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All-optical manipulation of light in X- and T-shaped photonic crystal waveguides
with a nonlinear dipole defect
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We consider light transmission in X- and T-shaped photonic crystal waveguides which hold nonlinear defect
with two resonant dipole modes. By use of the coupled-mode theory and by numerical solution of the Maxwell
equations for the transverse-magnetic (TM) light mode, we show two stable types of the solutions. The first type
has no cross talk, while the second type does owe to nonlinearity of the defect. We show also that direct path
transmission processes in the waveguides play an important role for breaking of symmetry.
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I. INTRODUCTION

Microcavities or resonators formed by point defects and
waveguides formed by line defects in photonic crystals (PhCs)
have been subjects for plenty of research because of their
capability to confine photons within a small volume, and
they are expected to be key building blocks for miniature
photonic functional devices and photonic integrated circuits.
The point defect has a well-defined spectrum of discrete
eigenfrequencies and corresponding localized eigenstates clas-
sified as monopole, dipole, etc., modes.1 The eigenstates of
the waveguide are extended with a continual spectrum of
eigenfrequencies forming the propagation band for light. By
exploiting the rich and well-defined orthogonal modes which
provide abundant degrees of freedom for the choice of junc-
tions (having different spectral mode overlap and frequency
separation), a vast number of different functional light devices
might be considered. A junction of point defect with the
waveguide is the basic element. Therefore, symmetry selection
rules for coupling of the localized states of the point defect with
extended states of the waveguide play a fundamental role in
the PhC devices. In particular, Johnson et al.2 have shown that
symmetry of the defect cavity dipole modes plays a decisive
role for wave transmission in waveguide intersections. It was
shown that cross talk in the X-shaped waveguide is eliminated
due to the symmetry.

Thus, the role of nonlinearity is a key in the PhC devices
because of the symmetry breaking. That phenomenon, with
the establishment of one or more asymmetric states which no
longer preserve the symmetry properties of the original state,
is widely studied in the nonlinear optics with injection of
input power.3–12 The phenomenon of the symmetry breaking
in analogy with the double-well potential13 is realized in
a nonlinear dual-core directional fiber.14–16 Recently, the
phenomenon was demonstrated in the most simple system of
the directional waveguide coupled with two nonlinear defects,
each presented by a single monopole resonant mode.17–20

Yanik et al.21 considered a nonlinear defect of elliptic shape at
the center of the X-shaped photonic crystal (PhC) waveguide.
They have shown that this system allows a control in one
waveguide to switch the transmission of a signal on/off in
another waveguide and that there is no energy exchange
between the signal and the control, even in the nonlinear
regime. Due to nonlinearity of the defect, the transmission

over the x direction can be reversibly switched on/off by a
control power over the y direction to realize an idea of an
all-optical transistor in the X-shaped waveguide.

In this paper, we follow another aim to study the switching
of on/off cross talk in the X- and T-shaped waveguides with the
single defect cavity by use of a nonlinear coupling between
dipole modes. We show that in this nonlinear system, there
is the solution with no cross talk similar to the linear case.2

An injected wave with definite parity excites only one dipole
mode of that parity. However, we show that for swapping of
light frequency or amplitude injecting light, there is a stable
solution with dipole modes excited both irrespective to their
parity to provoke cross talk.

II. CMT THEORY OF X-SHAPED WAVEGUIDE

Let us consider the most symmetric case when a single
nonlinear defect is disposed in the center of the PhC X-shaped
waveguide as shown in Fig. 1. Each arm of the X-shaped
waveguide supports the single band of guided TM mode
spanning from the bottom band edge 0.315 to the upper one
0.41 in terms of 2πc/a.1,22 The TM mode has the electric
field component parallel to the GaAs rods and is even with
respect to the axis of the waveguide. Light propagated in the
waveguide can excite only those eigenmodes of the defect rod
cavity whose eigenfrequencies belong to the propagation band
of the PhC waveguide. By choice of the defect rod’s radius or
dielectric constant, we can fit only the dipole eigenfrequencies
into the propagation band of the waveguide.1 Two degenerated
bounded dipole modes E1(x) and E2(x) of the fully closed
defect rod cavity are shown in Fig. 1. Henceforth, we call
such a defect cavity a dipole defect. Furthermore, we remove
two rows of the rods shown in Fig. 1 by open dashed circles
in the orthogonal directions. That forms the X-shaped (cross)
waveguide. However, we leave four rods around the defect rod
in order to diminish the coupling of the dipole eigenmodes with
continua of the waveguide. The way to make weak-coupling
constants was used, for example, in Ref. 21. We define the
defect rod at the center plus four rods around as the defect
optical cavity. As a result, the dipole states become the
extended resonant ones. Therefore, we can write for the electric
field in the interior of the defect cavity23,24

E(x,y) = A1E1(x,y) + A2E2(x,y) + ψ̃(x,y), (1)

075125-11098-0121/2012/86(7)/075125(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.075125


EVGENY N. BULGAKOV AND ALMAS F. SADREEV PHYSICAL REVIEW B 86, 075125 (2012)

