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We study the quantum dynamics of a charged particle in a two-dimensional lattice, subject to constant and
homogeneous electric and magnetic fields. We find that different regimes characterize these motions, depending
on a combination of conditions, corresponding to weak and strong electric field intensities, rational or irrational
directions of the electric field with respect to the lattice, and small or large values of the magnetic (Peierls) phase.
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I. INTRODUCTION AND STATEMENT OF RESULTS

This is the second paper in a row on the quantum dynamics
of a charged particle in a two-dimensional square lattice, under
the influence of an in-plane electric field and a normal to the
plane magnetic field, both uniform in space and constant in
time. In a previous work [1] we considered the case where the
electric field is aligned with one of the lattice axes. We now
extend this investigation to arbitrary directions of the electric
field, still lying on the lattice plane. New phenomena are found
in this generalization.

Many physical systems, including Bose condensates in
optical lattices, can be described by the Hamiltonian Ĥ of
a charged particle in a two-dimensional lattice oriented as the
reference frame (x,y), in the tight-binding approximation [1]:

(Ĥψ)l,m = −Jx

2
(e−i2παmψl+1,m + ei2παmψl−1,m)

− Jy

2
(ψl,m+1 + ψl,m−1) + ea(Fxl + Fym)ψm,l,

(1)

which is written here for the Landau gauge A = B(−y,0).
In the above, ψ is the wave function, the integer pair (l,m)
labels the lattice site (x,y) = (la,ma) in which a is the lattice
period, Jx , Jy are the hopping matrix elements, Fx , Fy are the
electric field components, B is the intensity of the magnetic
field, e is the charge, and α is the Peierls phase, defined as
the ratio between the magnetic flux through the unit cell, Ba2,
and the elementary flux hc/e. A second ratio is crucial in
this Hamiltonian, that between the Bloch frequencies ωx =
eaFx/h̄ and ωy = eaFy/h̄ associated with the two components
of the electric field vector. For convenience we call β = ωx/ωy

the (electric) field orientation. These two ratios deserve to be
clearly marked for further use:

α := eBa2/hc, β := ωx/ωy = Fx/Fy. (2)

The content of this paper is a detailed study of the dynamics
generated by the above Hamiltonian. These dynamics are far
from trivial even when one of the fields is absent. In fact,
for vanishing magnetic field the wave-packet motion features
Bloch oscillations, which crucially depend on the rationality

of the electric field orientation β. In the opposite case of null
electric field, a commensurability condition still appears, this
time in terms of the Peierls phase α. Clearly, the problem
becomes even subtler when both fields are present. To some
extent, this problem has been considered earlier. We would like
to mention Ref. [2], a seminal paper that introduced the method
of rotated coordinate frame discussed below; Ref. [3], which
studied conductivity in a lattice with anisotropic hopping;
Ref. [4], where delocalization in the direction orthogonal
to the electric field, for certain rational field orientations
and intensities, was described; Ref. [5], where the physical
case of a two-dimensional array of quantum dots in GaAs
was considered; and finally, Ref. [6], in which numerical
experiments on the motion of wave packets revealed interesting
vortex-like behaviors.

Given these premises, our aim is to construct a complete
theory of all dynamical regimes present in this system. In
the previous paper [1] we have analyzed the semiclassical
region |α| � 1, for the particular case when the electric field
is aligned with one of crystallographic axes of a square lattice;
that is, we examined the case β = 0. In this work we extend
these studies to arbitrary directions of the electric field vector
and to arbitrary magnetic field intensities. This yields a three-
parameter space (F,α,β) (F is the amplitude of the electric
field) characterized by various dynamical behaviors. We elect
not to vary a further parameter, the ratio between couplings in
the two orthogonal directions of the lattice, Jx and Jy , keeping
them equal to J [7]. Also, without any loss of generality, we
assume |α| � 1/2 and 0 � β � 1.

Our results can be summarized as follows. In Sec. III we first
focus on the case of small α, where we can use a semiclassical
approach in which the Peierls phase α plays the role of
an effective Planck constant. We derive the one-dimensional
classical Hamiltonian

Hcl = −Jy cos P − Jx cos Y + FxP + FyY,
(3)

Fx,y = eaFx,y

2πα
,

as an approximation of the Hamiltonian (1). We find that both
classical and quantum dynamics strongly depend on whether
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the following conditions hold:

Fx < Jx and Fy < Jy. (4)

First of all, when the above are verified, a stable island gives
rise to classical streaming across the lattice, in the direction
orthogonal to the electric field, with velocity v∗ given by

v∗ = ea2F/hα. (5)

Since semiclassical theory is applicable whenever the Peierls
phase α is much smaller than one, we therefore predict that
when

eaF/2πJ < α � 1 (6)

the quantum motion generated by the Hamiltonian (1) allows
for wave packets traveling at speed v∗ for any value of the
direction ratio β, at least for a finite time span that increases as
α tends to zero. Conditions (6) therefore define the small-field,
semiclassical regime.

We then turn to a purely quantum analysis. In Sec. IV
we start by examining the case of rational orientation β and
we argue that for nonzero electric field the spectrum of (1)
is absolutely continuous for any value of α. We describe
two techniques to compute this spectrum, which can also be
implemented numerically. Next, using spectral analysis, when
(6) holds, we construct the Stark transporting states (already
defined for β = 0 in [1]), which quantize the semiclassical
transporting islands of Hamiltonian (3). We show that their
evolution is characterized by linear motion with speed v∗.
Also in Sec. IV, we use perturbation theory to compute, to
leading order in the inverse field amplitude 1/F , the width
of the energy bands of the Hamiltonian (1). Letting β = r/q,
with r,q co-prime integers, we find that these widths scale as
(1/F )q+r−1. This suggests that the energy spectrum of this
Hamiltonian is pure point for irrational direction ratio β. Note
that being based on quantum perturbation theory, these results
are not restricted to the semiclassical region.

We then turn to the numerical simulation of the time
evolution of an initial wave packet, to confirm the theoretical
predictions of the spectral analysis. The numerical techniques
are briefly described in Sec. V. They permit us to attack
the most general case, which includes nonrational directions
of the electric field. First, we consider the case F � Fcr ≡
2παJ/ea, where we can apply the perturbation theory of
Sec. IV, and show that an initial wave packet spreads in the
direction orthogonal to the electric field with a dispersion σ

that increases in time as

σ ∼ (1/F )(q+r−1)t (7)

(here, as above, β = r/q). This behavior sets in after a transient
time

τ ∼ F (q+r−1), (8)

during which the packet is localized. Thus for irrational field
directions the wave packet is always localized in the lattice,
which is consistent with discreteness of the spectrum for
irrational β.

Next, in Sec. VI we describe the case F < Fcr for the
semiclassical region |α| � 1. We find that the motion is either
a ballistic spreading (for an incoherent initial wave packet) or
directed transport (for a properly devised coherent initial wave

packet), both for rational and irrational directions β, for all
times that we could reach in our numerical simulations. This
seems to be inconsistent with discreteness of the spectrum
for irrational β. To resolve this seemingly contradiction we
turn in Sec. VII to the case of arbitrary values of the Peierls
phase α. We simulate the quantum evolution for an increasing
sequence of values of α while keeping the classical parameters
Fx and Fy fixed. For irrational directions β, at fixed time, we
observe a sharp suppression of ballistic spreading, occurring
when α overcomes a certain threshold. Turning finally to a
time-resolved analysis, we observe saturation of the ballistic
spreading, for times larger than a threshold that grows abruptly
with the inverse of the electric field intensity F . Combined
with the observation on bandwidths, this fact strengthens the
conjecture that the spectrum of the system is pure point, for
any irrational direction β—yet the localization length should
depend sensitively on the magnitude of the electric field F , like
in certain two-dimensional models of quantum rotators and of
Anderson localization [8–10]. This concludes our analysis of
this system.

