defect positioned on the center
line of the waveguide. When only the monopole eigenmode
of the defect cavity belongs to the propagation band of PhC
waveguide, there is a variety of nonlinear optical processes
mostly related to a bistability of light transmission,13–17

however, there is no room for the breaking of symmetry. We
open that room by consideration of two dipole resonant modes
of the single nonlinear defect made from a Kerr medium.
The degenerated dipole modes have opposite parities relative
to injected even light mode propagating in the waveguide.
As a result for the linear cavity, the light would be coupled
with the even dipole mode only to give rise to Breit-Wigner
resonant peak at the eigenfrequency of the cavity. However,
nonlinear coupling between the dipole modes may cause
excitation of both dipole modes. The principal question for
that phenomenon is the difference between phases of mode
excitations. For equal phases, the symmetry is broken by the
light intensity relative to mirror reflection. We will show in this
paper that the dipole modes might be excited with different
phases. As a result, we obtain optical vortex for the PV as was
first considered by Nye and Berry.18 A novelty of that result is
the extremely large value of the power current circulating the
interior of the cavity.

One of the most ambitious goals in nonlinear optics is
the design of an all-optical computer that will overcome the

operation speeds in conventional (electronic) computers. Vital
in this respect is the design of basic components such as
all-optical routing switches and logic gates. It is believed
that future integrated photonic circuits for ultrafast all-optical
signal processing require different types of nonlinear func-
tional elements such as switches, memory, and logic devices.
Therefore both physics and designs of such all-optical devices
have attracted significant research efforts during the last two
decades, and most of these studies utilize the concepts of
optical switching and bistability. The concept of the all-optical
switching is based on a discontinuous transition between
the symmetry breaking solutions by a small change of the
input.19,20 Many of these devices employ a configuration
of two parallel coupled nonlinear waveguides.21–25 Recently,
Maes et al. demonstrated the all-optical switching in the
system of two nonlinear microcavities aligned along the single
waveguide26 by the use of pulses of injected light. In the T-
shaped waveguide coupled with two nonlinear microcavities,
it was shown that pulses of light injected into a bottom
waveguide are capable to switch light outputs.27 In the present
paper, we find the domains of stability for the solutions of
the nonlinear coupled-mode equations that can be the basis
for the all-optical switching in the simplest PhC architec-
ture of a single waveguide with a single nonlinear optical
cavity.

II. COUPLED-MODE THEORY

The PhC waveguide is formed by removing of a single
row of the dielectric rods as shown in Fig. 1. The waveguide
supports a single band of guided TM mode spanning from
the bottom band edge 0.315 to the upper one 0.41 in terms
of 2πc/a.28 The TM mode has the electric field component
parallel to the infinitely long rods. Light propagating in the
waveguide can excite only those eigenmodes of the defect rod
cavity whose eigenfrequencies belong to the propagation band
of the PhC waveguide. By tuning of the radius of the defect rod
or its dielectric constant, we fit the dipole eigenfrequencies into
the propagation band of the waveguide.17 Two degenerated
dipole modes E1(x) and E2(x) of the defect rod cavity are
shown in Fig. 1 for the case of a closed defect. Then we
open the defect removing the rods marked by dashed open
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FIG. 1. (Color online) (a) Even and (b) odd eigendipole eigen-
modes E1 and E2, respectively, with the degenerated eigenfrequency
ω0 = 0.3763 in the two-dimensional square lattice PhC consisted
of the GaAs dielectric rods with radius 0.18a and dielectric constant
ε = 11.56, where a = 0.5 μm is the lattice unit. These rods are shown
by open circles. The defect shown by open bold gray circle has the
radius 0.18a and ε0 = 30. Dashed open circles mark those rods whose
removal fabricates the 1D PhC waveguide.

circles. As a result, we obtain the directional PhC waveguide
that holds the nonlinear defect rod named as the dipole defect.
Note after opening the dipole, eigenmodes seize to be solutions
of the Maxwell equations and will decay into the arms of the
waveguide. The principal role of the dipole modes for cross
talking in the X-shaped waveguide and for the optical transistor
was shown first in Refs. 13 and 29.

