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We analyze the driven Harper model, which appears in the problem of tight-binding electrons in the Hall
configuration (normal to the lattice plane magnetic field plus in-plane electric field). The presence of an electric
field extends the celebrated Harper model, which is parametrized by the Peierls phase, into the driven Harper
model, which is additionally parametrized by two Bloch frequencies, associated with the two components of the
electric field. We show that the eigenstates of the driven Harper model are either extended or localized, depending
on the commensurability of the Bloch frequencies. This results holds for both rational and irrational values of the
Peierls phase. In the case of incommensurate Bloch frequencies we provide an estimate for the wave-function
localization length.
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I. INTRODUCTION

The Harper Hamiltonian naturally appears in the problem
of crystal electrons in the presence of a magnetic field.1 It
describes the energy spectrum of a tight-binding electron in a
two-dimensional (2D) lattice, whose graphic representation
is widely known as the Hofstadter butterfly.2 The Harper
Hamiltonian is a particular case Jx = Jy of the more general
Aubry-André model,3

(Ĥb)l = −Jx

2
(bl+1 + bl−1) − Jy cos(2παl)bl, (1)

where the notations explicitly refer to tight-binding electrons in
a 2D square lattice: Jx and Jy are the hopping matrix elements
along the primary axes and α is the Peierls phase, given by the
magnetic flux through the elementary cell. If the parameter α

in (1) is an irrational number, the spectrum of Ĥ is known to be
pure point for Jy > Jx , continuous for Jy < Jx , and singular
continuous for Jy = Jx . Because of this remarkable feature
the system (1) also serves as a model of Anderson localization
in quasicrystals.3,4

In this paper we discuss the driven Harper model, for which
the Schrödinger equation for the time-dependent quantum
amplitudes bl reads

iḃl = −Jx

2
(e−iωx t bl+1 + eiωx tbl−1) − Jy cos(2παl + ωyt) bl.

(2)

This model was introduced in our recent publications5–7

devoted to cold atoms in a 2D optical lattice, subject to an
artificial magnetic field normal to the lattice plane and to
an in-plane static (for example, gravitational) force. Clearly
this model also describes a tight-binding electron in the Hall
configuration, so that our results can be equally applied to this
fundamental solid-state system. In this case, the frequencies
ωx and ωy are the Bloch frequencies associated with the
components of the electric field.

The energy spectrum and the eigenstates of an electron in
the Hall configuration crucially depend on the commensura-

bility of Bloch frequencies. Namely, for any rational ratio
ωx/ωy = r/q (here r,q are co-prime numbers) the energy
spectrum is continuous and the eigenstates are extended
functions.6,8 It was conjectured in Ref. 6 that for incommensu-
rate Bloch frequencies the energy spectrum is discrete, but the
localized eigenfunctions are characterized by a nonpolynomial
scaling law, with deep implications on the time dynamics of
the system. The analysis of the 1D system (2) presented in
this paper identifies this scaling law, proves the discrete nature
of the spectrum for irrational β = ωx/ωy , and explains the
interesting dynamical phenomena described in Ref. 6.

II. SEMICLASSICAL APPROACH

We begin with a semiclassical analysis of the driven Harper
model. The classical counterpart of (2) reads

Hcl(t) = −J ′
x cos(p − ωxt) − J ′

y cos(x + ωyt), (3)

where p and x are canonically conjugated variables and
J ′

x,y = 2παJx,y . In fact, it can be shown that Eq. (2) follows
from (3) if p and x are operators obeying the commutation
relation [x̂,p̂] = i2πα, so that the Peierls phase α plays the
role of an effective Planck constant. The system (3) can be
equally studied on the torus (−π � p,x < π ), on the cylinder
(−π � p < π , −∞ < x < ∞), and in the plane (−∞ <

p,x < ∞). Considering the last case, it is easy to prove
that the system (3) is completely integrable. Indeed, using
the canonical substitution p′ = p − ωxt and x ′ = x + ωyt the
new Hamiltonian appears to be time independent,

H ′
cl = −J ′

x cos(p′) − J ′
y cos(x ′) + ωxx

′ + ωyp
′, (4)

and, hence, the right-hand side of (4) is the global integral
of the motion. In what follows, however, we shall discuss the
dynamics of the classical system (3) on the cylinder that can
be compared with the quantum system (2). We are interested
in the particle motion along the x axis, and in particular, in its
mean velocity v̄ = limt→∞ x(t)/t .

Although the system (3) is completely integrable for any set
of parameters, it has qualitatively different dynamical regimes,
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FIG. 1. (Color online) A portion of phase space (stroboscopic
map over Ty = 2π/ωy) of the classical driven Harper model for
rational β = 1/3, left panel, and irrational β = (

√
5 − 1)/4 ≈ 1/3,

right panel. The other parameters are J ′
x,y = 2π · 0.1545 and ω = 0.3.