FIG. 1. (Color online) Two dipole eigenmodes E1 and E2,
respectively, with the degenerated eigenfrequency ω0 = 0.3763 in
the squared lattice PhC of GaAs dielectric rods with radius 0.18a and
dielectric constant ε = 11.56 where a = 0.5 μm is the lattice unit.
These rods are shown by open pink circles. Removal of rods shown
by dashed open pink circles forms the X-shaped PhC waveguide. The
defect shown by an open circle has the radius 0.18a and ε0 = 30 and is
positioned at the center of X-shaped waveguide. Numbers enumerate
arms of the waveguide.

where the complex background function ψ̃ is a contribution of
insignificant direct path nonresonant processes. We consider
that the cavity defect rod is made from a Kerr medium, and
that the dipole resonant frequencies are spaced far from the
propagation band edges.

Following the coupled-mode theory25 (CMT), we write the
coupling matrix of the dipole modes with incoming waves in
four arms of the waveguide as

D =

⎛
⎜⎝

√
γ 0

0
√

γ

0 −√
γ

−√
γ 0

⎞
⎟⎠ , �̂ = D+D/2 =

(
γ 0
0 γ

)
, (2)

where �̂ is the decay matrix which is to be substituted into
the CMT equations. Following Ref. 25 and the perturbation
theory developed in Refs. 1 and 19, we write the following
coupled-mode equations for the amplitudes of the dipole
modes Am,m = 1,2 as

[ω − ω0 − V11 + iγ ]A1 − V12A2 = i
√

γ (S1+ − S4+),
(3)

−V12A1 + [ω − ω0 − V22 + iγ ]A2 = i
√

γ (S2+ − S3+),

where Sj+,j = 1,2,3,4 are the light amplitudes injected in the
j th arm of the X-shaped waveguide. The matrix elements of
perturbation theory

Vmn = − ω0

2Nm

∫
d2�r δε(�r)Em(�r)En(�r) (4)

are a result of the contribution

δε(�r) = n0cn2|E(�r)|2
4π

≈ n0cn2|A1E1(�r) + A2E2(�r)|2
4π

(5)

because of nonlinear change of the dielectric constant of the
defect rod with instantaneous Kerr nonlinearity. n0 = √

ε0

and n2 are the linear and nonlinear refractive indexes of the
defect rod, respectively, and c is the light velocity. Equation
(5) implies the normalization of the eigenmodes as follows:26

Nm =
∫

d2�r εPhCE2
m(�r) = a2

cn2
(6)

with εPhC as the dielectric constant of whole defect-free PhC.
Because of symmetry, N1 = N2. After substitution of Eqs. (4)
and (6), we write Eq. (3) in the dimensionless form

[ω − ω0 + λ11|A1|2 + λ12|A2|2 + iγ ]A1 + 2λ12Re(A∗
1A2)A2

= i
√

γ (S1+ − S4+),
(7)

2λ12Re(A∗
1A2)A1 + [ω − ω0 + λ22|A2|2 + λ12|A1|2 + iγ ]A2

= i
√

γ (S2+ − S3+),

where

λmn = c2n2
2

a2

∫
σ

E2
m(x,y)E2

n(x,y)dx dy. (8)

Here, the frequencies, the width, and the nonlinear constants
are given in terms of 2πc/a. Next, we have for the incoming
and outgoing waves25

S1− = −S1+ + √
γA1, S2− = −S2+ + √

γA2,
(9)

S3− = −S3+ − √
γA2, S4− = −S4+ − √

γA1,

the outgoing powers

Pj = |Sj−|2, (10)

and the transmissions

Tj = |Sj−|2
/ 4∑

i=1

|Si+|2. (11)

We take the Kerr nonlinear refractive index n2 = 2 ×
10−12 cm2/W. Other material parameters are listed in the
caption of Fig. 1. By substituting numerically calculated
eigendipole modes shown in Fig. 1 into Eqs. (4) and (5) with
account of Eq. (6), we obtained λ11 = λ22 = 1 × 10−3, λ12 =
3.5263 × 10−4. The resonant width γ was obtained directly
from resonant transmission through PhC waveguide holding
the linear dipole defect. The transmission was calculated by
use of the Maxwell equations for the TM mode propagation,
the procedure of which is described in Sec. III. As a result, we
obtain γ ≈ 7.5 × 10−4. Next, we consider different schemes
of light injection into the X-shaped waveguide.