II. ALIGNED ELECTRIC FIELD: REVIEW OF RESULTS

To introduce concepts and notations, we now briefly review
the results of our previous work [1], where we considered the
case of an electric field F = (0,F ) aligned with the y axis
of a reference frame defined by a two-dimensional square
lattice. The magnetic field is directed orthogonally to the lattice
plane, and the Peierls phase α is small. The system shows
two qualitatively different dynamical regimes, depending on
the magnitude of the electric field: a regime of directed
transport for weak fields and a regime of ballistic spreading
for strong fields, separated by a critical magnitude, Fcr =
2παJx/ea. Although we will keep track of physical constants
for completeness in what follows, in numerical experiments
we adopt adimensional units so that e = a = h̄ = 1 and we set
Jx = Jy = 1. Also, until Sec. VII or unless otherwise noted,
the Peierls phase is α = 1/10.

A. The energy spectrum

The stationary Schrödinger equation derived from
Eq. (1) is

−Jx

2
(e−i2παmψl+1,m + ei2παmψl−1,m)−Jy

2
(ψl,m+1 + ψl,m−1)

+ eaFmψl,m = Eψl,m. (9)

Imposing a periodicity of period Lx = La in the l direction
in Eq. (9), where L eventually tends to infinity, and using
the substitution ψl,m = eiκal√

L
bm(κ), where κ is the dimensional

quasimomentum, κ = 2πk/aL, with k = 0,1, . . . ,L − 1, tak-
ing values in [0,2π/a), one reduces (9) to the following 1D
equation for the coefficients bm(κ):

−Jy

2
(bm+1 + bm−1) − Jx cos(2παm − aκ)bm + eaFmbm

= Ebm. (10)

The spectrum of (10) for a fixed κ is a modulated Wannier-
Stark ladder and the energy bands appear by varying the
quasimomentum. For example and for the purpose of future
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FIG. 1. (Color online) The energy spectrum E = Eν(κ) for F =
0.3 and (r,q) = (0,1) (left) and (r,q) = (1,1) (right). The vertical line
in the right panel marks the first Brillouin zone, the size of which
scales as 1/

√
r2 + q2. Different colors have no particular meaning

but are used to better distinguish the lines, which are nonintersecting.

comparison, the left panel of Fig. 1 shows the eigenvalues
Eν(κ) of this equation for F = 0.3. To understand the
displayed spectrum the semiclassical approach proves to be
very useful.

B. Semiclassical theory

When |α| is much less than one, the period of the oscillating
phase in Eq. (10) is much larger than the lattice period, so that
we can approximate the discrete function bm by a continuous
function B of the coordinate y. Furthermore, consider the shift
operator T̂a = exp(a∂y), which acts as T̂aB(y) = B(y + a).
Using this in Eq. (10) leads to

[−Jy cos(ia∂y) − Jx cos(2παy/a − aκ) + eFy]B(y)

= EB(y).

Next, introducing the operators Ŷ = 2παy/a and P̂ = −ia∂y

in the above leads us to the effective Hamiltonian Ĥqu =
−Jy cos P̂ − Jx cos(Ŷ − aκ) + F Ŷ , whose classical counter-
part reads

Hcl = −Jy cos P − Jx cos Y + FY, F = eaF

2πα
. (11)

Since in the quantum description the canonical variables
P,Y are operators obeying the commutation relation [Ŷ ,P̂ ] =
i2πα, the semiclassical parameter is here the Peierls phase α.
If |α| � 1, one can explain certain features of the spectrum
in Fig. 1(a) by simply analyzing the phase portraits of the
classical system (11). In particular, it is easy to see that the
Hamiltonian (11) can support bounded motions if F < Fcr.
These are seen as the islands around the fixed points in Fig. 2,
upper row, which draw the solutions of Hamilton equations for
the Hamiltonian Hcl, Eq. (11).

By introducing the Bloch frequency ω = eaF/h̄ and using
the canonical substitution P → P − ωt , one obtains from (11)
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FIG. 2. Phase portrait of the classical system (14) for (r,q) =
(0,1) (upper row) and (r,q) = (1,1) (lower row) at electric field
intensities F = 0.3 (left column) and F = 1 (right column). Twenty
different trajectories are shown in each case.

the time-dependent Hamiltonian

Hcl(t) = −J ′
y cos(P − ωt) − J ′

x cos Y, Jx,y = 2παJx,y,

(12)

in which the canonical variables lie in the torus, −π � P,Y <

π . The classical phase space of solutions of (11), pictured
in Fig. 2, can also be calculated as the stroboscopic map of
the time-periodic Hamiltonian (12). Two cases for F < Fcr

and F > Fcr are shown in Fig. 2. Bounded trajectories of (11)
appear now as two nonlinear resonances (transporting islands),
whose size shrinks to zero when F = Fcr. Quantizing these
islands leads to the transporting modes, defined below.

Note that in Ref. [1] a different gauge, A = B(0,x), was
employed. Needless to say, the quantum spectrum of the
system does not depend on the gauge adopted. In classical
mechanics, the latter gauge corresponds to the Hamiltonian
H̄cl(t) = −J ′

x cos P − J ′
y cos(X + ωt), that can be obtained

from (12) by a canonical transformation that interchanges the
role of P as momentum and Y as coordinate.

C. Directed transport regime

When F is small, the energy bands E(κ) overlap forming
a rather complicated band pattern. If F < Fcr this pattern
contains a number of parallel straight lines, seen in Fig. 1(a).
In the semiclassical approach these lines are associated with
nonlinear resonances, which transport the particle at the drift
velocity (5). The explicit form of the quantum transporting
states is

�l,m =
∫

g(κ)eiκalbm(κ)dκ, (13)

where b(κ) is the eigenvector of (10) associated with a given
straight line in the energy spectrum and g(k) is an arbitrary
square integrable function of the quasimomentum. Note that in
b(κ) we jump over avoided crossings when following a straight
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FIG. 3. Example of transporting states |�l,m|2 for (r,q) = (0,1)
(left column) and (r,q) = (1,1) (right column) depicted as grey tone
images (black maximum, linear intensity scale). The upper row is
characterized by the width parameter C = 1, while the lower row has
C = 0.2. The other parameters are α = 0.1 and F = 0.1.

line in E(κ). This is the so-called diabatic approximation. Thus
the vector function b(κ) in Eq. (13), which implicitly assumes
the extended Brillouin zone picture, satisfies the translational
relation

bm(κ + 2π/a) ≈ bm+1/α(κ),

which is exact if 1/α is an integer. This relation should
be compared with the relation bm(κ + 2π/a) = bm(κ) which
holds when we follow the energy bands adiabatically.

