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Geometrically frustrated antiferromagnets were
intensively studied during the last decades because of a
wide variety of unusual magnetic states [1]. The most
attention has been paid to magnets with a high degree
of degeneracy of the ground state. This degeneracy
prevents the formation of long�range magnetic order
down to zero temperature [2]. The majority of real
frustrated magnets undergo a phase transition with the
establishment of long�range order owing to the
removal of degeneracy by various mechanisms. These
mechanisms include additional magnetic interactions
violating the complete frustration over the isotropic
exchange such as exchange between distant neighbors
[3, 4], dipole–dipole interaction [5], and the Dzy�
aloshinskii–Moriya interaction [6]. In many cases,
the removal of degeneracy is accompanied by the
establishment of long�range order with the magnetic
structure period incommensurate with the crystallo�
graphic one, i.e., an incommensurate magnetic struc�
ture. The interaction between two completely degen�
erate antiferromagnetic sublattices (subsystems) com�
prising a magnet can also lead to an incommensurate
magnetic structure, as was shown in the mean field
approximation by Reimers et al. [3] for the A2B2O7

pyrochlore lattice, where A and B are ions of the dif�
ferent magnetic subsystems. In systems with the dom�
inating exchange between ions in nonequivalent posi�
tions (intersubsystem exchange), the ground state is a
ferrimagnetic collinear structure with the wave vector
q = 0 [3, 7]. An increase in the intrasubsystem antifer�
romagnetic exchange in one of the subsystems leads to
a helical structure with the locally ferrimagnetic orien�
tation of the moments of the different subsystems, as
was shown by Kaplan et al. [8, 9] for the AB2O4 cubic
spinel. The existence of the main unfrustrated

exchange between ions in one magnetic subsystem
changes the situation in principle. This problem
within the classical homogeneous model was consid�
ered for ferrites of mixed composition by Yafet and
Kittel [7]. The possible noncollinear phases were
determined. The possibility of temperature�induced
phase transitions between them was underlined.
Another example of a two�subsystem magnet with this
exchange ratio can be copper metaborate CuB2O4.
Exchange interactions in this compound are per�
formed via boron–oxygen tetrahedra, leading to
branched and extended bonds. The paths of three
exchange types between ions of the weak subsystem B
and ions of the antiferromagnetic sublattices of the
subsystem A transform into each other under the rota�
tion around the second�order axes passing through the
B ions. This determines the geometrical frustration of
these exchanges. Three exchange types exist inside the
subsystem B as well, and two of them form zigzag lad�
der chains along the tetragonal axis [10]. This combi�
nation of exchange bonds leads to the variety of the
temperature� and field�induced phase transitions [11].
The form of the low�temperature incommensurate
phase in this compound has not yet been determined.
In systems with the dominating unfrustrated antiferro�
magnetic interaction in one of the subsystems (Ja),
when the temperature decreases, the antiferromag�
netic ordering of the moments of this subsystem (A)
first takes place. If the intersubsystem exchange Jab is
geometrically frustrated, the spins of the second
(weak) subsystem (B) remain disordered. Depending
on the signs of Jb and Jab exchanges and their ratio and
on the geometry of the intersubsystem bonds, the fur�
ther temperature decrease and the appearance of
spontaneous magnetization in the subsystem B can
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lead to topologically different noncollinear magnetic
structures. The antiferromagnetic exchange (Jb > 0)
leads to the incommensurate magnetic structure with
the locally orthogonal antiferromagnetism vectors of
subsystems [12, 13]. The ferromagnetic exchange (Jb <
0) stabilizes the Yafet–Kittel triangular ferromagnetic
state [7]. The presence of antiferromagnetic exchange
(Jb2) with the next�nearest neighbors, which competes
with the ferromagnetic exchange with the nearest
neighbors (Jb1) in the subsystem B, leads to the
decrease in the energy of the B spins for magnetic
structures with q > 0. The difference between the effec�
tive fields acting on the spins of different subsystems is
responsible for different temperature dependences of
the magnetizations of the subsystems and, as a conse�
quence, for a temperature�induced change in the rel�
ative contributions of the subsystems to the general
state. This can lead to a temperature�induced phase
transition between the high�temperature collinear
long�range order and the incommensurate magnetic
structure or triangular Yafet–Kittel state at low tem�
peratures, when the role of the magnetically weak sub�
system increases. This work is aimed at studying the
incommensurate states of a two�subsystem planar
magnet with the geometrically frustrated intersub�
system exchange and the competition of exchanges
between the nearest and next�nearest neighbors inside
the second subsystem within the mean field approxi�
mation:

(1)

The length of the intersubsystem exchange bonds plays
an important role in the formation of the incommen�
surate magnetic structure. A criterion of the selection
of the orientation of the vector of the incommensurate
magnetic structure along the direction of the largest
length of frustrated bonds was proposed earlier [13].