A. Light injection into a single arm

Let the light be injected into the first arm, i.e., S1+ �=
0, S2+ = S3+ = S4+ = 0. The self-consistent solutions of
Eq. (7) are presented in Fig. 2. There are two types of solutions.
For the first solution shown in Fig. 2 by dashed black lines,
the even dipole mode is excited only. Respectively, we have no
outgoing waves in the arms 2 and 3, i.e, cross talk is eliminated
as was obtained by Johnson et al.2 for the linear dipole
defect cavity. The forward transmission T4 has resonance
behavior typical for the transmission in the waveguide coupled
with a single mode of the nonlinear in-channel defect.1,27

Furthermore, there is the solution with the even and odd modes
excited both in some frequency domain as shown in Fig. 2(a)
by the solid black line for the first even dipole mode and by
the solid red line for the second odd dipole mode because
of nonlinear coupling of the dipole modes in Eq. (7). Then, a
participation of the odd dipole mode in light transmission gives
rise to the outgoing waves in arms 2 and 3 as shown in Fig. 2(b).
The outgoing waves have equal power, but the amplitudes are
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FIG. 2. (Color online) Frequency behavior of (a) intensities of the dipole modes Im = |Am|2 and (b) light transmissions Tj given by
Eq. (11) when light is injected into the first arm for the fixed input amplitude S1+ = 0.07. The case of the first mode excited only is shown by
the dashed blue line. The case of both modes excited is shown by solid lines or marked by crosses and open circles. (c) Intensities of the dipole
modes as a function of input amplitude for fixed frequency ω = 0.374. (d) Outputs vs input power. Domains of stability of the second solution
with the even mode E1 and odd mode E2 excited both are marked by open circles and crosses.

opposite in the sign according to Eq. (9). The input-output
power curves also demonstrate that these outgoing waves arise
for the input power above the threshold as marked in Fig. 2(d)
by open red circles. Thus, there are domains of stability in the
space ω and S1+ for cross talk.

We also inspected a stability of the solutions. We do not
show the domain of stability of the first solution with the only
excited dipole mode E1. The second solution with both dipole
modes excited is our prime interest. The domains of stability
of this solution are marked in Fig. 2 and in all forthcoming
figures by crosses and open circles. It is important to note that
the domains of stability of both solutions over the input power
coincide as seen from Fig. 2(d). Then, an application of light
impulses will give rise to a bifurcation between the solutions,
i.e., to the all-optical switching of cross talk.12,17,18,28 Finally,
following Ref. 19, we estimate the threshold for the incoming
power |S1+|2 � �2

λ12
where the second solution with symmetry

breaking arises.

B. Light injection into two arms

Let the light be injected into both arms with equal
amplitudes. There are two choices. For the first one, light
is injected into the neighboring arms, say, 1 and 2. That case
has the mirror reflection symmetry with respect to a diagonal
line between arms 1 and 2. The solutions of Eqs. (7) and (9)
shown in Fig. 3 demonstrate breaking of this symmetry for the
nonlinear dipole defect. For the symmetry-preserving solution,
we have equal outputs in arms 3 and 4 as shown in Fig. 3 by
dashed lines. For the symmetry-breaking solution marked by
crosses and open circles, which is fully stable, the outputs are
not equal. Moreover, there is selected frequency and selected
value of the inputs at which the ratio of these outputs might
be done extremely small, which gives us a possibility for the
all-optical switching of outputs 3 and 4. Therefore, a single
dipole nonlinear defect implied into the center of the X-shaped
waveguide can give rise to the breaking of symmetry.

For the second choice, light is injected to the opposite
arms 1 and 4. This way of injecting of light was proposed
by Maes et al.17,18 in the directional waveguide with two
nonlinear monopole defects to establish breaking of the

left/right symmetry. In Ref. 24, that result was obtained for
the case of a single nonlinear dipole defect. For the present
case of the X-shaped waveguide with the dipole defect in
order, light may excite the dipole modes and the amplitudes
of light are to have opposite signs in arms 1 and 4 as
follows from Eq. (7). Results of the solution of the CMT
equations (7) are shown in Fig. 4. There are two solutions. For
the first solution with the even dipole mode A1 excited only,
there are no outgoing waves in the cross arms 2 and 3 (no
cross talk) as shown in Fig. 4 by dashed lines. For the second
solution with both dipole modes excited, cross talk occurs as
shown in Fig. 4 by solid lines (unstable domain) or marked by
open circles and crosses (stable domain). As follows from Eq.
(9) irrespective to the solution, the outgoing waves in the cross
arms 2 and 3 have equal intensities.

It is interesting to find out how the phase difference θ

between input amplitudes into arms 1 and 4 affects the
transmissions. One can see from Fig. 5 that the transmissions
T1 and T4 are split as soon as θ �= 0,π proportional sin θ .
Moreover, we find stable solutions, which is remarkable by
cross talk. In the vicinity of θ = π , the cross outputs are almost
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FIG. 3. (Color online) (a) Frequency behavior of light outputs to
arms in the X-shaped waveguide for light injects into the first and the
second arms with amplitudes S1+ = S2+ = 0.05. (b) Output power
vs input power for ω = 0.372. For the symmetry-preserving solution
shown by dashed lines, we have equal transmissions T3 = T4 into
arms 3 and 4. The stability of the symmetry-breaking solution is
marked by open circles and crosses.
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FIG. 4. (Color online) (a) Frequency behavior of light outputs to
arms in the X-shaped waveguide for light injects into the first and
the fourth arms with amplitudes S1+ = −S4+ = 0.07, respectively.
(b) Outputs vs inputs for ω = 0.374. The equal transmissions to arms
1 and 4 are shown by blue dashed lines. The stable solution with cross
talk is marked by open circles and crosses.

constant around 92%. Thus, in that phase segment we obtain
effective switching on/off of cross talk.