The left row in Fig. 3 shows numerically transporting states
for g(κ) ∼ exp[−C(aκ/2π )2] for two different values of the
parameter C [11]. Since the slope of the straight lines in the
spectrum is equal to the drift velocity, the time evolution of
these states is a shift of the wave packet in the x direction at
velocity v∗. Thus the wave-packet width σ is constant in time,
while the first moment grows as M1(t) = v∗t . Here and below
we identify the wave-packet width with the dispersion, i.e.,
σ =√

M2−M2
1 , where Mi,i = 1,2, are the first two moments of

the position operator.
It is worth stressing that the above statement refers only

to initial conditions given in Eq. (13). For a generic initial
wave packet one observes an asymmetric ballistic spreading
(see Fig. 10 in Ref. [1]), where M1(t) ≈ 0 and σ (t) → At . The
coefficient A is here defined by the drift velocity, A ∼ v∗ ∼ F ,
and not by the hopping matrix element Jx as in the strong-field
regime described in the next subsection.

D. Ballistic spreading regime

Consider the strong-field limit, eaF � Jx,y . Using first-
order perturbation theory the solution of (10) reads

Eν(κ) = eaFν − Jx cos(aκ + 2παν),

b(ν)
m (κ) = δν,m ± (Jy/eaF )δν,m±1.

It follows from the above equations that the time evolution of
a generic localized wave packet is a ballistic spreading in the
positive and negative x directions, so that the packet width σ

grows asymptotically as σ (t) = At . The numerical factor A

in this asymptotic expression depends on the particular form
of the initial wave packet, yet it is superiorly bounded by
A = Jx/

√
2. The maximal value is reached for an incoherent

wave packet, which we can mimic by assigning random phases
to the complex amplitudes of an initial Gaussian wave packet.
Further down in this paper, Fig. 8 displays the F dependence
of the coefficient A, obtained by direct numerical simulation
of the system dynamics, versus F = Fy . The coefficient A

tends to zero in the limit of weak electric fields, while in
the opposite limit of strong fields it approaches the constant
value A = Jx/

√
2. We will now investigate how this situation

changes when the electric field is not aligned with one of the
axes of the crystal.

III. GENERAL DIRECTION OF THE ELECTRIC FIELD:
SEMICLASSICAL THEORY

The classical Hamiltonian (3) for generic direction of the
electric field,

Hcl = −Jy cos P − Jx cos Y + FyY + FxP,
(14)

Fx,y = eaFx,y

2πα
,

can be guessed a straightforward generalization of the classical
Hamiltonian (11). More rigorously, the same expression can
be obtained as done in Appendix, starting from the quantum
equation (21) below. Again, it is convenient to use the
canonical transformation P → P − ωyt and Y → Y + ωxt ,
which leads to the time-dependent Hamiltonian

Hcl(t) = −J ′
y cos(P − ωyt) − J ′

x cos(Y + ωxt),
(15)

J ′
x,y = 2παJx,y .

Now the phase space of the system (15) can be reduced to
the torus only when two Bloch frequencies ωx and ωy are
commensurate, i.e., if β := ωx/ωy = Fx/Fy = r/q (r,q are
co-prime integers). However, semiclassical analysis can be
applied equally well in the both cases of rational and irrational
β. Let us also note that the system (15) has the global integral
of the motion,

I = Hcl(t) + FyY + FxP,

that reflects the fact that the original Hamiltonian Eq. (3) or
Eq. (14) is one-dimensional and hence is trivially integrable,
for any value of the ratio β.

The lower panels in Fig. 2 show the classical phase space
for β = 1: Classical islands appear for small field magnitudes.
The structure of phase space changes when the field magnitude
is increased, similar to what happens in the case β = 0 (higher
panels). The transporting islands disappear when at least
one of the two conditions Fx < Jy and Fy < Jy is violated;
this yields the condition (4). This result indicates that the
original quantum system must have two qualitatively different
regimes, which are separated by a critical field magnitude
Fcr = 2παJ/ea. This conjecture is supported by analysis of
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the energy spectrum of the quantum system, which we consider
now, starting from the case of rational orientation β.

IV. ENERGY SPECTRUM FOR RATIONAL ORIENTATION
OF THE ELECTRIC FIELD

We now proceed to the case of arbitrary, yet rational,
direction of the vector F = (Fx,Fy). We first review two
techniques to compute the energy spectrum in the case
of rational ratio β = Fx/Fy . This analysis facilitates the
understanding of the wave-packet dynamics, which will be
described in Sec. V. Letting r and q be relatively prime integer
numbers, we align the electric field with the (r,q) direction in
the plane:

F = F√
N

(r,q), (16)

where N = r2 + q2. We choose the gauge

A = B

(
−q(rx + qy)

r2 + q2
,
r(rx + qy)

r2 + q2

)
, (17)

which reflects the geometry induced by the electric field.
Within this gauge, the Hamiltonian becomes

(Ĥψ)l,m = −Jx

2

(
exp

[
−i2πα

q

N
(rl + qm)

]
ψl+1,m + H.c.

)

−Jy

2

(
exp

[
i2πα

r

N
(rl + qm)

]
ψl,m+1 + H.c.

)

+ eaF
(rl + qm)√

N
ψl,m, (18)

where H.c. denotes the terms required to render the
Hamiltonian Hermitian.

The calculation of the energy spectrum can be equally
achieved by either of two different yet equivalent methods,
which we shall refer to as the method of rotated coordinate
frame, introduced in [2], and the method of rotated basis.

A. Rotated coordinate frame

The method of rotated coordinate frame [2] consists of two
steps. The first is to choose the previous gauge, Eq. (17), for the
magnetic field. The second step is to simplify the Hamiltonian
(18) by rotating coordinates to align the electric field with the
vertical axis ξ of a new coordinate frame (η,ξ ):

η = qx − ry√
r2 + q2

, ξ = rx + qy√
r2 + q2

. (19)

In the rotated coordinates, the original lattice sites (al,am),
with integer l and m, appear to lie on a sublattice immersed
into a new square lattice of spacing d,

d = a/
√

N,

whose sites (sd,pd) can be labeled by pair of integer indexes
(s,p). Note that this new lattice actually consists of N

independent sublattices, only one of which coincides with
the original lattice; see Fig. 4. Explicitly, the mapping of the
original lattice that points into the new, extended lattice is

(l,m) → (ql − rm,rl + qm) := (s,p),

−2 −1 0 1 2

−2

−1

0

1

2

x/a
y/

a
FIG. 4. (Color online) Extended lattice for the field direction

(r,q) = (1,1), where it consists of two sublattices (blue circles and
red stars, respectively).

while the inverse mapping reads

(s,p) → 1

N
(qp − rs,qs − rp) := (l,m).

Letting now φs,p denote the wave-function amplitude at
site (sd,pd) in the rotated frame of reference (η,ξ ), and using
the fact that (rl + qm) = p, we can write the Hamiltonian
action as

(Ĥφ)s,p = −Jx

2
(e−i2παqp/Nφs+q,p+r + H.c.)

− Jy

2
(ei2παrp/Nφs−r,p+q + H.c.) + edFpφs,p.

(20)

Observe that, coherently with Eq. (18), the N sublattices
described above are uncoupled, and that the shift s → s + N

is an invariant transformation. Nevertheless, it is convenient to
solve the eigenvalue problem for all sublattices simultaneously.
We therefore consider the stationary Schrödinger equation for
the complex amplitudes φ, (Ĥφ)s,p = Eφs,p. Following [2]
we use the plane wave basis

φs,p = eidκs

√
L

bp(κ),

where L eventually tends to infinity. In so doing, the quasimo-
mentum κ belongs to the interval [0, 2π

a

√
N ). We finally arrive

at the following equation, where we have put θ = 2παN−1:

−Jx

2
(e−iθqp+iqdκbp+r + eiθq(p−r)−iqdκbp−r )

−Jy

2
(eiθrp−irdκbp+q + e−iθr(p−q)+irdκbp−q ) + edFpbp

= Ebp. (21)
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Equation (10) in Sec. II A is the particular case (r,q) =
(0,1) of this more general equation. It is also possible to
show (see Appendix) that in the semiclassical approach this
equation yields the classical Hamiltonian (14), after applying
a canonical transformation.

