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Finite topological quantum systems can undergo continuous metastable quantum phase transitions to

change their topological nature. Here we show how to nucleate the transition between ring currents and

dark soliton states in a toroidally trapped Bose-Einstein condensate. An adiabatic passage to wind and

unwind its phase is achieved by explicit global breaking of the rotational symmetry. This could be realized

with current experimental technology.
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Phase transitions have long been considered equilibrium
phenomena of infinite systems that can involve interesting
nonequilibrium nucleation dynamics, e.g., the formation of
topological defects [1]. In recent years, quantum phase
transitions have also been identified in excited states of
nuclei as well as ultracold quantum gases [2–5] by the
nonanalytic change in spectral properties, or their finite-
system precursors, as a system parameter is changed. Such
phase transitions are not manifested in equilibrium but they
have dynamical consequences [3,4]. So far, little is known
about the nucleation process.

Nucleation of equilibrium quantum phase transitions
often relies on external symmetry breaking, which can
occur locally. An example is the Ising model [6], where a
tiny external magnetic field is sufficient for breaking the
rotational symmetry of the spins and allowing the system
to equilibrate. Similar mechanisms were discussed in the
context of vortex nucleation in Bose gases [7–9]. Here we
theoretically investigate the quantum phase transition be-
tween metastable states of a Bose gas in a rotating toroidal
trap identified in Ref. [5]. The transition occurs between
topological vortex states and nontopological soliton states.
Vortex states of N atoms correspond to ring currents and
carry integer angular momentum per particle L=ðN@Þ ¼ J.
As the rotation frequency of the trap � is changed, the
ground state jumps between vortex states [10] and thus the
integer J is a topological charge. The soliton states carry
noninteger L=ðN@Þ. In mean-field theory they are approxi-
mated by dark solitons [11], which carry a localized den-
sity notch and thus break rotational symmetry in addition
to changing the topological nature of the system, although
no symmetry breaking is required for the phase transition
in the quantum description of the finite system.

In this Letter, we show how to nucleate the phase
transition by means of a global symmetry-breaking poten-
tial, which creates an adiabatic passage through metastable
states. Although symmetry can be restored for a finite

system, the passage naturally leads to the emergence of
symmetry-broken soliton solutions for large particle num-
ber N. In order to maintain metastability, we further find
that local symmetry breaking needs to be avoided as it
would lead to the unwanted thermalization of the excited
states [12]. This is in stark contrast to equilibrium phase
transitions, where thermalization is desirable. The explicit
global symmetry breaking is achieved by tilting the trap
axis by some angle � and rotating it with the frequency�.
The frequency � is decreased from a maximum value
�initial to a minimum value �final within a finite time
interval, after which the tilt is decreased. Under certain
conditions angular momentum is established in the Bose
gas up to a dark soliton state or a vortex state as seen in
Figs. 1 and 2, respectively. The protocol is counterintuitive
as we decrease the rotation frequency of the system to
increase its angular momentum. It is reminiscent of the
stimulated Raman adiabatic passage used in quantum op-
tics to populate a metastable state through an intermediate
level by a counterintuitive pulse sequence [13].
Interacting bosonic atoms of mass m confined to a

rotating toroidal trap are described by the Hamiltonian

Ĥ ¼
Z

dx�̂y
�
� @
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where �̂ � �̂ðxÞ is the atomic field operator, U the bare
interaction constant that is assumed repulsive (U > 0), and
� ¼ mgR sinð�Þ the strength of the symmetry-breaking
potential (where mg is the gravitational force). The toroi-
dal trap is approximated by a one-dimensional ring of
radius R.
Let us first discuss the outlined problem in the mean-

field approximation. Using a rotating coordinate frame
with frequency � and introducing the scaled variables

PRL 108, 250402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

0031-9007=12=108(25)=250402(5) 250402-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.250402


� ¼ x=R, � ¼ tE0=@, ! ¼ @�=ð2E0Þ, the Gross-
Pitaevskii (GP) equation reads [11]

i
@�

@�
¼
�
�ð@�� i!Þ2þ2�
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E0

j�j2þ �

E0

cosð�Þ
�
�; (2)

where � ¼ UðN � 1Þ=ð2�RÞ and E0 ¼ @
2=ð2mR2Þ gives

the relevant energy scale. The classical field � is normal-
ized as

R
2�
0 j�j2d� ¼ 1 and it is periodic on �, �ð0Þ ¼

�ð2�Þ. We apply Broyden’s method [14] to solve Eq. (2)
numerically for the stationary solutions �ð�;�Þ ¼
�ð�Þe�i��, where �E0 is the chemical potential. For
� ¼ 0we present in Fig. 3(a) three solutions corresponding