Therefore we can write for the electric field in the interior
of the defect cavity,30

E(x,y) = A1E1(x,y) + A2E2(x,y) + ψ̃(x,y), (1)

where the complex background function ψ̃ is a small
contribution of other nonresonant defect modes (monopole,
quadrupole, etc.). Next, we assume that the cavity defect rod
is made from a Kerr medium. Then, following the perturbation
theory developed in Refs. 12 and 17, we write the following
coupled-mode theory (CMT) equations for the amplitudes
Am,m = 1,2:

[ω − ω0 − V11 + iγ1]A1 − V12A2 = i
√

γ1Ein,
(2)

−V12A1 + [ω − ω0 − V22]A2 = 0,

where

〈m|V |n〉 = − (ωm + ωn)

4Nm

∫
d2�rδε(�r)Em(�r)En(�r). (3)

δε(�r) = n0cn2|E(�r)|2
4π

≈ n0cn2|A1E1(�r) + A2E2(�r)|2
4π

(4)

is the nonlinear contribution to the dielectric constant of the
defect rod with instantaneous Kerr nonlinearity, n0 = √

ε0 and
n2 are the linear and nonlinear refractive indexes, respectively,
of the defect rod, c is the light velocity. Equation (4) instantly
implies the normalization of the eigenmodes as follows:31

Nm =
∫

d2�rεPhCE2
m(�r) = a2

cn2
, (5)

where εPhC is the dielectric constant of whole defectless PhC.
Because of symmetry, N1 = N2. After substitution of Eqs. (3)
and (5) into Eq. (2), we can write CMT equations in the
dimensionless form

[ω − ω0 + λ11|A1|2 + λ12|A2|2 + iγ1]A1

+ 2λ12Re(A∗
1A2)A2 = i

√
γ1Ein,

2λ12Re(A∗
1A2)A1 + [ω − ω0 + λ22|A2|2

+ λ12|A1|2]A2 = 0, (6)

where Ein is the amplitude of light injected into the left side
of the waveguide. Here, the frequencies, the width γ1, and the
nonlinear constants are given in terms of 2πc/a. One can see
that if there is a solution (A1,A2) there is also the solution
(A1,−A2). With accuracy of notations Eqs. (6) coincides
with the coupled-mode equations given in Ref. 13. We take
the Kerr nonlinear refractive index n2 = 2 × 10−12 cm2/W.
Other material parameters are listed in figure caption of
Fig. 1. Then we obtain from Eqs. (3) and (5) λ11 = λ22 =
1.05 × 10−3, λ12 = 3.36 × 10−4, and γ1 = 7.5 × 10−4.

The self-consistent solutions of Eq. (6) are presented in
Fig. 2. We have found numerically, at least, three types of
solutions. For the first, symmetry preserving solution shown
in Fig. 2(a) by dashed blue lines, only the even dipole mode
E1(x,y) is excited. Respectively, the transmission amplitude32

t = √
γ1A1 has resonance behavior typical for the transmis-

sion in the waveguide coupled with the nonlinear in-channel
defect with a single mode13–15,17 as shown in Fig. 2(c). For
the second solution, the odd dipole mode is excited too for the
frequency below some threshold, as shown in Fig. 2(b) by a
solid gray line, because of nonlinear coupling of the dipole
modes in Eq. (6). Then the contribution from the odd mode
E2(x,y) to the light transmission t = √