C. Interference with direct path processes

As was shown in Sec. II A, injection of light into arm 1
might excite both dipole modes due to the nonlinearity of the
dipole defect to give rise to cross talk. The outgoing waves
in the cross arms have amplitudes that are opposite in sign
but equal in the intensity. Now, assume light is incoming not
only into arm 1 but also into arms 2 and 3 with S2+ = S3+.
Then, in arm 2, we have an interference of the the waves
t22 + t12 where t22 = −S2+ because of the full reflection
of the input waves injected into arms 2 and 3, and t12 is
the transmitted wave 1 → 2. In arm 3, we have similarly
t33 − t12 where t33 = −S3+ = t22. Respectively, this results
in symmetry breaking with respect to the mirror reflection
of arms 2 and 3 provided that t12 �= 0. Indeed, Figs. 6(a) and
6(b) demonstrate the symmetry-breaking phenomenon for that
case.
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FIG. 5. (Color online) Transmissions for equal input power
|S1+| = |S4+| = 0.04 into arms 1 and 4 for ω = 0.374 as dependent
on phase difference θ = arg(S1+) − arg(S4+). The dashed thick lines
show the stable transmissions to arms 1 and 4, which would have
been even for the linear defect cavity. The solid lines show the
solutions for the transmissions to arms 1 and 4, which are the result of
nonlinearity of the defect but they are not stable. The stable domains
of the solutions are marked by crosses, pluses, and open circles.
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FIG. 6. (Color online) (a) Frequency behavior of light outputs
to arms in the X-shaped waveguide for light injects into arm 1
S1+ = 0.07 and into arms 2 and 3 with S2+ = S3+ = 0.03. (b) Input-
output curve for ω = 0.372 and S2+ = S3+ = 0.07 for variation of the
input into arm 1. Dashed line shows the stable symmetry-preserving
solution with T2 = T3, while the dashed-dotted and solid lines show
one of the symmetry-breaking solutions with T2 �= T3. Open circles
and crosses mark the domains of stability of the symmetry-breaking
solution.

Instead of this complexity of inputs, which breaks the
symmetry in respect to the outputs 2 and 3, we can take into
account the direct path nonresonant processes in order to obtain
similar results for injection into only arm 1. For example, in
the PhC waveguide, light might directly path from input arm 1
into other arms of the X-shaped waveguide without excitation
of the defect dipole modes. Therefore, the direct path processes
can break the symmetry even for light injected into a single arm
because of the Fano interference of the resonant transmission
wave with the direct path wave. In order to take into account
these direct path processes, we use generalized CMT (Ref. 25):

|S−〉 = C|S+〉 + D|A〉, (12)

where the matrix D is given by Eq. (2), the vectors |S∓〉
consist of four output/input amplitudes, respectively. Until
now, we use C = −1, which means a transmission through
only resonant modes of the defect cavity. However, if there
are direct pathway nonresonant processes, then the matrix C

becomes nondiagonal:

C =

⎛
⎜⎝

a b b c

b a c b

b c a b

c b b a

⎞
⎟⎠ . (13)

Substitution of Eqs. (2) and (13) into the relation CD∗ = −D

(Ref. 25) gives us

a = −1 + c, b = i
√

c(1 − c), (14)

where 1 � c � 0. The limiting case c = 0 implies that direct
pathways in the X-shaped waveguide are eliminated. By
substituting Eq. (14) into Eq. (12), we obtain the transmission
amplitudes

S2− = bS1+ + √
γA2, S3− = bS1+ − √

γA2. (15)

Hence, an excitation of the second odd dipole mode gives the
difference between the outputs

T2 − T3 = 4
√

c(1 − c)γ

S1+
Im(A2), (16)
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FIG. 7. (Color online) Frequency behavior of light outputs to
arms in the X-shaped waveguide for light injects into the first
arm with amplitude S1+ = 0.07 with account of direct path way
processes of light transmission from arm 1 into arms 2 and 3 for
(a) c = 0.01 (weak processes) and (b) c = 0.1 (stronger processes).
Dashed and dotted lines show the transmission T4 and T2 = T3 for
the symmetry-preserving solution, respectively. Solid red line and
open circles (dashed-dotted line and crosses) show the transmission
to arm 2 (3). Thicker dashed and dotted lines show the the domains
of stability of the symmetry-preserving solution. Open circles and
crosses mark the domains of stability of the symmetry-breaking
solution.

which is substantial compared to the direct pathway processes
proportional to c if |c| 
 1. Figure 7 demonstrates that effect.
One can see that for the symmetry-preserving solution, the
direct transmission from the input arm 1 into arms 2 and 3
is small, proportional to the small parameter c, while for the
symmetry-breaking solution inspired by excitation of the odd
dipole mode A2, cross talk is rather large where the difference
between outputs 2 and 3 is proportional to

√
c.