to two vortex states �ð�Þ ¼ eiJ�=
ffiffiffiffiffiffiffi
2�

p
with J ¼ 0 and

J ¼ 1, which are connected by a soliton branch. Finite �
opens a gap in the soliton branch, see Fig. 3(b). The lower
branch corresponds to a soliton sitting on the crest, while
the upper branch connects to a soliton located in the trough
of the external potential. In the following we will show that
the lower branch is dynamically unstable, while the upper
branch is stable. Thus an adiabatic passage through the
upper branch is possible. Numerical simulations of the
system dynamics on the basis of Eq. (2) confirm this
expectation. The solid lines in Figs. 1(b) and 2(b) show
the momentum per atom as a function of time for the
adiabatic protocols shown in the top panels. The final
soliton and vortex states are shown in Figs. 2(c) and 2(d),
respectively.

Mean-field theory thus presents the following picture:
the bifurcation points between the soliton and vortex

branches seen in Fig. 3(a) mark the transition between
rotationally symmetric, and symmetry-broken [Fig. 2(c)]
phases. With finite �, the symmetry is formally broken
everywhere and the bifurcation makes way to a swallowtail
structure [15] in Fig. 3(b). In contrast to the dynamics of
continuous phase transitions in infinite systems where
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FIG. 2 (color online). Adiabatic passage from the ground state
to the J ¼ 1 vortex state. (a) Protocol for variations of the
perturbation parameter � (dashed line) and the precession fre-
quency ! (full line) for � ¼ 0:8E0. (b) Angular momentum per
particle in the mean-field approximation (full line) and proba-
bility density of the corresponding quantum simulation as in
Fig. 1. The dark soliton state (c) and the vortex state (d) represent
the final states of the corresponding mean-field simulations. Full
lines represent density, dashed lines represent phases.
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FIG. 3 (color online). The energy of the GP equation (upper
row) and the energy spectrum of the Hamiltonian [Eq. (9)] in the
two-mode approximation (lower row). Parameters are � ¼
0:8E0, and � ¼ 0 (left column) and � ¼ 0:04E0 (right column).
The arrows show the passage under adiabatic change of the
frequency !. Three distinct solutions exist in panel (a) between
the bifurcation points !� � 0:13 and !þ � 0:87.
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FIG. 1 (color online). Adiabatic passage from the ground to
the dark soliton state. (a) Protocol for variations of the perturba-
tion parameter � (dashed line) and the precession frequency !
(full line) for � ¼ 0:8E0. (b) Angular momentum per particle in
the mean-field approximation [Eq. (2)] over time (full line) and
probability density of the quantum two-mode simulation with
the Hamiltonian [Eq. (9)] on the same axes. White and black
correspond to zero and maximum probability density, respec-
tively. Phase portraits of Eq. (3) are presented for ! ¼ 0:7 (c)
and ! ¼ 0:5 (d).
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adiabaticity is always violated [1], an adiabatic passage is
established (arrows in Fig. 3) to change the symmetry
properties of the initial state. Due to the global nature of
the symmetry-broken state with a single soliton in the
whole ring there is no formation of domain structures
with locally broken symmetry in further contrast to
Ref. [1].

We proceed with discussing and quantifying the neces-
sary conditions for an adiabatic passage. Useful insight
into the physics of the considered process is obtained
within a two-mode approximation, which is justified for
small � � E0. Neglecting all coefficients in the Fourier
expansion except k ¼ 0, 1 of the function �, �ð�;�Þ ¼P

kbkð�Þ expðik�Þ, the system dynamics is described by the
effective Hamiltonian

Hcl¼E0ð1�2!ÞIþ�Ið1�IÞþ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ið1�IÞ

p
cos#; (3)

where I ¼ jb1j2 and # is the relative phase for the ampli-
tudes b0 and b1. The phase portrait of Eq. (3) contains a
stability island around the elliptic point ðI; #Þ ¼ ðI�; 0Þ [cf.
Figs. 1(c) and 1(d)], where I� � 1=2þ ð1=2�!ÞE0=�
depends linearly on ! and reaches values of zero and
unity for

!� ¼ 1

2
� �

2E0

; (4)

respectively. We note that in the lab frame this stability
island corresponds to a nonlinear resonance. Thus the
adiabatic passage has a simple physical interpretation: by
ramping � to a finite value we capture the system into the
nonlinear resonance, transport it to any desired value of I
by adiabatically changing the frequency ! from !initial *
!þ to !final, and release the system by ramping � back to
zero. The necessary condition for the time scale of this
process is �t � ��1

s , where �s � ffiffiffiffiffiffi
��

p
=@ is the fre-

quency of small oscillations near the elliptic point of the
stability island (the approximate sign is replaced by an
equal sign for ! ¼ 1=2).

