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Feshbach projection formalism for transmission through a time-periodic potential
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The Feshbach projection formalism is applied to consider quantum transmission through a tight-binding wire
subject to a time-periodic potential. The wire is coupled with two leads via the coupling constant vC . The
periodicity of the potential implies an additional temporal dimension that reduces the problem to stationary
transmission through an effectively two-dimensional lattice system. The non-Hermitian effective Hamiltonian
is formulated. Thist allows us to trace the redistribution of resonance positions and resonance widths with the
growth of vC from the weak-coupling to the strong-coupling regime.
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I. INTRODUCTION

The problem of electron, acoustic, or microwave trans-
mission through quantum dots (QDs), billiards, cavities, etc.,
includes the QD and, at least, two half-infinite leads that open
the QD. Therefore, an exact description of open QDs meets the
mathematical problem of matching the wave functions of dis-
crete and scattering states. The full Hilbert space is divided into
two subspaces: subspace Q is formed by the discrete functions
localized within the QD and vanishing outside of it, while the
wave functions of subspace P are the extended eigenfunctions
of the leads. Livshits [1], in 1957, and, independently,
Feshbach, in 1958 [2], introduced the idea and the method of
projection of the total Hilbert space onto the discrete states of
subspace Q. That procedure first formulated the concept of the
effective Hamiltonian defined in subspace P of discrete states.
The effective Hamiltonian is not Hermitian, with discrete
complex eigenvalues corresponding to resonance positions and
widths [3–6]. In the context of the finite-difference method the
effective Hamiltonian was developed in Refs. [7] and [8] (see
Sec. III). The Feshbach projection method was defined for the
stationary processes of transmission through the QD. In the
present paper we develop this method for the time-periodic
perturbation.

Our approach is based on the idea that the time-dependent
Schrödinger equation can be considered as time independent
in an extended Hilbert space, which was introduced by
Sambe [9] for time-periodic Hamiltonians. Considering time
as an extra coordinate in the extended Hilbert space [10,11],
we transform the open, one-dimensional (1D), d = 1 QD
subjected to time-periodic perturbation to a stationary open,
d + 1 QD. If the original d = 1 QD is open via coupling
with two 1D leads, then the effective d + 1 QD is coupled
with 2(2M + 1) leads, where 2M + 1 is the number of
Floquet states. Thereby we derive a d + 1 effective non-
Hermitian Hamiltonian similar to that formulated for the
stationary system [7,8]. For computational purposes this
approach is hardly advantageous over the standard methods
discussed below. However, the complex eigenvalues of the
effective Hamiltonian allow us to trace the evolution of
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resonances [3–6] with the variation of the parameters of the
system.

To be specific, in the present paper we study the transmis-
sion through a periodically driven tight-binding chain of length
N as being dependent on the coupling constant vC between the
1D QD and the leads. In the weak-coupling regime vC � 1
we obtain the double-barrier resonant tunneling structure. The
continuum version of this case was considered by Stone et al.
[12]. For vC = 1 the system is equivalent to the periodically
driven δ-function chain [13,14]. We consider the evolution
of the resonance properties of a harmonic time-dependent
chain not only in the regime of the DBRTS but also in the
case of strong coupling [15–18]. Finally, we calculate the
conductance of the QD versus the frequency and amplitude
of the time-periodic perturbation.

II. TRANSMISSION THROUGH A PERIODICALLY
DRIVEN IMPURITY

In what follows we measure the electron energy in terms
of the characteristic energy E0 = h̄2/2mL2, where L = a0N

is the length of the d = 1 QD and a0 is the numerical step. We
start with the simplest model,

H = −
∞∑

j=−∞
vj |j 〉〈j + 1| + H.c. + 2λ cos ωt |0〉〈0|, (1)

which allows analytical treatment of the problem. We set
vj = 1 except v−1 = vL and v0 = vR . Thus, we have a single
dynamically driven impurity coupled with two continua,
C = L,R, via the coupling constants vC . Model (1) is the
tight-binding analog of the time-periodic 1D Schrödinger
equation of the form [12–14]

i
∂ψ(x,t)

∂t
=

{
− ∂2

∂x2
+ 2λδ(x) cos ωt

}
ψ(x,t). (2)