Ja Jb1 Jb2 Jab.≥ ≥>

To estimate the effect of this factor, two models with
the same relative exchanges but with different lengths
of these bonds were considered:

(2)

where c is the displacement between the ions of each
subsystem along the vector of the incommensurate
magnetic structure. The Hamiltonian of the model is

(3)

Only the main isotropic exchanges between spins S =
1/2 in both subsystems are considered. The scheme of
the spatial spin distribution and the geometry of the
exchange interaction along the direction of the
incommensurability vector q and the local relative ori�
entation of spins are shown in Figs. 1a and 1b, respec�
tively. The spatial variation of the angles of the spin
orientation of the antiferromagnetic sublattices of the

subsystem A ( ) and subsystem B (ϕb) is shown in
Fig. 2. For a discrete lattice, the canting angle between
the neighboring spins of the subsystem A alternates as

(4)

where Δ is the canting angle between the antiferro�
magnetic sublattices of the subsystem A in the contin�
uous approximation,

and p is the pitch of the helix. Alternation leads to the
different mean fields of the intersubsystem interaction
on spins of the subsystem B and, consequently, to dif�

ferent mean values  and . The subsystem B is sep�
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Fig. 1. (a) Distribution of spins and exchange interactions.
(b) Relative local orientation of spins in the triangular
incommensurate magnetic structure.

Fig. 2. Change in the angles of the spin orientation in the
direction of the helix vector for a discrete magnet. Dotted
lines show the intersubsystem exchange for models with
l = 1 and 3.
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arated into two ferrimagnetic sublattices. In contrast
to amplitudes on the spins B, the amplitudes of the
longitudinal mean fields on the spins A are the same:
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(5)

where za, zb1, zb2, zab, and zba are the numbers of neigh�
bors for each of the spin–spin interactions. The rela�
tion zab = zba is assumed, although in the general case
this relation can be different. At the equilibrium orien�
tation of spins, the mean transverse fields on each spin
are zero. For the spins A, this gives the equation

(6)

For the symmetric environment of the neighboring
interacting spins, the transverse fields on spins B are
always zero (Fig. 1b).

The free energy is additive in the mean field
approximation. To find a configuration with its mini�
mum value (the ground state), it is sufficient to mini�
mize the energy of the minimum set of spins with the
nonequivalent local environments. The numerical
minimization of the free energy of four spins of this
unit block is performed taking into account constraint
(6) and self�consistency conditions imposed on the
mean values of spins:

(7)

(8)

The dependences of the normalized free energy f4 =

F4/zaJa, mean values , and the pitch of helix p on
the reduced temperature t = T/zaJa for the fixed values

jb1 = zb1Jb1/zaJa = –0.4, jab = zab /zaJa = 0.25 and dif�
ferent relations between exchanges in the subsystem B
(R = jb2/ , jb2 = zb2Jb2/zaJa) are shown in Fig. 3.
For the given relations between exchanges of different
subsystems, the mean value of spins in the subsystem
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Fig. 3. Temperature dependences of (a) free energy,
(b) mean values of spins in the subsystem B, and (c) pitch
of helix. Lines 1–4 correspond to l = 1 and the ratios
between the competing exchanges in the subsystem B R =
1, 0.8, 0.7, and 0.6, respectively, and lines 5 correspond to
the mean values of B spins and pitch of the antiferromag�
netic helix at l = 3 and R = 0.6.
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A Sa is close to saturation and hardly changes in the
temperature interval under consideration. The
appearance of the spontaneous magnetization in the
subsystem B at T1 leads to the formation of a triangular
incommensurate state when the threshold condition
on the relation between the competing exchanges R >
R1 is fulfilled. For the considered case, R1 ≈ 0.65. The
magnetization in the subsystem B and the pitch of
helix appear stepwise (a first�order phase transition
occurs). The further temperature decrease reduces the
pitch p (the wave vector of the incommensurate struc�
ture q). At T2, the magnet transfers to the Yafet–Kittel
commensurate state if the ratio R is less than the sec�
ond threshold value (R2 ≈ 0.9) (lines 2 and 3 in Fig. 3).
At R < R1, the magnetization of the subsystem B arises
after the second�order phase transition immediately
forming the Yafet–Kittel commensurate phase (line 4
in Fig. 3). At R > R2, there is no Yafet–Kittel phase and
the triangular incommensurate magnetic structure
remains the ground state down to zero temperature
(line 1 in Fig. 3). In the incommensurate phase, the

difference between the mean values of  and  spins
is mainly determined by the intersubsystem exchange
and temperature. At jab � 1, it is small (Fig. 3b).