γ1A1 + √
γ2A2 breaks

the symmetry with respect to the center line of the waveguide.
From the second equation in Eq. (6), we obtain that the phases
of the complex amplitudes A1 and A2 coincide.
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FIG. 2. (Color online) Frequency behavior of (a) intensity of the
first even dipole mode, (b) intensity of the second odd dipole mode,
(c) transmission, and (d) ratio of maximal value of the power current
interior of the defect rod to the input PV j0 = P/a for Ein = 0.04. The
last value corresponds to the input power per length P = 1W/a. Blue
dashed lines show the symmetry preserving solution, gray dash-dotted
lines show the symmetry breaking solution, and red solid lines show
the phase symmetry breaking solution. In (c) and (d), thicker lines
mark the stable solutions.
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FIG. 3. (Color online) (a) Output power Pout = γ1|A1|2 and (b)
ratio of maximal value of the PV current in the interior of the defect
rod to the input PV current vs input power Pin = |Ein|2 for ω =
0.3738. Blue dashed line shows the symmetry preserving solution,
gray dash-dotted line shows the symmetry breaking solution, and red
solid line shows the phase symmetry breaking solution. Thicker lines
mark the stable solutions.

Both symmetry preserving and symmetry breaking solu-
tions exist provided that the determinant∣∣∣∣∣
∣∣∣∣∣ω − ω0 + λ11I1 + λ12I2 + iγ1 2λ12

√
I1I2 cos θ

2λ12
√

I1I2 cos θ ω − ω0 + λ22I2 + λ12I1

∣∣∣∣∣
∣∣∣∣∣
(7)

does not equal zero. Here, we introduced the intensities
Ij = |Aj |2 and phase difference θ between the dipole modes
amplitudes. However, there might be a special solution if
determinant (7) equals zero.12 Then, we easily obtain that
θ = π/2 or θ = 3π/2 and the intensities of the dipole modes
follow each other:

λ11I2 + λ12I1 = ω0 − ω. (8)

We define this special solution as a phase symmetry breaking
solution. This solution exists for ω < ω0 = 0.3763. Moreover,
a substitution of Eq. (8) into Eq. (6) shows that the even
dipole mode behaves as a single nonlinear mode coupled with
injecting light:

[(ω − ω0 + 
I1 + i�1]A1 = i
√

�1Ẽin, (9)

similar to the symmetry preserving solution, however, with
the modified parameters, the effective nonlinear constant

 = λ11 + λ12, the effective resonance width �1 = λ11

λ11−λ12
γ1,

and the effective injected amplitude Ẽin =
√

λ11
λ11−λ12

Ein. Hence

the resonance behavior of the first dipole mode for the
phase symmetry breaking solution differs from the symmetry
preserving solution as seen from Fig. 2(a). Because of linear
relation between the transmission amplitude and the first
even dipole mode amplitude t = √

γ1A1, the transmission
completely follows I1 as shown in Fig. 2(c). Furthermore,
we studied the stability of solutions by standard methods
given in Refs. 33 and 34 to show the stability domains
by thicker lines in Fig. 2(c). The series of figures showing
the frequency behavior of the dipole mode intensities and
the transmission is supplemented with Fig. 3 where the
input-output curves are shown for fixed frequency. It is
interesting that the symmetry breaking solution results in
a linear behavior of the input-output curve, however, it is
not stable. One can see from Fig. 3(a) that the domains of

stability for the symmetry preserving solution and for the phase
symmetry preserving solution are overlapped for the input
power.

Let us consider now the PV of power current j =
c2

8π�
Im(E∗∇E). Here, all quantities are dimensional. Substi-

tuting E → √
cn2E,ω = �a/2πc, and ∇ → a∇, we intro-

duce the dimensionless ratio of the PV,

j

j0
= 1

8π2ω|Ein|2 Im(E∗∇E), (10)

where j0 = P/a,P = a|Ein|2
2n2

. Here, j0 is the input PV in
the PhC waveguide. For the symmetry preserving solution,
we have resonance excitation of the first even mode only.
Substituting Eq. (1) with the first even dipole eigenmode
as E1(x,y) = xf (r) into Eq. (10), we obtain that the power
current within the defect rod is laminar, directed along the
waveguide x and proportional to |ψ̃ |, and therefore is small.
As was evaluated in Ref. 35, the input and output currents are
also proportional to |ψ̃ | that gives us the ratio j/j0 ∼ 1. For
the symmetry breaking solution, both dipole modes are excited
with the same phase. Therefore these amplitudes A1 and A2 can
be considered as real, and the light amplitude in the interior of
the defect can be written as E(x,y) = (A1x + A2y)f (r) + ψ̃ .
Respectively, we obtain that the power current in the interior of
the defect has the same laminar behavior as for the symmetry
preserving solution, however, the PV is tilted by the angle
tan φ = (I2/I1)1/2 relative to the transport axis.