B. Rotated basis

In this method we do not introduce sublattices but diago-
nalize the Hamiltonian by changing the basis. One begins with
the tight-binding Hamiltonian in the gauge (17) as before,
that is, Eq. (18). One then imposes periodicity on the lattice
space in the following way: Let K be an even integer, and
let us identify lattice points (l,m) and (l′,m′) if and only if
l − l′ is an integer multiple of Kq and m − m′ is an integer
multiple of Kr . The Hamiltonian (18) typically does not satisfy
this periodicity. Nonetheless observe that by letting K tend to
infinity the period can be made arbitrarily large, following the
standard approach. At finite K the lattice is then composed of
K2qr distinct points.

Next, we define new lattice period

d̃ = a
√

N

and an adimensional quasimomentum k = d̃ κ̃ , that can take
the discrete values

k = 2π
j

K
, j = 0, . . . ,K − 1, (22)

and a new set of basis functions associated with k:

∣∣φ(μ)
p,k

〉 =
K/2∑

n=−K/2+1

eikn

√
K

|p + qn,μ − rn〉. (23)

This definition is consistent with the imposed periodicity on
the lattice, as can be seen by letting n → n + K and observing
that the right-hand side does not change. Also observe that if
k �= k′

〈
φ

(μ′)
p′,k′

∣∣φ(μ)
p,k

〉 = 0,

for all choices of p,p′,μ,μ′. Moreover, keeping k fixed,
different functions |φ(μ)

p,k〉 and |φ(μ′)
p′,k〉 overlap if and only if

(p,μ) and (p′,μ′) belong to the same discrete transverse line
of direction (q, − r); i.e., there exists an integer j such that
(p′,μ′) = (p,μ) + j (q, − r). In this case,〈

φ
(μ−jr)
p+jq,k

∣∣φ(μ)
p,k

〉 = eikj .

The fact that different functions may overlap is clearly a
consequence of the overdetermination of the set |φ(μ)

p,k〉, which
is made of K3rq elements: The integer variables p and μ

can take all values from 0 to Kq − 1, and from 0 to Kr − 1,
respectively, while k can take the K discrete values in Eq. (22).
To the contrary, as observed above, the periodic lattice requires
a basis of K2rq elements only. Since for each pair (p,μ), the
function |φ(μ)

p,k〉 is a linear combination of K lattice sites |l,m〉,
it is easy to see that this set can be equally spanned by keeping
(p,μ) fixed and letting k vary over the K discrete values in
Eq. (22). It is equally easy to find that the full periodic lattice

can then be spanned by choosing (p,μ,k) in the discrete set I:

I = {0, . . . ,Kq − 1} × {0, . . . ,r − 1}
×

{
0,2π

1

K
, . . . ,2π

K − 1

K

}
.

We remark that in the set I the variable μ takes on a restricted
set of values, of cardinality r . Equivalently, we could have
chosen a set organized in strips parallel to the m axis, but
since r � q, this choice would have been less convenient.
To sum up, we have introduced the basis for the periodic
lattice that, because of the above computations, is composed
of orthonormal functions.

Let us now compute the matrix elements of Ĥ over this
basis. The fundamental point is that Ĥ does not couple
functions with different k. In fact, when computing the
nondiagonal couplings, the product rl + qm appears, which
is constant on the transverse lines defined above. The sum
over n of the phases stemming from Eq. (23) is then zero,
unless k = k′. The same result also holds for the diagonal
term (Fxl + Fym), since (Fx,Fy) is proportional to (r,q); see
Eq. (16). Observe that this is true at any finite value of K ,
independently of the fact that the Hamiltonian Ĥ is, or is
not, periodic. Therefore, the spectral problem of Ĥ over the
periodic lattice decomposes into the K fibers obtained by
letting k = 2π

j

K
, with j fixed. At this point one is left with

the computation of the matrix elements within a fiber.
Suppose now that 1 < r < q; we shall treat the remaining

cases 1 = r � q separately. Then, by explicit calculation we
find that the nonzero matrix elements of Ĥ are the following.
The “horizontal” coupling leads to the matrix element

〈
φ

(μ)
p+1,k

∣∣Hhφ
(μ)
p,k

〉 = −Jx

2
exp

(
i2πα

q

N
(rp + qμ)

)
,

if 0 � p � Kq − 2, while for p = Kq − 1

〈
φ

(μ)
0,k

∣∣Hhφ
(μ)
Kq−1,k

〉 = −Jx

2
exp

(
i2πα

q

N
[r(Kq − 1) + qμ]

)
.

The “vertical” coupling gives

〈
φ

(μ+1)
p,k

∣∣Hvφ
(μ)
p,k

〉 = −Jy

2
exp

(
−i2πα

r

N
(rp + qμ)

)
,

if 0 � μ � r − 2, while for μ = r − 1

〈
φ

(0)
p+q,k

∣∣Hvφ
(r−1)
p,k

〉= − Jy

2
exp

(
−i2πα

r

N
[rp + q(r − 1)]

)
eik,

where p + q on the left-hand side is to be understood modulus
Kq. The above are half of the required formulas; we must
also add the Hermitian conjugate matrix elements. Finally, the
diagonal coupling is

〈
φ

(μ)
p,k

∣∣Hdφ
(μ)
p,k

〉 = eaF√
N

(rp + qμ).

Observe finally that this lattice problem can be seen as a
combination of r coupled, one-dimensional, periodic lattice
problems of size Kq. This takes a particularly simple form in
the case (r,q) = (1,q). In fact, we end up with the single, one-
dimensional lattice of size Kq, on which the fiber Hamiltonian
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has matrix elements〈
φ

(0)
p′,k

∣∣Hφ
(0)
p,k

〉 = −Jx

2
(eiθqpδp′,p+1 + H.c.)

− Jy

2
(e−iθqpeikδp′,p+q + H.c.) + eaFp√

N
δp′,p.

(24)

We are therefore equipped with the analytical tools to compute
the energy spectrum of the system.

The right panel in Fig. 1 displays an example of the
spectrum for (r,q) = (1,1), which was calculated by either
of two methods. Note that spectrum is periodic on the
quasimomentum with the period 2π/d̃ = (2π/a)/

√
N . Also

note that both spectra in Fig. 1 show the characteristic pattern
with straight lines; moreover, the slope of the lines is the same
in both panels. As will be shown later on, this slope defines
the velocity of quantum particle in the transporting regime.

C. Continuity properties of the spectrum

In the preceding paper [1], both theoretically and in the
numerical examples, we have considered rational and small
values of α, a fact that assured both periodicity of the reduced
one-dimensional Hamiltonian in (10) and validity of the
semiclassical analysis. In this section we discuss the spectral
properties of the Hamiltonian (1) for the case of a general value
of α, but still rational values of the field direction β.