We present the solution of the Schrödinger equation as

ψj (t) =
∑

n

[√
1

2π sin k0
eikj−iEt

+
√

1

2π sin kn

rne
−iknj−i(E+nω)t

]
, j � 0,
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ψ0(t) =
∑

n

ψne
−i(E+nω)t , j = 0,

ψj (t) =
∑

n

√
1

2π sin kn

tne
iknj−i(E+nω)t , j � 0, (3)

where rn and tn are the reflection and transmission amplitudes
and

− 2 cos kn = E + nω. (4)

Substituting Eqs. (3) into the Schrödinger equation, after
simple algebra we obtain the following equations for the
reflection and transmission amplitudes:

tn = vRψn, rn = vLtn − δn,0,

[exp(ikn)
(
2v2

C − 1
) − exp(−ikn) − E0]ψn

= 2ivC sin kδn,0 + λ(ψn+1 + ψn−1).

We define the transmission probability as the ratio of the
output current flow on the right of the j = 0 impurity site to
the input flow. The current flow is defined as

J (j ) = J0Im[ψ∗(j )ψ(j + 1)], J0 = eh̄

2m∗L
. (6)

Here · · · = ω
2π

∫ 2π/ω

0 . . . dt . Substituting Eqs. (3) into Eq. (6)
we obtain the total conductance

G =
∑

n

|tn|2. (7)

This expression reduces to the standard expression for the con-
ductance in the continuum approximation [19]. It is valid for
low temperatures, kT � h̄ω, and for an infinitesimally small
dc voltage difference applied to the leads [7]. This inequality
bounds the frequency of the time-dependent perturbation from
below. Also, it is assumed that the leads are not subjected to
the ac voltage. Comparing Eq. (7) to the Landauer-Bütticker
formula for the multichannel conductance [7], one can see that
the contributions sin Re(kn)|tn|2 are the electron transmission
probabilities for the left lead with the incident energy E to the
right lead with absorption (emission) of n quanta of energy.

The finite range of the propagation band in the tight-binding
model constitutes the difference between the continuum
model, (2), and the discrete one, (1). Note that only sideband
states located within [−2,2] are open channels. For |E +
nω| > 2 the states become evanescent, i.e., localized in the
vicinity of the impurity. Therefore we obtain from Eq. (4) the
following solutions:

eikn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−E+nω

2 +i

√
1− (

E+nω
2

)2
, if |E + nω| < 2,

− E+nω
2 +

√(
E+nω

2

)2 − 1, if E + nω > 2,

− E+nω
2 −

√(
E+nω

2

)2 − 1, if E+nω < −2.

(8)

In Fig. 2 we show the conductance of the model versus
the incident energy in the propagation band [−2,2] and the
frequency ω for different values of the coupling constant vC .
One can see from Figs. 2(a)–2(c) that the resonance dips in

j=1,    2,   ...      N  

L R

v
C

v
C

V(t)  V(t)   ...     V(t)

FIG. 1. Schematic of an N-site chain connected to semi-infinite
wires via the hopping matrix element vC . All other hopping matrix
elements equal unity. Each site j = 1,2, . . . ,N within the box is
subject to the time-periodic potential V (t) = 2λ cos ωt .

the conductance at nω = ±(E − 2), n = 1,2, . . . , evolve into
the resonance satellite peaks at nω = E, n = 0, ± 1, ± 2, . . . ,

as the coupling constants decrease. In Fig. 2(d) we see that
the resonance dips in the conductance reappear in the strong-
coupling regime vC = 2.

Let us now consider the tight-binding chain of length N

subject to the time-periodic potential as shown in Fig. 1. The
total Hamiltonian of the chain with attached leads has the form

H = −
0∑

j=−∞
|j 〉〈j + 1| −

∞∑
j=N+1

|j 〉

× 〈j + 1| − vC |0〉〈1| − vC |N〉〈N + 1|

− H.c. −
N∑

j=1

|j 〉〈j + 1| + 2λ cos ωt

N∑
j=1

|j 〉〈j |, (9)

where the first two terms describe the leads (continua), the left
and the right, the next two terms couple the chain to the leads,
and the last term describes the chain. The case of vC = 1 was
considered in Ref. [10], where the conductance resonant dips
were observed similarly to the case N = 1 shown in Fig. 2(a).
Calculation of the reflection and transmission amplitudes is
straightforward, similar to the previous case, N = 1, and is
based on the fact that the chain is periodically driven as a
whole. Then we can write the solution inside the chain in the
form

ψj (t) =
M0∑

n=−M0

(ane
iknj + bne

−iknj )e−i(E+nω)t ,

j = 1,2, . . . ,N, (10)

while the solution outside the chain has the same form as
given in Eq. (3). Writing the Schrödinger equation for sites
j = 0,1 and for j = N,N + 1, one can obtain 4(2M0 + 1)
closed equations for rn, tn, an, and bn, similar to those given
in Ref. [8]. We skip this well-known procedure and go to the
next section, where we calculate the transmission by use of
the effective Hamiltonian.