D. Light injection into all four arms

Let now light be applied to all four arms with equal
power, but amplitudes are opposite in sign: S1+ = −S2+ =
S3+ = −S4+ = 0.03. Then, even in the linear case both dipole
modes would be excited. For the nonlinear case, there is
the symmetry-preserving solution with S1− = −S2− = S3− =
−S4− too as shown in Fig. 8(a). However, there is also the
symmetry-breaking solution which gives rise to nonequal
outputs. Moreover, for some frequency and for some input
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FIG. 8. (Color online) (a) Frequency behavior of transmissions
to arms 1, 2, 3, 4 for equal input power S1+ = −S2+ = S3+ = −S4+.
(b) Output-input curves for fixed frequency ω = 0.374. Dashed blue
line marks the symmetry-preserving solution with T1 = T2 = T3 =
T4. Open circles and crosses mark the symmetry-breaking solution
with T1 = T4 and T2 = T3, respectively.

power, the outputs to the selected arm might be completely
blocked as Fig. 8 shows.

III. CROSS TALK IN PHOTONIC CRYSTAL
X-SHAPED WAVEGUIDE

In this section, we present the solution of the Maxwell
equations which describe propagation of the TM mode in
the PhC X-shaped waveguide with nonlinear dipole defect
cavity. Figure 1 shows two degenerated solutions for the closed
defect cavity. The parameters of the rods as well as of the
PhC structure are given in Fig. 1. Next, we open the defect
by removal of the rods marked by dashed open circles to
obtain the X-shaped waveguide that holds the nonlinear defect
rod. Then, the dipole eigenmodes decay into the arms of the
waveguide.

In order to solve a scattering problem in the PhC X- and
T-shaped waveguides with single nonlinear dipole defect, we
use here the approaches borrowed from electron quantum
transport.29–31 Basically, they reduce the problem onto a space
covering only the scattering region without infinite length
waveguides by use of non-Hermitian effective Hamiltonian
Heff . Then, the scattering wave function |ψS〉 within the
scattering region obeys the equation

(Heff − E)|ψS〉 = V |E,L〉, (17)

which is the form of the Lippmann-Schwinger equation.31

Here, E is the energy of incident electron, |E,L〉 are known
extended states of the Lth waveguide, and the matrix V is
responsible for coupling of inner states with incoming waves
over the waveguides. For electronic transport, these states
are well-known analytic solutions. As a result, the effective
Hamiltonian Heff can be found analytically.29–31

If we were to consider to the PhC waveguides coupled with
defects, the approach is to be modified because the waveguide
Bloch modes are accessible only numerically. Details of the
numerical procedure to calculate the solution of the nonlinear
Maxwell equations are given in the Appendix. The procedure is
a self-consistent solution of the system of nonlinear equations
for those points that belong to the nonlinear defect rod. In
contrast from the monopole mode of the pointlike nonlinear
defect,19 the dipole modes undergo a swap variation in the
interior of the defect as seen from Fig. 1. Therefore, the number
of sites in the interior of the nonlinear defect should be large
enough in order to describe the solution within the dipole
defect rod. To be specific, we used the 40 × 40 numerical grid
per elementary cell. Respectively, the defect rod was meshed
into around 200 sites.

Figures 9(a) and 9(b) show the transmissions when light
is injected into arm 1 for two different designs of the dipole
nonlinear defect. In the Fig. 9(a), the defect is hidden among
eight auxiliary linear rods as shown in Fig. 10. Then, the
coupling of the defect cavity with waves in the arms is small
and the direct pathway processes are almost canceled. In
Fig. 9(b), the defect rod has larger coupling with the X-shaped
waveguide. The direct path processes of light propagation
in the waveguide are allowed. As a result, in the solution
in which both dipole modes are excited, one can observe
the symmetry breaking for the cross talking, i.e., T2 �= T3.
That result is shown in Fig. 9(b) by dashed-dotted and
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FIG. 9. (Color online) Frequency behavior of light outputs to arms for light injects into the first arm. (a) Dipole defect is hidden with input
power P = 0.1W/a. (b) Defect is opened as shown in Fig. 10 with P = 1W/a. Dashed blue line shows the transmission T4 when only the
even dipole mode E1 is excited, solid blue line shows T4, dashed-dotted black line shows T2, and solid red line shows T3 when both dipole
modes are excited. (c) The CMT-based transmission [see Fig. 2(b)].

solid lines. Figure 9(c) copies Fig. 2(b) in order that the
reader could compare the results of direct computation of
the Maxwell equations described in the Appendix with the
model CMT results when the direct path processes are ex-
cluded. One can see good quantitative agreement between two
approaches.