As remarked in the introduction, it is instructive to think
of the limiting case of null magnetic and electric field: The
spectrum is absolutely continuous, composed of a single band.
Keeping the electric field null, while turning on the magnetic
field, the one-dimensional Hamiltonian (10) [or equally well
the Hamiltonian (21)—being the electric field null, the two
are equivalent], becomes the celebrated Harper Hamiltonian,
whose spectrum has bands for rational values of α [12].
Therefore, the spectrum of the original two-dimensional
Hamiltonians (9) and (18) is also absolutely continuous. For
irrational values of α, the spectrum of (10), (21) is absolutely
continuous (for Jy > Jx), pure point (for Jy < Jx), or singular
continuous, in the critical case Jx = Jy . In the first case,
obviously, the spectrum of (9), (18) is absolutely continuous.
Interestingly, the same is true also in the second case, Jy < Jx :
By varying the quasimomentum associated with the invariant
direction x, the eigenvalues of (10) and (21), which exist since
the spectrum is point, move and draw the energy bands of (9)
and (18). Finally, for Jx = Jy , since in this case the spectrum
of (10), (21) is the same for almost all values of κ , due to
ergodicity of the Hamiltonian, the spectrum of (9), (18) is also
singular continuous. This is the complete description in the
case of null electric field.

The previous results are classical in historical sense. They
are useful to understand the nonzero electric field case. Since β

is rational, we can still use the Hamiltonians (18), (21). In this
case the spectrum of the one-dimensional Hamiltonian (21) is
pure point for any value of α—whether rational or irrational,
small or large. Therefore, we typically expect the spectrum
of (18) to be absolutely continuous, drawn by the eigenvalues
Eν(κ). Of course, this is heuristic discussion is not a substitute
for a rigorous proof, but it can give us a hint into the physical
phenomenon. We therefore conjecture that for any value of α,

and nonzero electric field with a rational direction ratio, the
spectrum is absolutely continuous. Quantum dynamics under
these circumstances should reflect the spectral properties and
be ballistic. We shall prove numerically that this is indeed the
case.

D. Strong-field limit and perturbation theory

In the strong-field limit we can find analytic approximations
of the spectrum by perturbation theory based on Eq. (21).
These results are independent of the rationality of α and of its
amplitude. The case β = 0 has been described in Sec. II D.
The next simplest case is β = 1; i.e., (r,q) = (1,1). In this
case, it is convenient to rewrite Eq. (21) in the form

−[V (p; κ)bp+1 + V ∗(p − 1; κ)bp−1] + edFpbp = E(κ)bp,

where V (p; κ) = (Jxe
−iπαpeidκ + Jye

iπαpe−idκ )/2. Similar to
the case (r,q) = (0,1) analyzed in Sec. II D, the unperturbed
spectrum of the system consists of flat bands separated by
the Stark energy; i.e., E0

ν (κ) = edFν. However, unlike the
case (r,q) = (0,1) the first-order correction to this spectrum
vanishes. The second-order correction is given by

�Eν = |V (ν − 1; κ)|2
edF

− |V (ν; κ)|2
edF

= JxJy

2edF
{cos[2πα(ν − 1) − 2dκ] − cos(2παν − 2dκ)}.

This equation proves that the bandwidths decrease as 1/F

when F increases. This is a special case of a general
perturbation theory result. To treat all other cases (r,q), notice
that according to Eq. (21), the Hamiltonian operator can be
written as H = H0 + V , with

H0 =
∑

p

edFp |p〉〈p|, (25)

V =
∑

p

�(p,q,κ)|p〉〈p + r| + �∗(p − r,q,κ)|p〉〈p − r|

+�(p,r,κ)|p〉〈p + q| + �∗(p − q,r,κ)|p〉〈p − q|,
(26)

where we have put

�(p,q,κ) = −Jx

2
e−iθqpeiqdκ ,

(27)

�(p,r,κ) = −Jy

2
eiθrpe−irdκ .

Two properties of this Hamiltonian are immediately noticed.
First, as noted above, the unperturbed spectrum is equally
spaced. Second, the perturbation V only couples unperturbed
states (here, Kronecker deltas at site p) with quantum numbers
differing by either q or r . For short, denote by Vp,p′ the matrix
elements of the perturbation V in the unperturbed basis.

When q > r � 1 it is then immediate that the diagonal
terms of the perturbation V vanish. Proceed next to consider
second-order perturbation theory: It is composed of terms of
the kind |Vp,p+j |2/(E0

p − E0
p+j ), where E0

p is the unperturbed
spectrum. In our case, j can only take the values ±q, ±r .
Yet, for any of these j , the energy difference (E0

p − E0
p+j ) =

−edFj is the opposite of that of the term −j (the unperturbed
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levels are equidistant), so that the two contributions cancel
exactly, and second-order perturbation theory yields a null
result.

The last observation has also a bearing on the general,
nth term in the Rayleigh-Schrödinger perturbation series for
n � 3, which contains the second-order term as a factor, among
other terms. Typically, the nth term is composed of sums of
products, call them �, of n matrix elements of the perturbation
V . The first term in such summation is always of the kind∏

= Vp,j1Vj1,j2 · · · Vjn−1,p(
E0

p − E0
j1

)(
E0

p − E0
j2

) · · · (E0
p − E0

jn−1

) . (28)

Other terms in the summation giving the nth term contain
shorter “chains” of products of matrix elements, of length
at most n − 1, appropriately multiplied among themselves to
give order n, of course divided by the related denominators. In
some of these, the second-order term appears as a factor.

Notwithstanding this complexity, the particular form of the
Hamiltonian problem (25), (27) permits us to derive a simple
result. In fact, the numerator in Eq. (28) is null unless the
“path” p → j1 → j2 → jn−1 → p is composed of “allowed”
jumps of size ±q, ±r . It is easy to realize that, in order for this
path to comprise the least number of jumps, it must contain a
positive number, s, of steps of length q and a negative number,
t , of steps of length r (or the same with opposite signs), so
that sq + tr = 0. Now, since q and r are relatively prime, the
minimal solutions are s = r,t = −q or s = −r,t = q. This
implies that the minimal number of steps must be n = r + q.
Therefore, when q > r � 1 the first nonzero term in the
Rayleigh-Schrödinger perturbation series for the eigenvalues
is of order n = p + q and is composed of 2( q

p + q ) addenda
of the form (28). All other terms that appear formally in
the analytical expression for the nth term contain shorter
“chains” (and/or the second-order term) and are therefore
null.

The complete expression of the leading perturbation term
can be explicitly computed, using Eq. (27). Yet, notice that all
terms of the form (28) contain the common factor

�r,q(F ) = (−Jx)q(−Jy)r

2q+rF q+r−1
, (29)

and therefore we can write

Eν(κ) � E0
ν + �r,q(F )Pn(κ), (30)

where Pn(κ) is a trigonometric function of the quasimomentum
κ . A consequence of this result is that the rate of ballistic
spreading discussed in Sec. II D is strongly suppressed for
large electric field as soon as the vector F does not point to
a strongly rational direction β. Later on, in Sec. VI B, we
confirm this expectation, as well as the quantitative dynamical
estimates that follow from Eqs. (29) and (30).

V. WAVE-PACKET DYNAMICS:
NUMERICAL TECHNIQUES

To simulate numerically the quantum evolution of the
system we have adopted two different approaches. In the
first, we have used the time-dependent gauge A(t) = A0 +
c(Fxt,Fyt), for which the electric field appears as a periodic
driving of the system. For the static vector potential A0, which

is responsible for the magnetic field, we used the Landau gauge
A0 = B(0,x). This leads to the following Schrödinger equation
with explicit time dependence

ih̄ψ̇l,m = −Jx

2
(e−iωx tψl+1,m + H.c.)