For stronger nonlinearity, � > E0, when the two-mode
approximation is not justified, the adiabaticity conditions
and stability can be studied using the Bogoliubov ap-
proach, which linearizes the time dependent GP equation
[Eq. (2)] [11]. This leads to the eigenvalue problem

	iui ¼ ðĤGP ��þ 2��=E0j�j2Þui þ 2��=E0�
2vi;

�	ivi ¼ ðĤGP ��þ 2��=E0j�j2Þvi þ 2��=E0�
�2ui:

(5)

Here, � ¼ �!ð�Þ is the stationary solution for the upper

soliton branch in Fig. 3(b) and ĤGP is given in the square
brackets in Eq. (2). For the lower branch we find a single
imaginary eigenvalue 	, which indicates that the solutions
on this branch are dynamically unstable [11]. The
Bogoliubov analysis for the upper branch indicates that it
is dynamically stable and that there is a gap to the lowest

lying elementary excitation. The corresponding frequency
�s ¼ 	E0=@ has the asymptotic behavior

�s ¼
( ffiffiffiffiffiffi

��
p

=@; � � E0ffiffiffiffiffiffiffiffi
E0�

p
=@; � � E0

: (6)

For small nonlinearities where � � E0 this result agrees
with the previous two-mode analysis.
The large � result can be understood by noting that the

soliton is a localized object. In this case�s is interpreted as
the frequency of small oscillations of the soliton around a
stationary point. Indeed, it can be shown that the small
oscillations of the soliton around the stationary points are
described by the equation [16]

m

�
@�s

@t

�
2 � �

2R2
�2

s � const; (7)

which is valid for � � E0=@. The� sign corresponds to a
soliton sitting at the trough or the crest of the potential,
respectively. While the minus sign describes an unstable
situation [lower soliton branch in Fig. 3(b)], the plus sign
describes harmonic oscillations of a particle with mass 2m.
The soliton located in the trough is thus dynamically

stable, with the frequency of small oscillations �s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2mR2Þp ¼ ffiffiffiffiffiffiffiffi

E0�
p

=@.
In practice, the adiabaticity condition �t � ��1

s dis-
cussed above should be made even stronger by requiring
that accelerated rotation should displace the soliton by less
than the the soliton core size, which is of the order of the

healing length 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@
2=2m�

p
. This yields the condition

@�

@t
� 


R

E0�

@
2
: (8)

The numerical simulation of the system dynamics confirms
the estimate of Eq. (8). For the parameters of Fig. 1 the
right hand side of Eq. (8) is � 0:04ðE0=@Þ2. It is seen in

Figs. 1(b) and 2(b) that for a ten times smaller rate _� ¼
0:004ðE0=@Þ2 the dark soliton and the vortex states [green
(solid) lines] are reached.
The mean-field analysis presented so far can be substan-

tiated by a quantum analysis. Using scaled variables and a
rotating coordinate frame, and expanding the field opera-
tors in the angular-momentum basis, the Hamiltonian of
the system takes the form of the Lieb-Liniger Hamiltonian
[17] with an external symmetry-breaking potential under
periodic boundary conditions

Ĥ ¼ E0

X
k

ðk�!Þ2b̂yk b̂k þ
�

2

X
k

ðb̂ykþ1b̂k þ H:c:Þ

þ U

4�R

X
k1;k2;k3;k4

b̂yk1 b̂
y
k2
b̂k3 b̂�k3�k2�k1 : (9)

We are interested in the time evolution with initial condi-
tion given by the nonrotating ground state (vortex state
with J ¼ 0). The soliton states have definite angular
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momentum for � ¼ 0 and, within the validity of the two-
mode approximation, are given by

jc li ¼ ðb̂y0 ÞN�lðb̂y1 Þljvaci: (10)

Truncating the Fock basis to the states [Eq. (10)], the
Hamiltonian [Eq. (9)] is a tridiagonal ðN þ 1Þ � ðN þ 1Þ
matrix. Figure 3(c) shows the spectrum of this matrix for
N ¼ 10, � ¼ 0:8E0, � ¼ 0, and 0 	 ! 	 1. Note that for
U ¼ 0 all levels would cross at one point at ! ¼ 1=2.
Finite interactions remove this degeneracy, leading to the
appearance of a caustic in the level crossing pattern. The
spectrum of the system for a finite � ¼ 0:04E0 is shown in
Fig. 3(d) [18]. Now all level crossings are substituted by
avoided crossings. The Hamiltonian in the two-mode
model can be recast to take the form of a quantized version
of the effective Hamiltonian [Eq. (3)], where the action

variable I is now associated with the operator Î ¼
�ið1=NÞ@=@# and 1=N plays the role of the Planck con-
stant. In particular, we find that the transition frequency
between the caustic levels is given by �s of Eq. (6).