Transporting islands are seen as stability islands surrounding elliptic
points at (x,p) ≈ (0,0) and (x,p) ≈ (−π,−π ). In the case of rational
β phase trajectories are closed on the torus and the stroboscopic map
reproduces these trajectories. For irrational β any trajectory, which
does not belong a stability island, never repeats itself on the torus and
appears as a scattered array of points resembling a chaotic trajectory.

depending on whether β = ωx/ωy is a rational number, and
depending on the relative value of �, the system characteristic
frequency in the absence of driving,

� = (J ′
xJ

′
y)1/2 = 2πα(JxJy)1/2, (5)

versus ω, the geometric sum of the driving frequencies
ω =

√
ω2

x + ω2
y .9 In the high-frequency regime, ω � �, and

for irrational β any phase trajectory is bounded, implying
v̄ = 0. The particle can have nonzero mean velocity only if
β is a rational number. This can be proved using adiabatic
perturbation theory, where one distinguishes between the fast
variables p′,x ′ and the slow variables p,x. We demonstrate
this for two particular cases: β = 0 and β = 1. If β = 0
the slow variable p(t) ≈ p0, where p0 is the initial mo-
mentum. Then x ≈ x0 + J ′

x sin(p0)t and v̄ = J ′
x sin(p0). If a

classical ensemble of particles is uniformly distributed over
the “elementary cell” −π � p,x < π , we obviously obtain
ballistic spreading, where the mean-squared displacement σ =√

〈x2〉 − 〈x〉2 asymptotically follows a linear law σ (t) = At

with A = J ′
x/

√
2. Next, consider the case β = 1. As in the for-

mer, at zero order we have p(t) = p′ + ωxt = p0. However, at
first order, the momentum p(t) = p0 + (J ′

y/ωy) cos(x + ωyt)
is a periodic function of time. Substituting this solution into
the Hamiltonian equation for the conjugate variable x we have
x(t) = J ′

x

∫ t

0 sin[p(t) − ωxt]dt ∼ t , where the proportionality
coefficient can be expressed through the Bessel function
J1(J ′

y/ωy). This implies that the ensemble of particles has
a dispersion σ (t) = At with A ∼ J ′

xJ
′
y/ω. These rates of

ballistic spreading are two particular cases of a general result,

A ∼ ω−(r+q−1), ω � �, (6)

which coincides with the rate of wave-packet spreading derived
in Ref. 6 by using quantum perturbation theory.

The regime of low-frequency driving ω < � is more subtle,
because here the phase space of (3) contains two chains of
transporting islands, see Fig. 1. Remark that these chains exist
for both rational and irrational values of β. In a classical ensem-
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FIG. 2. (Color online) The rate of ballistic spreading for an
ensemble of classical particles versus the driving frequency ω for
rational β = 1/3 (upper curve, stars) and irrational β = (

√
5 − 1)/4

(lower curve, open circles). The inset shows the relative size S of
transporting islands (stars) for β = (

√
5 − 1)/4 and the function (7)

(open circles), where we arbitrary set the proportionality coefficient
to 4.

ble of particles, those with initial conditions in the transporting
islands move in the negative direction at velocity v̄ = ωy , while
the others travel in the positive direction, and σ (t) = At . (Note
that for the statistical ensemble under consideration the mean
current and, hence, the mean displacement vanishes.) The
values of the coefficient A obtained numerically are depicted
in Fig. 2 for the two values of β used in Fig. 1. As expected,
for ω < � we have

A ∼ ωS(ω), (7)

where S(ω) is the relative size of transporting islands, see the
inset in Fig. 2. If β is a rational number this dependence leaves
place, for large ω, to the asymptotic dependence in Eq. (6).
For irrational β Eq. (7) gives A ≡ 0 as soon as the transporting
islands disappear, which is consistent with Eq. (6) as well.