For illustration of the direct path processes and the
symmetry-breaking effect, we computed the streamlines by
use of the streamline function.32 One can see from Fig. 10(a)
that light follows in a laminar way from input arm 1 to output
arm 4. And, there are no the streamlines to the cross arms
2 and 3 as shown in Fig. 10(a) for the solution with the
first even dipole mode excited only. Figure 10(b) shows the
second solution of the Maxwell equations when both dipole
modes are excited due to the Kerr effect. In the vicinity of
the dipole defect, the solution becomes superposed of both
dipole modes to give rise to an optical vortex24 that is seen as
closed circular streamlines around the defect. There are also
streamlines which go to cross arms 3 and 4 that demonstrate
the cross talk phenomenon. However, there is no symmetry
breaking in respect to cross outgoing waves.

In the second design, due to a removal of 16 linear rods
around the nonlinear defect rod, we have a substantial direct
path transmission from arm 1 into arms 2 and 3 as Fig. 11(a)

FIG. 10. (Color online) Real part of the solutions (z component
of electric field) of the Maxwell equations for light injects into the
first arm with fixed input power P = 0.1W/a and fixed frequency
ωa/2π = 0.3728. Dielectric rods which form the PhC waveguide
are shown by pink open circles. The dipole defect is shown by
red bold open circle. Light blue lines show the optical streamlines.
(a) The solution with the only even dipole mode excited. (b) Another
solution with both dipole modes excited.

demonstrates for the solution with the only even dipole mode
excited. That takes place irrespective of whether the dipole
defect is linear or not. Similar to the case shown in Fig. 10(b),
there is the solution of the Maxwell equations with both dipole
modes excited shown in Fig. 11(b). In agreement with the CMT
[see Eq. (16), the transmissions to cross arms 2 and 3 become
different, i.e., symmetry breaking occurs. This phenomenon
is demonstrated in Fig. 11(b) by streamlines and the real part
of the solution. There are two equivalent solutions with either
T2 > T3 or T2 < T3, which can be switched between by pulses
of input light.17,33

The next figures present the case when light is injected into
two arms simultaneously. Figure 12 shows the solutions of the
Maxwell equations when light is injected to arms 1 and 2. It
is clear that for the linear defect, both dipole modes would
be excited equally. The solution of the Maxwell equations
with the nonlinear dipole defect shows the similar result as
shown in Fig. 12(a). However, as opposed to the linear case
there might be solutions where dipole modes are excited with
different amplitudes. That gives rise to the symmetry breaking
with respect to the outputs 3 and 4. In the case S1+ = S4+
as it follows from Eq. (7), the dipole modes are not excited
at all to give rise to total reflection of the injected light as
shown in Fig. 13(a) . In this case, the solution is real (standing
wave) with accuracy up to a small contribution from direct
path processes. If the injected light amplitudes are opposite
in sign, the solution is also standing wave in the vicinity of
the dipole defect. Then, for the solution with only one dipole
excited, cross talk is eliminated. For the solution with both
dipole modes excited, light propagates into arms 2 and 3 to
allow cross talk as shown in Fig. 13(b). We also calculated the

FIG. 11. (Color online) The same as in Fig. 10, but the dipole
defect is opened with P = 1W/a and ωa/2π = 0.37.
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FIG. 12. (Color online) Real part of the solutions of the Maxwell
equations for light injects into the first and second arms with fixed
input power P = 0.1W/a and ωa/2π = 0.3728. (a) The symmetry-
preserving solution and (b) the symmetry-breaking solution.

solutions of the Maxwell equations when the light is injected
into three and four arms simultaneously. The results are in good
agreement with the solutions obtained by the CMT (Sec. II).

IV. ALL-OPTICAL SWITCHING IN T-SHAPED
WAVEGUIDE

The T-shaped waveguide three-port system is currently
studied in the context of channel-drop filter.1,26,34–37 In Ref. 12,
two nonlinear monopole defects symmetrically positioned in
the T-shaped PhC waveguide were considered. It was shown
that the symmetry breaking may occur due to the nonlinearity
with almost full blocking of light transmission into one of the
arms.12 Pulses of light switch the transmission from one arm
into another.33

Here, we consider the single dipole defect in the T-shaped
waveguide shown Fig. 14. We will show that the waveguide can
be switched from the regime of full blocking of light outputs
to the regime of cross talk. We choose two different positions
of the nonlinear dipole defect in the waveguide as shown in
Fig. 14, the centered position [Figs. 14(a) and 14(b)] and the
shifted position [Figs. 14(c) and 14(d)]. The CMT equations
are similar to Eqs. (2), (7), and (9) and take the following form
for the shifted position:

D =
⎛
⎝

√
γ1 0√
γ2

√
γ3√

γ2 −√
γ3

⎞
⎠ , �̂ = D+D/2 =

⎛
⎝

1
2γ1 + γ2 0

0 γ3

⎞
⎠ ,

(18)

FIG. 13. (Color online) Real part of the solutions of the Maxwell
equations for light injects into the 1 and 4 arms with (a) the equaled
amplitudes S1+ = S4+. (b) Both dipole modes are excited for the case
S1+ = −S4+ to give rise to cross talk. The input power per length
P = 0.1W/a and the frequency ωa/2π = 0.3728.