The threshold conditions for the appearance of the
incommensurate magnetic structure at T1 and its dis�
appearance at T2 can be deduced analytically, taking

into account that  =  = Sb at these points. The
canting of the antiferromagnetic sublattices of the sub�
system A and the simplified equation of the free energy
minimization are obtained from Eqs. (6)–(8):

(9)

(10)

After algebraic transformations, the equation for the
extremum p values is obtained in the form
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The first solution of Eq. (11), p = 0, corresponds to the
homogeneous Yafet–Kittel triangular state. The sec�
ond solution gives an equation for the pitch of the helix
of the incommensurate state. Solutions with cosp < 1
appear if the threshold condition for the interactions is
fulfilled. For l = 1, the threshold condition is

The main nontrivial result of this work is the tempera�
ture dependence of the pitch of the helix (wave vector
of the incommensurate structure). The pitch of the
helix of the incommensurate structure is maximal at
the temperature of the appearance of the magnetiza�
tion in the subsystem B T1 and then decreases. In spite
of an increase in the contribution of the weak sub�
system to the general state of the magnet, the wave
vector decreases and the system tends to the formation
of the Yafet–Kittel commensurate triangular struc�
ture. The coefficients K(Sa, b) (Fig. 4) are determined
by the temperature dependence of the magnetizations
Sa and Sb (see Eq. (8)). For almost completely ordered
subsystem A, K(Sa) ≈ 1/4 and the pitch of helix p
depends only on K(Sb). The limiting values of this
coefficient, K(Sb  0) = 3/8 and K(Sb  0.5) =
1/4, determine the interval of the exchange values for
which there are the temperatures of appearance (T1)
and disappearance (T2) of the incommensurate mag�
netic structure (Fig. 3, lines 2 and 3):

(13)

When double inequality (13) is fulfilled, it can be
stated that incommensurability appears via disorder,
since during the complete ordering of the subsystem B
(T = 0), the states with q > 0 are not ground ones. Out�
side this interval of interactions, either T1 or T2 is
absent (Fig. 3, lines 4 and 1).

For the case of a more extended intersubsystem
exchange along the vector of the incommensurate
magnetic structure (l = 3) when the threshold condition
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Fig. 4. Coefficients K(Sa, b) versus the mean values of spins
of the subsystems given by Eq. (12).
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is fulfilled, a long�periodic incommensurate magnetic
structure with the locally antiferromagnetic sublattices
in each subsystem—antiferromagnetic helix—
appears between the Yafet–Kittel commensurate and
antiferromagnetic phases simultaneously with the
appearance of the magnetization in the subsystem B at
the temperature T3. After the appearance of the Yafet–
Kittel triangular solutions at T2, the system transfers to
the Yafet–Kittel phase through the first�order phase
transition. The pitch of the antiferromagnetic helix
(wave vector) vanishes stepwise (Figs. 3b, 3c). The fea�
tures of this structure arising in CuB2O4 were consid�
ered earlier [12, 13]. In the intervals of the ratios of the
competing interactions in the subsystem B

four phases with the phase transition sequence

Yafet–Kittel phase  triangular helix
 antiferromagnetic helix  antiferromagnetic

are formed in a ferrimagnet at different temperatures.
Finally, some features of the triangular incommen�

surate structure and transitions limiting it are briefly
discussed. This structure differs from the Kaplan ferri�
magnetic helix in the mutual orientation of spins. The
case under consideration is characterized by a Yafet�
Kittel locally triangular orientation of four different
sublattices (Fig. 1b) in contrast to the two�sublattice
locally collinear ferrimagnetic orientation at the dom�
inating intersubsystem exchange. Modulations of
canting of the antiferromagnetic sublattices in the sub�
system A and the mean values of spins in the subsystem
B are due to the discreteness of the magnet. The addi�
tional unfrustrated subsystem leads to the enhance�
ment of the classical threshold ratio for the appearance
of the incommensurate magnetic structure, Jb2/  >
1/4 [9], although the frustrated intersubsystem
exchange Jab favors the formation of the incommensu�
rate magnetic structure. When the threshold condition
is fulfilled, the incommensurate magnetic structure
appears with the finite pitch p > 0 determined by
Eq. (11). Consequently, the energy of the subsystem A
increases by a finite value. Since the total energy of the
system is continuous at the point of the phase transi�
tion (Fig. 3a), the energy of the subsystem B should
decrease by the same finite value. This can occur only
if the magnetization of the subsystem B appears at
once with the finite nonzero value. Consequently, the
first transition to the incommensurate state at T1 is a
first�order phase transition. The situation with the
second transition at T2 (the same as with the transition
to the antiferromagnetic helix at T3) is not simple. For�
mally, it is a continuous transition between two topo�
logically equivalent states and the magnetization in T2

has a kink characteristic of a second�order phase tran�
sition. At the same time, near T2 (Δt ~ 10–3), there is a
macroscopic interval of solutions Δp ~ 10–1 with

almost the same values of energy (Δf4 ~ 10–6). This
means that, when the temperature decreases, the mag�
net transfers from the incommensurate phase to the
Yafet–Kittel phase via the stochastic phase without a
long�range order; i.e., there is general disordering as a
result of an increase in the order (magnetization) in
the subsystem B. The significant broadening of the
stochastic layer between the periodic solutions in the
phase space (in the vicinity of the separatrix) in com�
parison with the two�sublattice antiferromagnet at
zero temperature is explained by an increase in the
number of the dynamic variables in the two�subsystem
(four�sublattice) magnet [14]. In addition, at a finite
temperature, the number of degrees of freedom
increases owing to the variation of the mean values of
spins.
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