III. GENERAL EQUATIONS

A. The Feschbach projection formalism for
stationary transmission

Let HB be the Hermitian Hamiltonian of a closed quantum
system with the Dirichlet boundary conditions. The eigenvalue
problem HB |b〉 = Eb|b〉 is assumed to be solved for the
bound states |b〉 with the normalization condition 〈b|b′〉 = δbb′
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FIG. 2. (Color online) Conductance in the single-site model, (5), with λ = 0.75, M0 = 10 versus the incident energy E and frequency ω

for different values of the coupling constant vC . (a) vC = 1, (b) vC = 0.75, (c) vC = 0.25, and (d) vC = 2.

and discrete eigenenergies Eb. When embedded into the
continuum of scattering states, the discrete eigenstates of
the closed system turn over into resonance states with a
finite lifetime. These states are eigenstates of the effective
non-Hermitian Hamiltonian Heff of the open quantum system
[3,4,6,15,20,21],

Heff = HB +
∑
C

VBC

1

E+ − HC

VCB. (11)

Here VBC and VCB stand for the coupling matrices between
the eigenstates of HB and the environment that consist
of different continua C. In the weak-coupling regime the
complex eigenvalues of the effective Hamiltonian determine
the positions and widths of the resonance states.

An evaluation of the transmission coefficient involves
inversion of matrix E − Heff . For this one may use the site
representation of Datta [7]. This approach is computationally
efficient because the effective Hamiltonian is a sparse matrix.
The second, physically more transparent way is to use the
eigenstates of the closed system HB |b〉 = Eb|b〉 [8]. Here for
the reader’s convenience we explore a tutorial model of the 1D
tight-binding chain with Hamiltonian (9) shown in Fig. 1. The
eigenenergies and eigenfunctions of the chain of length N are
the following:

En = −2 cos πn/(N + 1), n = 1,2, . . . ,N, (12)

ψn(j ) =
√

2

N + 1
sin

(
πnj

N + 1

)
, j = 1,2, . . . ,N. (13)

The eigenfunctions of semi-infinite wires, left and right, are,
respectively,

ψE(j ) =
√

1

2πρ(k)
sin k(1 − j ), ψE(j )

=
√

1

2πρ(k)
sin k(N + 1 − j ), (14)

with the energy spectrum given by

E(k) = −2 cos k, − π < k � π, (15)

where ρ(k) = dE/dk = 2 sin k is the density of states of the
semi-infinite wire. The leads are attached to the chain at sites
j = 0,N + 1 via the hopping matrix element vC , which is the
coupling constant of the closed chain with two continua as
shown in Fig. 1. In the site representation the Hamiltonian of
chain HB takes the standard form of two off-diagonals:

HB =

⎛⎜⎜⎝
0 −1 0 · · ·

−1 0 −1 · · ·
0 −1 0 · · ·
...

...
... · · ·

⎞⎟⎟⎠ . (16)

The second contribution in Eq. (11) can be written as [7,8]

v2
L〈0| sin2 k

E − HC

|1〉 = −v2
Leik, (17)

where vL = 〈0|V |1〉. One can obtain the same expression
for the coupling with the right lead. Therefore the second
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contribution to the effective Hamiltonian is presented by only
two diagonal terms given by the last term in Eq. (17). As a
result, we obtain

Heff =

⎛⎜⎜⎜⎜⎜⎜⎝

−v2
Leik −1 0 · · · 0 0

−1 0 −1 · · · 0 0
0 −1 0 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 0 −1
0 0 0 · · · −1 −v2

Reik

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

One can see that the effective Hamiltonian, (18), differs from
the Hamiltonian of the closed chain, (16), by only two diagonal
matrix elements.