− Jy

2
(e−i(2παl+ωyt)ψl,m+1 + H.c.),

which we have solved employing the standard Runge-Kutta
techniques implemented in MATLAB.

In the second approach, implemented in FORTRAN, we have
chosen the time-independent gauge A = B(−y,0), so that the
Schrödinger equation reads

ih̄ψ̇l,m = −Jx

2
(e−i2παmψl+1,m + ei2παmψl−1,m)

− Jy

2
(ψl,m+1 + ψl,m−1) + ea(Fxl + Fym)ψl,m.

The right-hand side of the equation is in the form of the action
of a time-independent operator on the two-dimensional lattice
vector ψ . We have computed the exponential of this operator
using the repeated Chebyshev expansion [13], combined with
a numerical truncation of the infinite lattice to a strip along
the line of equation Fxl + Fym = 0, that corresponds to the
direction of spreading of the wave packet. This is effected
numerically by introducing slanted integer coordinates l′ = l

and m′ = m + int(Fy

Fx
l). Observe that the directions of increase

of l′ and m′ are no longer orthogonal. Yet, this provides
a convenient re-labeling of lattice sites to enforce the strip
truncation mentioned above. We always checked that the
wave-packet projection at the boundaries of large |l′| and |m′|
is smaller than a very low threshold, at any time during the
evolution.

The initial conditions, obviously common to both ap-
proaches, consisted of two-dimensional Gaussian wave pack-
ets, centered at the origin of the lattice, of adjustable widths:
ψl,m ∼ exp(−Cxl

2 − Cym
2). To simulate an incoherent wave

packet, all components ψl,m have been multiplied by statis-
tically independent random phases eiϑl,m , and an average of
quantum amplitudes over different realizations of the initial
packet has been performed.

Finally, to simulate the dynamics of transporting states
we have first constructed them by using the appropriate
gauge for the magnetic field and then we have applied a
unitary transformation to translate them into the fixed Landau
gauge. For example, for the transporting states (13), which
were constructed using the gauge A0 = B(−y,0), the unitary
transformation reads ψl,m(t = 0) = exp(−i2παlm)�l,m.

VI. WAVE-PACKET DYNAMICS:
THE SEMICLASSICAL REGION

Let us start our analysis of the system dynamics from the
semiclassical region α � 1. It is instructive to have a pictorial
look at four significant cases. We select two values of the
field intensity, the first weak, F = 0.2, and the second strong,
F = 0.5. We combine these with two values of the orientation
of the electric field: a rational value, β = 2/3, and a strongly
irrational one, β = (

√
5 − 1)/2.
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FIG. 5. (Color online) Wave-packet amplitudes |ψ(η,t)|2 versus
η and time, averaged over 12 realizations of the initial incoherent
wave function, for Jx = Jy = 1, α = 1/10, and two electric field
orientations: β = 2/3 (red curve, darker tone) and β = (

√
5 − 1)/2

(green curve, lighter tone). Electric field amplitude is F = 0.2 (top)
and F = 0.5 (bottom).

Since the wave packet spreads in the direction of the η

coordinate of the rotated frame of reference in Eq. (19), we
find it convenient to adopt this coordinate system. Moreover,
since we observe that the wave packet is localized in the ξ

direction, we compute the wave-packet projected amplitude
|ψ(η,t)|2 = ∑

ξ |ψ(η,ξ,t)|2.
In Fig. 5 we display |ψ(η,t)|2 after averaging this quantity

over a number of different realizations of the random phases
in the initial Gaussian wave packet. In the first case, Fig. 5(a),
the electric field amplitude is F = 0.2. We observe for both
orientation of the field subpackets moving at constant speed,
in the positive and negative η directions. The situation changes
radically in Fig. 5(b), drawn on the same scale, now for F =
0.5. Here, we find subpackets traveling in both directions only
in the case of rational orientation of the field, while in the
irrational case we observe localization of the motion also in
the η direction.

To the contrary, the projected distributions on the ξ direction
(not reported here), initialized to a Gaussian, settle to a shape
that is still approximately Gaussian, whose width naturally
depends on the amplitude of the electric field: a clear sign of
Stark localization in the direction of the electric field, which
does not depend on the orientation of this latter. Let us now
consider separately the weak- and strong-field cases.

A. Weak-field limit and transporting states

Suppose now that conditions (6) hold. Then, according to
Sec. III, F < Fcr and the system has transporting islands. The
quantum-mechanical signature of these islands is straight lines
in the energy spectrum, which are clearly observed in Fig. 1.
The slopes of these lines coincide with the drift velocity v∗ of
Eq. (5).

Adapting Eq. (13) of Sec. II B to the present case of rational
field direction, we can construct a family of localized wave
packets, which move at the drift velocity in the direction
orthogonal to the field, without changing their shape. To do
this, we first write these states on the extended lattice that, we
recall, consists of N sublattices:

�s,p =
∫

g(κ)bp(κ)eisdκdκ. (31)

In the above, g(κ) is an envelope function, that we choose of
the form g(κ) ∼ exp[−C(dκ/2π )2]. Then we select from this
(generally very large) array only the complex amplitudes �l,m

which sit on the original lattice. We plot these states in Fig. 3;
the upper row of this figure displays the transporting states
�l,m for (r,q) = (0,1) and (r,q) = (1,1), where we choose
C = 1. For this value of C the states are equally localized in
both directions, parallel and orthogonal to the vector F. If C

is decreased, the states become more extended in the parallel
direction and more localized in the orthogonal direction; see
the lower row in the figure. In the opposite case, i.e., when
C is larger than one, the situation is obviously reversed. In
the limit C → ∞, when g(κ) becomes a Dirac δ function,
the transporting states are extended Bloch-like waves in the
direction orthogonal to the field that carry the current v∗ [1].

Figure 6 depicts the results of numerical simulations for
F = 0.1 and two orientations, β = 1/3 and β = (

√
5 − 1)/4.
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FIG. 6. (Color online) Top panel: The center of gravity of the
specially constructed wave packet x(t) (blue, increasing data) and
y(t) (red, decreasing data) for eaF/J = 0.1 and β = 1/3 (solid
lines) and β = (

√
5 − 1)/4 (dashed lines) versus time, measured in

adimensional units t/TJ , where TJ = 2πJ/h̄ = 2π is the tunneling
period. The lower panels show the wave packets at the end of
numerical simulations, t/TJ = 30, depicted as grey tone images
(black maximum, linear intensity scale), for these two cases.
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Observe that these values are half of those considered in the
previous subsection. As initial condition we choose the wave
packet shown in the upper-left panel of Fig. 3. This packet is
the transporting state for the field direction (r,q) = (0,1). In
this family, it is the easiest to construct numerically. Moreover,
when F is small, it has large overlap with transporting states
for nearby directions as well and it can be used to test the
transporting regime for arbitrary field directions. The solid
lines in panel (a) of Fig. 6 show the wave-packet center of
gravity (x(t),y(t)) for β = 1/3. It is seen that the packet moves
in the direction orthogonal to the electric field, y(t) = −βx(t),
and that the speeds in the two directions are those predicted
by semiclassical analysis. The dashed lines show the same
quantities, now for β = (

√
5 − 1)/4. The lower panel shows

the wave packets at the final time of numerical simulations,
which appears to be still well focused. This confirms the
fact that in this short-time, semiclassical regime, dynamics
is not affected by commensurability of Bloch frequencies. We
comment later on the long-time regime.