Within the quantum model we can find a condition for
the frequency !initial from the crossing point of the two
energy levels that are lowest for ! ¼ 0 in Fig. 3(c). In the
two-mode approximation, we obtain !þ of Eq. (4), the
same result as from the mean-field analysis. A more thor-
ough comparison of the upper and lower rows in Fig. 3
indicates that energies of the soliton states calculated
within the mean-field approximation are shifted in the
negative direction compared to the quantum calculation.
This is a manifestation of the occupation of additional
angular momentum modes outside the two-mode model.
In order to extend the result for !þ beyond the two-mode

approximation, we consider the rotation frequency !l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 2�=E0

p
=2 where the Bogoliubov phonon with angu-

lar momentum l@> 0 acquires zero energy. The expression
for!þ � !1 thereby generalizes Eq. (4) to larger values of
�. Generally, it looks possible to excite the vortex state
with topological charge J with the condition !J <
!initial <!Jþ1 (see Supplemental Material [19]) through
metastable states with J dark solitons [5].

It is interesting to simulate the dynamics of the quantum
system [Eq. (9)] for the same protocols as were used in the
mean-field simulations. Due to exponential proliferation of
the Hilbert space with N, this can be done only for a small
number of atoms, N 
 10. The density plots of Figs. 1(b)
and 2(b) show the dynamics of the system [Eq. (9)] in the
two-mode approximation for N ¼ 10 and � ¼ 0:8E0. (We
have checked that for these values of the interaction con-
stant and number of particles the result remains unchanged
if we use a four-mode approximation.) The gray scale
encodes populations of the Fock states [Eq. (10)]. It is
seen in Figs. 1 and 2 that our protocols almost entirely
populate the target excited state jc N=2i [Fig. 1(b)] and

jc Ni [Fig. 2(b)], respectively, with the probabilities 0.93
and 1.

The quantum model [Eq. (9)] reveals why global sym-
metry breaking is effective for nucleating the metastable
phase transition: the long wavelength perturbing potential
proportional to � couples neighboring soliton states
[Eq. (10)] effectively and thus creates the avoided cross-
ings that provide the adiabatic passage. A short wave-
length, local symmetry-breaking perturbation, in contrast,
would tentatively couple to excited states with larger an-
gular momentum difference, generate drag, and thus com-
promise the adiabatic passage. For a large system (R � 
)
this is expected from both quantum [10] and mean-field
[20] consideration of a localized impurity moving at
supersonic velocity �R>�1R ¼ cþOðR�1Þ, where

c ¼ ffiffiffiffiffiffiffiffiffiffi
�=m

p
is the speed of sound.

There is still a crucial difference between the quantum
and mean-field models: while the soliton states of the GP
approximation break the rotational symmetry, the corre-
sponding quantum states [Eq. (10)] do not. Instead, they
correspond to fragmented condensates, where both the
occupation of the k ¼ 0 and the k ¼ 1 mode can become
large. Whether we obtain a fragmented condensate with
preserved rotational symmetry or a condensate with broken
symmetry, depends on the rate for changing the parameter
� at the very end of the passage. A simple calculation
reveals that the adiabatic condition is fulfilled if the rate
satisfies d�=dt � �2=ð2@NÞ [21]. For large N it becomes
more difficult to restore symmetry, since the time scales
required for restoring the symmetry become large. When �
is changed back to zero in finite time, the system ‘sits’ on
the caustic where the density of states tends to infinity if
N ! 1. That a large particle number brings a qualitative
change is familiar from the general principle of symmetry
breaking in condensed matter [22]. In contrast to conven-
tional phase transitions, however, where symmetry break-
ing occurs spontaneously, the metastable quantum phase
transition discussed in this Letter requires an explicit
breaking of its symmetry.
So far we have mostly considered the case of moderate

nonlinearity, where the two-mode approximation is justified.
In typical experiments with Bose-Einstein condensates,
larger nonlinearities beyond the validity of the two-mode
approximation are relevant. We have verified within the
mean-field theory that adiabatic passage for stronger non-
linearities is possible as well (see Supplemental Material
[19]). We estimate the time scale for the adiabatic passage
to a dark soliton state using Eq. (8) and setting �
 � as
�t � mR2=@. In the recent experiment with 23Na [23],
R
 20 �m. This gives �t � 1s. For lighter atoms, e.g.,
7Li, and smaller radius, e.g., R
 10 �m, one can achieve
the condition �t � 0:1s and � � 0:5o. Therefore, time
scales of the order of 1s will provide an adiabatic passage.
In conclusion, we have proposed an experimental

scheme to nucleate a metastable quantum phase transition
in an ultracold Bose gas by an adiabatic passage. We have
shown that this is achieved by an explicit breaking of the
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global rotational symmetry. The procedure generalizes
nucleation procedures, which change the ground state
symmetries in the course of ordinary continuous phase
transitions.
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