B. The concept of the effective Hamiltonian for the
time-periodic perturbation

We consider that the periodically oscillating potential

Vj (t) = 2λ cos ωt, j = 1,2, . . . ,N, (19)

is applied to the chain. Therefore we can present the wave
function as

ψj (t) =
∑
m

ψm,j e
−i(E+mω)t .

Then the Schrödinger equation for sites j = 0,1, . . . ,N,N + 1
gives us the following algebraic equations:

(E + mω)ψm,0 + ψm,−1 + vCψm,1 = 0,

(E + mω)ψm,1 + vCψm,0 + ψm,2

− λ(ψm+1,1 + ψm−1,1) = 0,

(E + mω)ψm,j + (ψm,j+1 + ψm,j−1)
(20)

− λ(ψj,m+1 + ψj,m−1) = 0,

(E + mω)ψm,N + ψm,N−1 + vCψm,N+1

− λ(ψm+1,N + ψm−1,M ) = 0,

(E + mω)ψm,N+1 + ψm,N+2 + vCψm,N = 0.

Because of the time-periodic modulation the particle traveling
through the chain can absorb and emit quanta of energy. Then
the solution of the time-dependent Schrödinger equation in the
leads can be written analytically [19,22–24],

ψj (t) =
{∑

m
e−i(E+mω)t√

2πρ(km)

[
tLmeikmj + rL

me−ikmj
]
, left,∑

m
e−i(E+mω)t√

2πρ(km)

[
tRmeikmj + rR

me−ikmj
]
, right,

(21)

where

E + mω = −2 cos km, ρ(km) = ∂E/∂km. (22)

Substituting Eqs. (21) for sites j = −1,0 and j = N + 1,
N + 2 into Eq. (20), one can link the incoming amplitudes tLm
and tRm with the outgoing ones rL

m and rR
m via the Floquet

scattering unitary matrix [19,23]. A similar approach was
developed in Refs. [25] and [26] to account for temperature
effects in the application to quantum pumping. In the present
paper we present a different approach for the scattering

matrix theory based on an equivalence of the time-periodic
transmission through a d-dimensional lattice system to the
stationary transmission through a d + 1–dimensional system.
Let us rewrite the Schrödinger equation for the stationary
transmission through a 1D chain as follows:

Eψ0 + ψ−1 + vCψ1 = 0, Eψ1 + vCψ0 + ψ2 = 0,

Eψj+(ψj+1+ψj−1)=0, EψN+ψN−1+vCψN+1 = 0, (23)

EψN+1 + ψN+2 + vCψN = 0.

Comparison of this equation with Eq. (20) shows that, first,
Eq. (23) describes transmission through a two-dimensional
(2D) lattice box with unit hopping matrix elements along
the transport axis and with hopping matrix elements along
the auxiliary temporal axis given by λ [27]. Moreover. the
effective potential V (m) = −ωm is applied, which means a
constant electric field ω directed along the temporal axis. That
effective 2D box has numerical dimension N × (2M + 1),
where the second dimension 2M + 1 is the total number of
sidebands. Generally, the temporal length of the billiard is
infinite, however, in computations we take a finite M . A good
accuracy of numerical computations is achieved for M < λ/ω

[28]. Second, Eq. (20) shows that this effective 2D lattice box
is coupled with 2M + 1 wires from both the left and the right
as shown in Fig. 3. The eigenfunctions of the wires are

ψm(j ) =
√

1

2πρm(k)
sin km(1 − j ), ρm(k) = 2| sin km|

= 2
√

1 − (E + mω)2/4. (24)

Next, one can write the effective Hamiltonian for this open
2D box. For simplicity we present two cases: N = 1 and
N = 3. For N = 1 the effective 2D lattice box takes form

m=−1

m=0

m=1

v
L

v
L

v
L v

R

v
R

v
R

FIG. 3. Effective two-dimensional lattice box of N (2M + 1) sites
connected to 2M + 1 semi-infinite wires. Each pair of left and
right wires has the propagation band E + mω = −2 cos km. The unit
hopping matrix elements along the chain are shown by solid lines,
the hopping matrix elements λ along the temporal axis are shown by
dotted lines, and the couplings between the semi-infinite wires and
the box are shown by dashed lines.
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of a vertical tight-binding chain of the length 2M + 1 with
the hopping matrix element λ as shown in Fig. 4. In the site
representation the Hamiltonian has the following form:

HB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

· · · 2ω −λ 0 0 0 · · ·
· · · −λ ω −λ 0 0 · · ·
· · · 0 −λ 0 −λ 0 · · ·
· · · 0 0 −λ −ω 0 · · ·
· · · 0 0 0 −λ −2ω · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

v
Cm=1

m=0

m=−1

v
C

v
C

v
C

v
C

v
C

λ

λ

FIG. 4. Vertical chain of three temporal sites coupled via λ (dotted
lines) and connected to three semi-infinite wires (dashed lines).