When the initial wave function is not in the form of a trans-
porting state, we encounter different dynamical behaviors. If
the initial packet overlaps significantly a transporting state, we
observe a comet-like dynamics with the comet head moving
at the drift velocity and the tail extending in the opposite
direction. Finally, for a generic initial state with small overlap
with the transporting state, the wave-packet dynamics is an
asymmetric ballistic spreading whose dispersion increases in
time approximately as

σ (t) ≈ v∗t/
√

2.

However, the most prominent feature of the weak-field,
semiclassical regime (6) is that it is insensitive to the rational
versus irrational nature of the orientation β, i.e., to the
commensurability of the Bloch frequencies. This conclusion
is consistent with the semiclassical analysis.

B. Strong-field limit

In the large-field limit, eaF/2πJ > α, the scaling law (29),
(30) implies that dispersion of a wave packet is inhibited for
irrational field directions. Therefore, the quantum motion can
only oscillate in width and position. On a relatively short time
scale, this is also the case for “bad” rationals r/q with r,q � 1,
while ballistic spreading can be detected only for β = r/q with
a small denominator.

In the original frame of reference (x,y) the motion can
be well described by the first momenta x(t) and y(t) and by
the dispersion σ 2(t) = a2 ∑

l,m(l2 + m2)|ψl,m(t)|2 − x2(t) −
y2(t). In Fig. 7 we display these data for an initial Gaussian
wave packet with F = 2, α = 1/10 and for rational β = 1/3
and irrational direction β = (

√
5 − 1)/4 ≈ 0.309. The dashed

and solid lines in the lower panel depict the wave-packet
dispersion for these two cases, respectively. As expected, a
secular increase of the dispersion is observed only in the
rational case β = 1/3. In the upper panel, dashed and solid
lines plot x(t) and y(t) in the case of the irrational field
direction β = (

√
5 − 1)/4. The characteristic amplitudes and

frequencies of oscillations of these quantities are defined by

0 10 20 30
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2

x,
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0

10

t/T
J

σ

FIG. 7. (Color online) Dynamics of a localized wave packet for
eaF/J = 2, α = 1/10. The upper panel depicts x(t) (dashed blue
line) and y(t) (solid red line) for β = (

√
5 − 1)/4. Time is measured

in adimensional units t/TJ , where TJ = 2πJ/h̄ = 2π is the tunneling
period period. The lower panel shows the wave-packet dispersion in
the cases β = 1/3 (dashed red line) and β = (

√
5 − 1)/4 (solid blue

line).

Bloch oscillations,

x(t) = Jx

2eaFx

sin(ωxt), y(t) = Jy

2eaFy

sin(ωyt).

The magnetic field distorts these oscillations, the more the
larger the value of α. In particular, for α close to its maximal
value 1/2 (without any loss of generality one may consider
|α| � 1/2) it becomes impossible to recognize Bloch oscilla-
tions in the time evolution of the first momenta. Nevertheless,
the conclusion that a strong electric field localizes the quantum
particle on a lattice remains valid.

When delocalization takes place, it is convenient to consider
the rotated coordinate frame (η,ξ ). This permits us to verify
numerically the scaling law (29), (30). In fact, we expect the
coefficient A in the asymptotic growth of the second moment
in the η direction,

M2(t) := a2
∑

η

|ψ(η,ξ )|2η2 ∼ A2t2,

to be proportional to bandwidth and hence, via Eq. (29), to
F 1−q−r . In Fig. 8 we plot A versus the electric field amplitude
F , for five cases of the ratio β, that takes the rational values
zero, one, one-half, one-third, and two-thirds. Naturally, the
second moment in the field direction ξ is bounded in time. All
data sets were computed as averages over different realizations
of incoherent Gaussian wave packets with the same initial
widths. Values of A were obtained as fits over an asymptotic
time range, extending to a few hundreds (in the units adopted)
for β = 0, and to tens of thousands, for β = 2/3.

Bandwidth affects the dynamics in a second way that might
even be more relevant than the first in laboratory experiments.
In fact, the indeterminacy principle implies that the time
required for the dynamics to “feel” the continuous nature of the
spectrum is inversely proportional to bandwidth. We confirmed
numerically that the larger the value of r + q, the later in time
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FIG. 8. Top: Coefficient of the asymptotic growth of the second
moment in the η direction versus field amplitude F , for (r,q) =
(0,1) (open squares); (r,q) = (1,1) (pluses); (r,q) = (1,2) (crosses);
(r,q) = (1,3) (asterisks); and (r,q) = (2,3) (full squares). Here, α =
1/10. Symbols are joined by lines to guide the eye. Bottom: The
same, now displayed in doubly logarithmic scale. The straight lines
are the large-field estimates A ∼ F 1−q−r .

the asymptotic behavior is achieved: The packet needs more
time to unfold and to “pick up speed.” At fixed, large F , the
packet seems to be “frozen” for times that grow exponentially
in q + r − 1, Eq. (8).

VII. QUANTUM DYNAMICS IN THE GENERAL CASE

In the preceding section we have considered small values of
α, which insures the semiclassical analysis, which obviously
describes the quantum motion appropriately only over a finite
time scale. In this section we discuss the extension to the
general case.

A. Rational orientation, general Peierls phase

We have already commented that, for rational orientations
β, the spectrum should be absolutely continuous for any
value of the Peierls phase α. Quantum dynamics under these
circumstances should reflect the spectral properties and be
ballistic even outside the semiclassical region [15].
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FIG. 9. (Color online) Square root of the second moment M
1/2
2

in the evolution of an incoherent wave packet versus time t and
field intensity F , for α = 1/3 (green lines, lighter tone, crosses) and
α = (

√
5 − 1)/4 (red lines, darker tone, pluses). The field is directed

as (1,1).

This expectation is confirmed by numerical experiments. In
Fig. 9 the square root of second moment is shown versus time
and field intensity F for two (large) values of the Peierls phase,
α = 1/3 and α = (

√
5 − 1)/4 ∼ 0.3090. The orientation is

rational: β = 1. As usual, the incoherent packet is obtained
averaging over realization of random phases. We observe two
regions in the plot: As expected, for large F data are described
by perturbation theory, and no difference between the rational
and irrational case is observed. To the contrary, for small F two
maxima in the ballistic speed (i.e., the slope of the linear growth
of

√
M2) are observed, with a significant depth between them

at around F = 1.25. Clearly, this feature is outside the reach
of semiclassical analysis. Moreover, the smaller the value of
F , the larger become the differences between the rational and
irrational case. At null field, of course, exact analysis predicts
ballistic motion for rational α and anomalous diffusion, i.e.,
quantum intermittency [16,17] for irrational α.

To sum up, for rational β we find novel behaviors outside
the semiclassical region only in the case of small electric
fields. Yet, these novel behaviors are at most variations inside
a general picture of ballistic regime.