For the phase symmetry breaking solution, we obtain
E(x,y) = (

√
I1x + √

I2iy)f (r) + ψ̃ . Then the PV current j ∼
Im(A1A

∗
2)f 2(r)(y,−x) = √

I1I2f
2(r)(y,−x) where the small

contribution of the background function ψ̃ can be neglected.
One can see that the PV circulates around the center of the
defect and substantially exceeds the input PV as we show
below. Let us evaluate the PV within the defect given by

√
I1I2.

Figure 2(a) shows that the first dipole mode I1 demonstrates
typical resonance behavior, and then rapidly decays beyond the
resonance width as it occurs for the other solutions. However,
the intensity I2 linearly grows as the frequency is decreased
[see Fig. 2(b)]. As a result, the frequency behavior of the
value

√
I1I2 is rather large in a wide frequency region as seen

from Fig. 2(d). Moreover, there is a resonant contribution of
the intensity I1. From Eqs. (8) and (9), one can evaluate the
maximal values of the intensities I1 = I2 = 1

γ1

λ11−λ12
λ11

E2
in at

the resonance frequency that defines the maximal PV. Since
the input current is proportional to E2

in, we obtain another
important result that the ratio of the inner PV to the input PV
is given by the inverse of the coupling constant of the even
dipole mode γ1. There is also the equivalent phase symmetry
breaking solution with the phase difference θ = 3π/2, which
gives rise to the giant Optical vortex (OV) with opposite
circulation. Figure 3(b) shows how the power current behaves
with the growth of input power for fixed frequency. We show
that the giant OV is stable for the input power exceeding the
threshold one. The peak in the PV is due to a bistability of
the phase symmetry breaking solution as seen from Fig. 3(a).
Typically, there might be bifurcations from one stable phase
symmetry breaking solution with the phase difference π/2 and
positive vorticity to the second equivalent stable solution with
the phase difference 3π/2 and negative vorticity. However,
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as seen from Fig. 3(a), there is also the bifurcation from the
stable symmetry preserving solution with no OV to the stable
phase symmetry breaking solution with θ = π/2 and the OV
with positive vorticity or to the solution with θ = 3π/2 with
negative vorticity.

III. SOLUTIONS IN PHOTONIC CRYSTAL

The above comprehensive considerations are in full agree-
ment with numerical computations of the light amplitude
by use of the Maxwell equations with an optical nonlinear
defect rod shown in Fig. 4. For the symmetry preserving
solution, Fig. 4(a) demonstrates that the even dipole mode
is excited only. Optical streamlines of the PV are almost
parallel to the waveguide. For the symmetry breaking solution,
Fig. 4(c) shows that the symmetrical light transmitting through
the waveguide excites both dipole modes to give rise to the
breaking of the center line mirror symmetry. As a result, the
light streamlines tilt in the interior of the defect cavity. The
nodal lines of Re(ψ) and Im(ψ) coincide within the cavity
that means we have no optical vortex there. Respectively, we

(b)

(d)

(f)

FIG. 4. (Color online) Absolute value of light amplitude (electric
field) and optical streamlines in the PhC waveguide with a single
nonlinear defect shown by the thick gray open circle for aω/2πc =
0.3722,P = 1W/a. Rods of the PhC are shown by open circles. Light
incident at the right side of the PhC waveguide transmits through the
in-channel nonlinear defect rod cavity presented by two dipole modes
shown in Fig. 1. Green and red solid lines show nodal lines of real
and imaginary parts of the wave function. White solid lines show
light streamlines. (b), (d), and (f) show the PV of power current. (a)
and (b) symmetry preserving solution, (c) and (d) symmetry breaking
solution, and (e) and (f) phase symmetry breaking solution.

have the laminar PV streamlines tilted in the interior of defect
cavity as shown in Fig. 4(d).