Respectively, we have for the effective Hamiltonian,

Heff =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
· · · 2ω − 2v2

Ceik2 λ 0 0 0 · · ·
· · · λ ω − 2v2

Ceik1 λ 0 0 · · ·
· · · 0 λ −2v2

Ceik0 λ 0 · · ·
· · · 0 0 λ −ω − 2v2

Ceik−1 λ · · ·
· · · 0 0 0 λ −2ω − 2v2

Ceik−2 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

The factor 2 in terms 2v2
Ceikm is due to the fact that each site of the vertical chain is coupled with two wires as shown in Fig. 4.

Generalization to the case N > 1 is straightforward in accordance with Fig. 3. For example, if N = 3 and M = 1, we have

HB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω −1 0 λ 0 0 0 0 0
−1 ω −1 0 λ 0 0 0 0
0 −u ω 0 0 λ 0 0 0
λ 0 0 0 −u 0 λ 0 0
0 λ 0 −u 0 −u 0 λ 0
0 0 λ 0 −u 0 0 0 λ

0 0 0 λ 0 0 −ω −u 0
0 0 0 0 λ 0 −u −ω −u

0 0 0 0 0 λ 0 −u −ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(27)

and

Heff =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω − v2
Ceik1 −1 0 λ 0 0 0 0 0

−1 ω −1 0 λ 0 0 0 0
0 −1 ω − v2

Ceik1 0 0 λ 0 0 0
λ 0 0 −v2

Ceik0 −1 0 λ 0 0
0 λ 0 −1 0 −1 0 λ 0
0 0 λ 0 −1 −v2

Ceik0 0 0 λ

0 0 0 λ 0 0 −ω − v2
Ceik−1 −1 0

0 0 0 0 λ 0 −1 −ω −1
0 0 0 0 0 λ 0 −1 −ω − v2

Ceik−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (28)

Finally, we can write the scattering matrix similarly to the
stationary case [4–6,8],

SCmC ′
m′ = δCmC ′

m′ − 2πi〈E,Cm|VCmB

1

E − Heff
VBC ′

m′ |E,C ′
m′ 〉

=
(

R̂ T̂ ′

T̂ R̂′

)
, (29)

where matrix blocks T̂ and R̂ consist of elementary transmis-
sion and reflection coefficients tmn and rmn.

Let us introduce the biorthogonal basis [6,8],

Heff|μ) = zμ|μ),(μ|μ′) = δμ,μ′,
(30)

|μ) = |μ>, (μ| =< μ|∗.
Then the S matrix takes the following form:

SCC ′ = δCC ′δmm′ − 2πi
∑

μ

〈E,Cm|VCB |μ)(μ|VBC |E,C ′
m′ 〉

E − zμ

.

(31)
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Equation (31) clearly shows that the transmission and reflec-
tion properties of the quantum system are given by complex
eigenvalues zμ and a coupling matrix with the continuum C,
〈E,C|VCB |μ) [8].

IV. NUMERICAL RESULTS

We start with the simplest case of a periodically driven
site (N = 1). Surprisingly, even this case has turned out to be
rather rich for variation of the coupling constant vC .

The conductance given by Eq. (7) with tm = T0m found from
Eq. (29) is shown in Fig. 2. For the weak-coupling regime the
resonances in the transmission are given by the eigenvalues of
the vertical chain shown. In the chain with three vertical sites,
m = ±1,0 (three side bands), shown in Fig. 4 the eigenvalues
of Hamiltonian HB can be written analytically:

Eb = 0, ±
√

ω2 + 2λ2. (32)