B. Irrational orientation, general Peierls phase

Finally, we consider the case of irrational directions of
the electric field. Here, the Hamiltonians (20) and (21) are
not applicable, or rather they can be used in a sequence
of rational approximations (r,q) to an irrational direction. It
seems therefore that in the perturbative regime the bandwidth
(which drives the speed of ballistic spreading, as well as the
time required to start this dynamical regime) is smaller than
any negative power in the field intensity F . Yet, it could be a
nonanalytic function of this latter. This implies that the wave
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FIG. 10. (Color online) Final wave-packet amplitudes at time
t = 5000, versus η and α, with v∗ = 0.5 (red, rightmost packet),
v∗ = 0.25 (green, second from the right), and v∗ = 0.125 (blue, third
packet from the right). In this plot, β = (

√
5 − 1)/2. In addition to the

“classical” subpackets traveling in the positive η direction we observe
stationary populations on the sites near the origin and quantum tails
in the negative η direction.

packet is localized for large electric field at any irrational
direction β.

For small α semiclassical analysis (insensitive to the
rationality of the direction) indicates that the motion should be
ballistic when F < Fcr, i.e., F < 2παJ/ea, a fact confirmed
by numerical experiments (see Fig. 5). We expect this behavior
to hold until deviations from the semiclassical theory emerge.
In fact, the problem of the spectral type for any electric field
intensity should be treated along the lines of [9]: This analysis
should yield the result that the spectrum is pure point, and
quantum motion is localized, albeit the localization length
may be very large, as typically happens in two-dimensional
systems [14].

Recall that the classical Hamiltonian (14) depends only
on the scaled electric field F and its orientation β. Keeping
the direction β fixed, as well as J = Jx = Jy , yields a single
free classical parameter F/2παJ , where F is the amplitude
of the electric field. It turns out that this ratio coincides with
the velocity v∗ times the dimensional constant h̄/J ea2 (that
in the units employed in this work takes the value one). It
is therefore interesting to study the quantum dynamics at
fixed v∗, while varying the semiclassical parameter α. As a
consequence, during this scan, the electric field amplitude
scales as F = 2παJv∗. Again, we observe two quite distinct
dynamical regions. First, for values of the classical parameter
v∗ larger than one, the motion is always localized about the
origin, for any nonzero value of α.

To the contrary, a rich dynamical behavior is observed
for values of v∗ smaller than one. In Fig. 10 we draw the
η projection of the evolved wave-packet amplitude versus
α, for three values of the classical parameter v∗, and for
the irrational value β = (

√
5 − 1)/2. A coherent subpacket

moving in the positive η direction is observed in all cases,
roughly independent of the value of α, for small values of
this parameter. Clearly, this feature should be ascribed to the
classical dynamics. The region of α in which this subpacket is
observed diminishes when increasing v∗, and disappearance
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FIG. 11. Dispersion M
1/2
2 of the wave packet versus time t and

α, for v∗ = 0.5.

of the packet is abrupt. For values of α larger than this critical
threshold, the packet remains localized about the origin.

In Fig. 11 we plot the dispersion of the evolving wave
packet as a function of time and α, for v∗ = 0.5. The changing
dynamical behavior for increasing α noted in the previous
figures is observed also here: One sees an initial ballistic
motion followed by a slower diffusion and by saturation. These
numerical data provide us rough estimates of the transition
time and the localization length. Notice that in this figure α

is proportional to the field intensity F . One could therefore
expect a sharp dependence of localization length on the
external electric field, in line with the theoretical remarks
presented at the beginning of this section.

VIII. CONCLUSIONS

In our previous work [1] we considered the wave-packet
dynamics of a quantum particle in a square 2D lattice in the
presence of a magnetic field normal to the lattice plane and
an electric field, which was aligned along one of the prime
axes of the lattice (for definiteness, the y axis). In this work we
have extended these studies to the case of arbitrary direction of
the electric field vector F. We have confirmed a conjecture put
forward in Ref. [1]: Depending on the electric field magnitude,
the system has two qualitatively different dynamical regimes,
which we refer to as the strong- and weak-field regimes,
respectively.

The new analysis has extended the validity of the theory
developed in [1] and established new phenomena. For instance,
we have used semiclassical analysis to predict ballistic
delocalization for small electric field intensities, and arbitrary
field directions. Under these conditions, we have used spectral
theory to construct nonspreading wave packets traveling at
constant speed, at least for finite times.

In fact, for weak electric field the wave-packet dynamics
is governed by the cyclotron dynamics. This means that the
packet moves in the direction orthogonal to F at the drift
velocity v∗, which is proportional to F , in close analogy
with the problem of a charged particle in a free space
subjected to crossing electric and magnetic fields. However,
the presence of the lattice restricts this behavior to a subspace
of initial conditions discussed in Sec. VI A. For generic initial
conditions we have found that the packet typically splits
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into several packets moving in the orthogonal direction with
different velocities, both positive and negative.

In the strong-field regime the wave-packet dynamics is
governed by the Bloch dynamics of a quantum particle in a
2D lattice. For null magnetic field, in these Bloch oscillations
the packet oscillates near its initial position. The obvious
exception to this oscillatory behavior occurs when the vector F
points to the y direction. Here the packet spreads ballistically
in the direction orthogonal to the field at a rate defined by the
hopping matrix element. A finite magnetic field “generalizes”
this exception to the cases where the vector F points to a
rational direction, i.e., β = r/q, with r,q being co-prime
numbers. However, now the rate of ballistic spreading in
the direction orthogonal to the field is suppressed by a
numerical factor proportional to (1/F )(r+q−1). This functional
dependence implies that in practice the wave-packet spreading
can be detected only for simple rational directions with a small
denominator q.

We have found a critical field magnitude Fcr, which
separates in the parameter space the above discussed regimes,
by generalizing the semiclassical approach of Ref. [1]. This
results in a strongly nonlinear 1D classical system with
quasiperiodic driving. Surprisingly, this effective system ap-
pears to be completely integrable in spite of the quasiperiodic
character of driving, which is a rather rare instance from the
view point of dynamical system theory.

Finally we discussed the validity of the semiclassical
approach. For irrational directions β, at fixed time and classical
parameter F , we observe a sharp suppression of ballistic
spreading, occurring when α overcomes a certain threshold.
Combined with results for rational directions β, this fact leads
us to the conclusion that the energy spectrum of the system is
continuous for rational β and pure point for irrational β. This
result holds for any value of the Peierls phase α, both rational
and irrational.
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APPENDIX: SEMICLASSICAL HAMILTONIANS

Let us obtain Eq. (14) in Sec. III as a semiclassical
approximation of Eq. (21). We follow the same lines as in
the derivation of Eq. (11) in Sec. II B. As above, when |α| is
much less than one, we replace p by the continuous variable ξ

and we introduce the shift operator exp(∂ξ ). On the left-hand
side of Eq. (21) one therefore observes the action of the
operator I:

I = −Jx

2

(
exp

[
− iar√

N
i∂ξ − 2πiα

q

a
√

N
ξ

]
+ H.c.

)

−Jy

2

(
exp

[
− iaq√

N
i∂ξ + 2πiα

r

a
√

N
ξ

]
+ H.c.

)
+ eFξ.

Next, let us introduce the operators X̃ = 2παξ/a and P̃ =
−ia∂ξ , which obey the commutation relation [X̃,P̃ ] = 2πiα.
The previous equation becomes

I = −Jx cos

(
− r√

N
P̃ + q√

N
X̃

)

−Jy cos

(
q√
N

P̃ + r√
N

X̃

)
+ eaF

2πα
X̃.

Finally, using the canonical transformation Y =
(−r/

√
N )P̃ + (q/

√
N )X̃, P = (q/

√
N )P̃ + (r/

√
N )X̃,

we obtain the classical Hamiltonian in Eq. (14).
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