At last, for the phase symmetry breaking solution, Fig. 4(e)
shows that the nodal line of Re(ψ) crosses the nodal line of
Im(ψ) at the center of the defect rod by the angle π/2 to give
rise to an optical vortex as shown in Fig. 4(f). The absolute
value of the light amplitude is fully symmetric relative to the
center line. Nevertheless, the symmetry is broken because
of the energy flow, which is vortical around the defect rod
with the vorticity v = ∇ × j directed down. There is also the
fully equivalent phase symmetry breaking solution with the
vorticity directed up, which is not shown in Fig. 4. Moreover,
we present the frequency behavior of the light transmission
and the maximal value of the power current within the defect
rod shown in Fig. 5. Comparison with Fig. 2 demonstrates
excellent agreement with the CMT-based calculations besides
the symmetry breaking solution. That is not surprising because
the CMT parameters were obtained for the specific PhC
structure shown in Fig. 1. The small difference between the
CMT transmission in Fig. 2(c) and the transmission in PhC
structure shown in Fig. 5(a) is the result of, presumably, the
radiation shift of the eigendipole modes.

IV. SHIFTED DEFECT IN WAVEGUIDE

The value of the PV energy flow in optical vortex can be
taken extremely large by diminishing of the coupling constant
γ1. That can be achieved by “hiding” of the defect rod among
the linear defect rods. For the configuration shown in Fig. 4,
the value of the PV around the defect rod is roughly 200 times
more than the incident power current resulted in a giant optical
vortex. Optical vortices predicted long time ago by Nye and
Berry18 were observed in many experiments36 as wave-front
dislocations in interference patterns of beams (holograms).
However, the transmission properties do not depend on the sign
of the vorticity of the optical vortex. We propose a scheme in
which the transmission is directly related to the vorticity.37,38

Following Refs. 5 and 26, we apply light to the left and right
sides of the waveguide with equal intensity and equal phase.
However, we shift the defect rod relative to the center line
of the waveguide by a magnitude 0.3a as shown in Fig. 6.
That system does not preserve the center line mirror symmetry
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FIG. 5. (Color online) Frequency behavior of (a) the light
transmission and (b) ratio of maximal value of the PV power
current interior of the defect rod to the input current j0 = P/a for
P = 1W/a obtained from the Maxwell equations. Blue dashed line
shows the symmetry preserving solution, gray dash-dotted line shows
the symmetry breaking solution, and red solid line shows the phase
symmetry breaking solution.
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FIG. 6. (Color online) Light with the same amplitude is applied
to both sides of PhC waveguide. (a) Frequency behavior of the
light intensities of the dipole modes. Dashed/solid red lines show
the intensity of the even dipole mode even relative to left and right
reflection for the symmetry preserving/symmetry breaking solutions.
Dash-dotted/dotted lines show the intensity of the odd dipole mode for
the symmetry preserving/symmetry breaking solutions. (b) Absolute
value of light amplitude and light streamlines in the PhC waveguide
with a shifted nonlinear defect shown by the thick gray open circle for
Ein = 0.04. (c) PV currents of energy in the vicinity of the nonlinear
defect rod. (d) Ratio of maximal value of the PV in the interior of the
defect rod to the input PV.

but does have the left-right mirror symmetry with respect to
cross-sectional axis. If the nonlinear defect is presented by two
dipole resonance modes, then the symmetry breaking gives rise
to the difference of light outputs from the waveguide:

tL,R = −Ein + √
γ1A1 ± √

γ2A2. (11)

As we show below, that difference is strictly related to the
direction of current circulation around the defect, i.e., to the
vorticity of the OV.