These eigenenergies are plotted in Fig. 5(a) by solid lines. One
can see that they well describe the frequency dependence of
the resonances in the periodically driven site. In general the
eigenvalues of Hamiltonian (25) can be written analytically
only approximately near the band edge [29]. However, one can
easily find the eigenvalues of Hamiltonian (25) numerically.
The eigenvalues are plotted by solid lines in Figs. 6(b), 6(c),

and 6(d) for M = 2, M = 10, and M = 20, respectively. The
above cases are equivalent to stationary transmission through
a vertical chain of length 3, 5, 21, and 41 sites, with 6,
10, 42, and 82, wires respectively. Figures 5(b) and 5(c)
shows distinctively that an increase in the number 2M + 1
of sidebands gives rise to a fine structure of the transmission
probability located inside the rhombus-like domain | E

vC
+

ω
λ
| = 2. Comparing the cases M = 10 and M = 20, one finds

that the number of sidebands affects only the fine structure
inside the rhombus-like domain, and does not change the
transmission beyond. This agrees with the estimation of
the number of sidebands necessary to accurately calculate the
conductance ω � λ/M [28].

Let us see what happens with the growth of the coupling
constant vC . In the 1980s, a detailed investigation of this
question was done in Ref. [15]. As vC increases, the line widths
grow as v2

C , as seen from Eqs. (26) and (28), to give rise to
overlapping of the resonances. That occurs when the resonance
width reaches the mean distance between the eigenvalues of
the closed system. In the limiting case of strong coupling
vC 	 1, the results are governed by the algebraic structure
of the anti-Hermitian part of the effective Hamiltonian [15].
Due to this structure, width bifurcation accompanied by a
sharp redistribution of widths occurs at 	r � 1 [16,17]. As a
result, K rapidly decaying states are formed, where K is the

FIG. 5. (Color online) Conductance of a periodically driven single site with parameters λ = 0.75 and vC = 0.2. The cases (a) of 3 sidebands,
with m = 0, ± 1, (b) of 5 sidebands, (c) of 21 sidebands, and (d) of 41 sidebands. Eigenenergies of Hamiltonian (25) are presented by solid
lines.
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−2 −1 0 1 2
0

0.5

1

1.5

2

E
r

Γ r

(b)

−2 −1 0 1 2
0

0.5

1

1.5

2

E
r

Γ r (c)

(d)

FIG. 6. Evolution of resonance positions Er = Re(z) and resonance widths 	r = −Im(z)/2 with growth of the coupling constant vC from
0 to 5, where z are eigenvalues of the non-Hermitian effective Hamiltonian of a single periodically driven site N = 1 for M = 4, λ = 0.5,
E = 0. (a) ω = 0.25, N = 1, (b) ω = 0.5, N = 1, (c) ω = 0.25, N = 3, and (d) ω = 0.5, N = 3.

number of open channels. The rest of the intermediate states
are long-lived and have small excitation cross sections. An
analysis of the width behavior as a function of the coupling
constant is given in Ref. [18] in the case of a single open
channel.

In our case of a periodically driven chain the number of
open channels K = 2(2M + 1), as one can see from Eqs. (26)

and (28), while the dimension of the closed d + 1 box equals
N (2M + 1). Therefore, resonance trapping occurs with growth
of the coupling constant when N > 2. That conclusion is
illustrated in Fig. 6(a) for a chain with N = 1 and in Fig. 6(c)
for a chain with N = 3 for the low frequency ω = 0.25.
However, for the higher frequency ω = 0.5 the number of
continua is restricted by the finite width of the propagation

FIG. 7. (Color online) Conductance of a chain subject to the time-periodic perturbation V (t) = λ cos ωt for λ = 0.5, ω = 1 versus energy
and the coupling constant vC for (a) N = 1, M0 = 1 and (b) N = 3, M0 = 1. Resonance positions given as real parts of the complex eigenvalues
of the effective Hamiltonian, (26) and (28), are shown by white lines. Eigenenergies of the Hamiltonian, (25) and (27), are shown by solid (red)
lines.
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FIG. 8. Evolution of resonance positions Er = Re(z) and resonance widths 	r = −Im(z)/2 (normalized by v2
C) as a function of frequency

for different coupling constants vC for N = 1, M0 = 5, λ = 0.5, E = 0. (a) vC = 0.5, (b) vC = 1, (c) vC = 1.25, and (d) vC = 1.5.

band of the tight-binding leads [−2,2]. As soon as the sideband
E + nω goes beyond the principal band [−2,2], it ceases
to be a propagating channel. Respectively, the number of
fast-decaying states is decreased compared to that at the lower
frequency, as one can see from Figs. 6(b) and 6(d). For the low
frequency (ω = 0.25) all sidebands are inside the principal
band, and therefore K = 2(2M + 1) = 18 resonances become
very broad, while the rest, 2M + 1 = 9 resonances, remain
very narrow as illustrated in Fig. 7(c).