FIG. 14. (Color online) Real part of the solutions of the Maxwell
equations in the T-shaped waveguide with single nonlinear dipole
defect for ωa/2πc = 0.368 and P = 1W/a. (a) The symmetry-
preserving solution and (b) the symmetry-breaking solution for
the nonlinear dipole defect at the center of the waveguide.
(c) The symmetry-preserving solution and (d) the symmetry-breaking
solution for the nonlinear dipole defect shifted by a distance d =
0.15a.

[ω − ω0 + λ11|A1|2 + λ12|A2|2 + i

2
γ1 + iγ2]A1

+ 2λ12Re(A∗
1A2)A2 = i

√
γ1S1+ + i

√
γ2(S2+ + S3+),

2λ12Re(A∗
1A2)A1 + [ω − ω0 + λ22|A2|2 + λ12|A1|2 + iγ3]A2

= i
√

γ3(S2+ − S3+), (19)

S1− = −S1+ + √
γ1A1,

S2− = −S2+ + √
γ2A1 + √

γ3A2, (20)

S3− = −S3+ + √
γ2A1 − √

γ3A2.

Here,
√

γ1 is the coupling constant of the first dipole mode
E1(x,y) with wave in the central arm 1,

√
γ2 is the coupling

constant of that mode with wave in the aside arms 2 and
3, ±√

γ3 is the coupling constant of the second dipole mode
E2(x,y) with waves in arm 2 or 3, respectively. For the centered
position of the defect, we would have γ1 = γ3, γ2 = 0. By the
same procedure used for the X-shaped waveguide, we obtained
γ1 = γ3 = 0.00075, γ2 = 0 for the centered position of the
dipole defect, and γ1 = 0.00073, γ3 = 0.0007, γ2 = 0.00025
in terms of 2πc/a.

In what follows, we consider that light injects into the
central arm 1 and transmits into the cross arms (enumerated
2 and 3), i.e., S2+ = S3+ = 0. For the centered position of
the dipole defect, there are two regimes of processing of the
dipole defect. In the first one, the even dipole mode is only
excited. When γ2 = 0, there is no light outgoing into the cross
arms. Therefore, in that regime the centered nonlinear dipole
defect blocks light transmission as shown by dashed lines
in Fig. 15(a). In the second regime of the nonlinear dipole
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FIG. 15. (Color online) Transmission from the left central arm
to the down and up arms in the T-shaped waveguide holding a
single nonlinear dipole defect for S1+ = 0.05. (a) The defect is not
shifted and (b) the defect is shifted by a distance d = 0.15a. Dashed
line shows the symmetry-preserving solution. Solid line shows the
transmission to the down arm and dashed-dotted line shows the
transmission to the up arm for the symmetry-breaking solution.

defect processing, both dipole modes are excited. That opens
the waveguide as shown in Fig. 15(a) by the solid line. The
light transmission for the shifted position of the dipole defect
in the T-shaped waveguide is presented in Fig. 15(b). There
are also two solutions, but both with cross talk. The first
symmetry-preserving solution has equal outputs, while the
second solution breaks the symmetry with different outputs
into the cross arms. Figure 15(b) demonstrates a profound
asymmetry of light outputs.

The results of the CMT qualitatively agree with the
numerical solutions of the Maxwell equations shown in
Fig. 14. In particular, Fig. 14(a) shows that the solution is
a standing wave for the only first dipole mode excited. The
Poynting current equals zero. As a result, there are no optical
streamlines in that solution. In the second solution of the
Maxwell equations, both dipole modes are excited to give
rise to the streamlines from the input arm to the cross arms,
i.e., cross talk as shown in Fig. 14(b). In the second design
of the T-shaped waveguide, there are also two solutions of
the Maxwell equations presented in Figs. 14(c) and 14(d). For
the first symmetry-preserving solution, the first dipole mode is
excited only. However, because of coupling of the dipole mode
with waves in all arms, cross talk takes place as streamlines
demonstrate in Fig. 14(c). For the symmetry-breaking solution,
there is asymmetry of light outputs in the cross arms as seen
in Fig. 14(d).

V. SUMMARIES AND CONCLUSIONS

We considered light transmission in the linear PhC X- and
T-shaped waveguides with a single nonlinear defect made from
a Kerr medium. We assumed that among all eigenmodes of the
defect optical cavity, only two degenerated dipole modes fall
into the propagation band of the waveguides. When the dipole
defect positioned at the center of the X-shaped waveguide is
linear, light transmission would be only directional. In other
words, cross talk would be eliminated as was first noted by
Johnson et al.2 In the case of the T-shaped waveguide, we
would have full reflection of light injected into the central arm.
For the nonlinear case, these statements are still correct. There
is a stable solution of nonlinear CMT equations where a wave
injected into the central arm excites only the dipole mode

with the parity of the injected wave while the second dipole
mode with opposite parity remains dark. We have shown that
there is another stable solution where both dipole modes are
excited because of nonlinear terms in the CMT equations. As
a result, cross talk occurs in the waveguides. This results is in
good agreement with solutions of the Maxwell equations for
the PhC X- and T-shaped waveguides.