Similar to Eq. (6), we have the following CMT equations:

[ω − ω1 + λ11|A1|2 + λ12|A2|2 + iγ1]A1

+ 2λ12Re(A∗
1A2)A2 = 0,

2λ12Re(A∗
1A2)A1 + [ω − ω2 + λ22|A2|2

+ λ12|A1|2 + iγ2]A2 = 2i
√

γ2Ein, (12)

where for the PhC structure parameters are the
following ω1 = 0.3722, ω2 = 0.3756, γ1 = 0.0007, γ2 =
0.00025, λ11 = 0.001, λ22 = 0.00094, and λ12 = 0.0003.
There are two types of self-consistent solutions of Eq. (12),
symmetry preserving and symmetry breaking solutions, but
there is no phase symmetry breaking solution as shown in
Fig. 6(a). In Fig. 6(c), the wave function for the electric
field calculated from the Maxwell equations is shown for
the symmetry breaking solution. One can see that the light
intensities at the waveguide sides are different. However,
the optical streamlines preserve the mirror symmetry. Only
direction of the PV, and, respectively, the vorticity of OV

are related to the difference between the light outputs
TL = 0.806 and TR = 0.19 as shown in Fig. 6(d). There
is also the equivalent symmetry breaking solution with the
vorticity directed down with the transmissions TL = 0.19
and TR = 0.806. Therefore we observe that the light outputs
correlate with the vorticity of optical vortex.

For the shifted linear defect rod with two dipole eigen-
modes, we have the OV provided that light is injected from
the one side of waveguide. That OV might be giant too if the
dipole modes are weakly coupled with the waveguide as shown
in Fig. 6(b) by the thin line. However, in contrast with the
nonlinear case, the price for it is that the OV can be considered
as giant at resonant frequencies only as seen from Fig. 6(b).
Moreover, the ratio j/j0 does not depend on the intensity of
injected light in contrast to the symmetry breaking solution.

V. SUMMARIES AND CONCLUSIONS

Previously, as it was summarized in the introduction, a
system of at least two nonlinear defects with single monopole
resonance modes was used to realize the symmetry breaking
in waveguides.5,12 In the present paper, we reported that the
phenomenon of symmetry breaking can be achieved in a single
nonlinear dipole defect. Apparently, such a system is the
simplest optical circuit where the symmetry breaking could
take place. We show that the mirror reflection symmetry of
the system can be broken either by light intensity or light
phase. For the last scenario of symmetry breaking, incident
light excites both dipole modes xf (r) and yf (r) with phase
difference π/2 or 3π/2 to give rise to the total defect state as
(
√

I1x ± i
√

I2y)f (r). As it was shown by Nye and Berry,18

that state holds a power current vortex with clockwise or
counterclockwise circulation around the defect. The novelty
of our result is that the OV is giant with the power current
within the defect rod exceeding the power current in the
waveguide by two orders of magnitude. That giant power
current is mostly localized within the nonlinear defect as
shown in Fig. 4(f). We emphasize that for a symmetrical
position of the nonlinear defect rod, the OV exists only for
the phase symmetry breaking solution, while for the symmetry
preserving and for the symmetry breaking solutions, there are
laminar flows as shown in Figs. 4(c) and 4(e). The stability
domains of the symmetry preserving solution and of the phase
symmetry preserving solution overlap, as shown in Fig. 3(a).
Thus there might be an all-optical switching between these
solutions with switching on/off the giant OV.

We also considered the PhC structure with the nonlinear
defect rod shifted relative to the center line of the PhC
directional waveguide. If light is injected to both sides of the
waveguide with equal intensity and equal phase, the system
is symmetric relative to mirror reflection with respect to
the cross-sectional axis of the waveguide. Respectively, in
the linear case, one would have equal light outputs, which
agrees with the time-reversal symmetry. However, for the
nonlinear defect, the light outputs may become different. This
phenomenon was firstly found by Maes et al.5,26 for two
nonlinear defects in the directional waveguide. The importance
of our result for the nonlinear dipole defect is that the difference
between the outputs is linked to the vorticity of the OV. For
the symmetry breaking solution with the left output larger than
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the right, the PV circulates around the defect counterclockwise
as shown in Fig. 6(c). There is also an equivalent solution
where the right output dominates with the PV circulating
clockwise.
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