One can see from Fig. 7(a) that for a periodically driven
single site, resonance positions given by real parts of the
complex eigenvalues of the effective Hamiltonian (28) well
describe the transmission peaks for 2v2

C < 1 only, while for
vC 	 1 there are no resonance peaks. However, when N = 3
the real parts of the complex eigenvalues well describe the

transmission peaks not only for 2v2
C < 1 but also for vC 	 1

as shown in Fig. 7(b). These numerical results illustrate the
rules considered above. Here we are restricted by the minimal
number of the sidebands in order to avoid a complicated
behavior of eigenvalues of the effective Hamiltonian. Even
in the case of three sidebands the N = 3 periodically driven
chain displays a branching point at E = 0, vC = √

2 as shown
in Fig. 7(b) (see details in Refs. [16], [17], and [30]). Figure 8
demonstrates the complicated behavior of resonance due to
the finite band in the tight-binding wire at vC ≈ 1.

Figure 9 shows transmission vs frequency and amplitude
of the time-periodic perturbation λ for two values of incident
energy, E = 0 and E = 1. For a small coupling of the impurity
site with the leads E = 0 the transmission peaks follow the
eigenenergies of a closed vertical chain of length 2M + 1

FIG. 9. (Color online) The transmission through a single impurity site versus the frequency and amplitude of oscillations for vC = 0.2,
M0 = 10. (a) E = 0 and (b) E = 1. Zeros of the transmission shown by solid lines follow zeros of the Bessel function of the zeroth order,
J0(2λ/ω) ≈ 0 [31,32].
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FIG. 10. (Color online) Conduction vs incident energy E and frequency ω for N = 3, M0 = 10, λ = 0.5. (a) vC = 1 and (b) vC = 0.25.
Open circles show eigenenergies of a closed chain with N = 3.

with the hopping matrix λ which are given by Eq. (32)
for M = 1.

For E = 0 the transmission zeros in Fig. 9(a) are in full
agreement with the results of Wagner [31,32]. However, for
E = 1 the transmission zeros do not behave simply as Fig. 9(b)
shows. Conduction vs energy and frequency in the case N = 3
is shown in Fig. 10. Similarly to the case N = 1 shown
in Fig. 2(a), there are only slightly prominent resonance
dips. However, in the weak-coupling regime one can see
distinctive resonance sheaf structures, each originated from
the eigenenergies of the chain N = 3 shown in Fig. 10(b) by
open circles.

V. SUMMARY AND DISCUSSION

The Büttiker-Landauer conductance of a QD can be defined
by the Green’s function, which is an inversion of E − Heff

where the effective non-Hermitian Hamiltonian is the result
of projection of the full Hermitian Hamiltonian onto the
eigenstates of a closed QD. The ac gate potential in a QD
can transfer an incident electron of energy E to sidebands
at E + nω, n = −M, − M + 1, . . . ,M − 1,M . Although the
number of continua is increased by 2M + 1 times, the
Feshbach projection technique can be applied to give rise to an

Heff of dimension (2M + 1)N , with N the number of states of
the QD. In this paper we derived the Heff for some simple cases
of tight-binding 1D QDs (chains) with a restricted number of
sites subject to the harmonically driven potential. One can see
that the matrix of Heff given by Eqs. (26) and (28) has a simple
banded structure.

We introduced the parameter vC , which is the coupling
constant between the closed QD and the leads. Although our
approach in the case vC = 1 reproduces results established
before, it reveals an advantage of the effective Hamiltonian
in the regimes of a weak and a strong coupling constant. It
provides an opportunity to interpret numerical results (Figs. 7
and 10) in terms of the complex eigenvalues z of the effective
Hamiltonian. Re(z) is the position of a resonance peak, with the
resonance width given by −Im(z)/2. That statement is obvious
for vC � 1 when the radiation shifts are small. Interestingly,
the resonance peaks also follow Re(z) in the strong-coupling
regime vC 	 1 as shown in Fig. 7(b).
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