The above mentioned refers to the well-hidden dipole defect
when the direct path propagation of light in the waveguides
is negligible. Then, for the second solution where both dipole
modes participate in the resonant transmission, the odd dipole
mode emits into the cross arm waves opposite in sign. When
the dipole defect is opened, the direct path process takes place.
These processes interfere with outgoing waves S2− = −S3−
resonantly transmitted by the dipole defect. This immediately
gives rise to the symmetry breaking in the cross outputs.
The phenomenon was found both in the solution in the
CMT equations and in the numerical solution of the Maxwell
equations. Thus, in view of these phenomena, single nonlinear
dipole defect in the linear waveguides opens a wide spectrum
of possibilities to manipulate light propagation in the X- and
T-shaped waveguides.
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APPENDIX

For computations, we follow the paper by Rahachou and
Zozoulenko38 where a tight-binding Hamiltonian Ĥ at the
numerical grid (m,n) was formulated to solve numerically the
Maxwell equations:

Ĥ |f 〉 = (ω�/c)2|f 〉, (A1)

where for the TM modes

fmn = √
εmnEmn. (A2)

The tight-binding Hamiltonian has a standard form with
diagonal matrix elements 4/εmn, and the matrix elements
which are responsible for the next-nearest neighbor equal
− 1√

εmn

1√
ε(m,n)+μ

. Here, εmn and Emn are the dielectric constant
and the z component of electric field mapped onto the
numerical grid shown in Fig. 16. The total area of the scattering
region is M × N .

At each vertical slice m, we define the state 
m consisting
of fm1,fm2, . . . ,fm,N . The TM mode incident from the left
(shown by arrow in Fig. 16) is


α
m = exp(ikαm�)�α

m, (A3)

where kα is the Bloch vector directed along the waveguide and
�m is the Bloch state at the slice m. Respectively, the reflected
and transmitted states can be written as follows:


m =
∑

β

tβα exp[ikβ(m − M − 1)�]�β
m, m � M (A4)
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M1

m,n

M+10

FIG. 16. (Color online) Numerical grid shown by gray solid lines.
Green dashed lines show PhC elementary cells. P = a0/� is the
number of slices per the elementary unit.


m =
∑

β

rβα exp(−ikβm�)�β

1−m, m � 1 (A5)

where rβα and tβα are the reflection and transmission ampli-
tudes, respectively. The Bloch states are periodical with the
period P , i.e., �(α)

m = �
(α)
m+P .

Maxwell equations (A1) are an infinite set of algebraic
equations. However, we can restrict them by using that the
solutions in the waveguides are known numerically. From
Eq. (A4) follows


M+1 = �̂M+1 t̂ = �̂1 t̂ , 
M = �̂0K̂
−1 t̂ , (A6)

where t̂ = tβα and (�̂m)nα = �α
mn is a squared matrix N × N ,

and K̂ = δαβ exp(ikα�). Then, we have


M+1 = �̂1K̂�̂−1
0 
M. (A7)

This equation couples the solution at the nearest slice M and
the solution at the slice M + 1 at the right waveguide.

From Eq. (A5), we have at the left waveguide


0 = �̂
(1)
0 + �̂1r̂ , 
1 = �̂

(1)
1 eik1� + 
̂0K̂

−1r̂ . (A8)

Here, the upper index (1) implies that the incoming light has
α = 1. Next, we obtain from Eq. (A8)


0 = �̂1K̂�̂0
−1


1 + [
�̂

(1)
1 − �̂1K̂�̂−1

0 �̂
(1)
1 eik1�

]
. (A9)

From these equations, we can express the reflection amplitudes
matrix as

r̂ = K̂�̂−1
0

[

1 − �̂

(1)
1 exp(ik1�)

]
. (A10)

Equations (A7) and (A9) allow us to formulate the closed
system of equations.

Thus, we express Eq. (A1) in the form of the Lippmann-
Schwinger equation (17):

[Ĥ (eff) − (ω�/c)2]|
S〉 = |S(in)〉, (A11)

where the matrix elements of the effective operator

Ĥ eff
mm′,nn′ = Ĥmm′,nn′ − (

�̂1K̂�̂−1
0

)
nn′δMmδMm′

− (
�̂1K̂�̂−1

0

)
nn′δ1mδ1m′ . (A12)

Moreover,

S(in)
mn = δ1m

[
�̂

(1)
0 − �̂1K̂�̂−1

0 �̂
(1)
1 exp(ik1�)

]
n
. (A13)

The nonlinear contributions in the basic equation (A1) are
given by

εmn = ε0 + κ|Emn|2, (A14)

where κ = n0cn2
4π

with accordance to Eq. (5). From Eq. (A2)
we have

εmn = 1
2 [ε0 +

√
ε2

0 + 4κ|fmn|2]. (A15)

Thus, we finally obtain the system of N × M nonlinear
algebraic equations, which were solved numerically.
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