III. QUANTUM APPROACH

We now turn to quantum analysis. An important feature
of our system is the presence, for ω < �, of chains of
transporting islands. A system of this kind—the asymmet-
ric kicked Harper—was studied in a series of works by
Ketzmerick et al.,10,11 showing that its quantum dynamics may
considerably differ from the classical. Here we meet a similar
situation, although our system has no chaotic component, at
a difference with that studied in Refs. 10 and 11. We have
found that even if the classical driven Harper shows a ballistic
regime for both rational and irrational β, the quantum motion
of the driven Harper is ballistic only for rational β, while for
irrational β a saturation effect takes place. In other words,
for any irrational β, the wave-packet dispersion σ (t) follows
the linear law of the classical system only for finite times,
being asymptotically bounded from above. The physics behind
this phenomena is the destructive interference between two
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FIG. 3. Gray tone image of the quantum wave packet (black
maximum) versus space l and time t . The left panel is for irrational
β = (

√
5 − 1)/4 ≈ 1/3, the right panel has β = 1/3. The other

parameters are Jx = Jy = 1, α = 0.1545, and ω = 0.45.

probability flows going in opposite directions. Figure 3 shows
the evolution of a localized wave packet, which is initially
supported by the central transporting island. Tunneling out
of this island as well as the opposite process of capture
into other islands in the chain are clearly seen. The rate of
tunneling is defined by the ratio between the size of the stability
island S = S(ω) and the effective Planck constant h̄eff = 2πα.
Following analog arguments in Ref. 10, we can estimate the
maximal wave-packet dispersion σmax as follows. Consider
an initially populated transporting island. Due to tunneling
it is depleted after a time which is exponential in S/h̄eff.12

During this time the quantum particle is transported at distance
ωy/2πα in units of the lattice periods. Therefore,

σmax ∼ ω

α
exp

[
C

S(ω)

α

]
, (8)

where C is some constant. It should be mentioned that
tunneling in and out transporting islands also takes place in
the case of rational β. However, for rational β the interference
between two probability flows is constructive and σ (t) obeys
a linear law for all times.

The observed difference in the wave-packet dynamics for
rational and irrational β indicates a difference in spectral
properties of the evolution operator Û . We construct this
operator by using the substitution bl → bl exp(iωxlt), which
modifies Eq. (2) as follows:

iḃl = −Jx

2
(bl+1 + bl−1) − Jy cos(2παl + ωyt)bl + ωxlbl,

(9)
and by integrating (9) over the period Ty = 2π/ωy . The
obtained evolution operator can be approximated to arbitrary
precision by a banded matrix, whose bandwidth depends
on the parameter Jx . It is instructive to consider the case
Jx = 0, where the operator Û is a diagonal matrix with the
elements Ul,l = exp(−i2πβl), which is a periodic (aperiodic)
function of l for rational (irrational) β. [Notice that because
of integration over time the parameter α does not appear in
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FIG. 4. (Color online) The localization length of eigenstates of
the evolution operator for β = (

√
5 − 1)/4. The mean participation

ratio is shown as the function of ω. The inset shows a typical eigenstate
for ω = 0.6.

the last expression. This explains or, at least, gives a hint why
the driven Harper model is insensitive to rationality of the
parameter α.] At this point we can draw an analogy with a
paradigmatic model of quantum chaos—the kicked rotor.13

For vanishing kick amplitude, the evolution operator of the
kicked rotor is also a diagonal matrix with matrix elements
Ul,l = exp(−i2πξl2), which is a periodic or aperiodic function
of l according to rationality of the parameter ξ . The number
theoretic characteristics of ξ are crucial14 since they determine
whether the eigenfunctions are extended or localized. The
driven Harper model shows the same feature since the eigen-
functions of the evolution operator are localized functions of l

if the parameter β is an irrational number (see inset in Fig. 4).
We studied numerically the localization length as a function

of the parameter ω. Figure 4 shows the participation ratio P =
1/

∑
l |bl|4 averaged over 300 eigenstates. One clearly sees an

exponential increase in the localization length with decrease
of the driving frequency ω, that is, with increase of the size of
transporting islands. A similar exponential dependence is also
obtained when we vary α at fixed ω.15 These results confirm
the estimate (8), which can be equally used for the maximal
dispersion (saturation level) and the mean localization length.

IV. CONCLUSIONS

In the physical problem of tight-binding electrons in
the Hall configuration, the transporting states, which are
associated with classical islands, are responsible for quantum
transport of electrons in a direction perpendicular to the vector
of the electric field, that is, for the Hall current.5,16 It was
numerically observed in Ref. 6 that for irrational directions
of the electric field this transport abruptly diminishes when
the magnetic field (which in the tight-binding approximation
defines the Peierls phase α) is increased. At the same time, no
sign of inhibited transport was observed for a small α. These
features of the original system find natural explanation in
terms of the 1D model (2), where the localization length grows

054306-3



ANDREY R. KOLOVSKY AND GIORGIO MANTICA PHYSICAL REVIEW B 86, 054306 (2012)

exponentially with the inverse of the parameter α. Moreover,
the driven Harper model studied here is interesting in its own
right since it can be realized in laboratory experiments with
cold atoms in quasi-1D optical lattices.7 Detailed studies of
this application, together with the driven Harper dynamics,
performed in line with Refs. 10 and 11, will be presented
elsewhere.
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