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In high�Tc superconducting cuprates, the four�spin
ring exchange in the CuO2 plane is only a factor of 3–
5 weaker than the Heisenberg exchange [1–14].
Therefore, we face a natural question, namely, how
significant is its effect on the Cooper pairing mediated
by the magnetic interactions. Let us recall the source
of the ring exchange in the theory for spin 1/2. It is well
known that the copper oxide–based high�Tc super�
conductors belong to the class of strongly correlated
electron systems. The simplest model for such systems
is the Hubbard model [15]. It describes the splitting of
the initial electron band into two Hubbard subbands.
The Hamiltonian for this model contains only two
parameters: the hopping integral t between the nearest
sites and the on�site Coulomb repulsion energy U.
Unfortunately, in spite of the apparent simplicity of
the model, its properties are well understood only in
the case of a one�dimensional chain [16]. In the limit
of strong electron correlations (t � U), the Hubbard
model can be simplified [17–20] by excluding the
interband transitions according to perturbation theory
[21]. The corresponding effective low�energy Hamil�
tonian is then treated in the reduced Hilbert space
without the two�particle states. Thus, in the trans�
formed Hamiltonian, we exclude the initial local Cou�
lomb interaction. However, instead of it, an infinite
series describing the long�range exchange interactions
appears. In the simplest case of the Heisenberg
exchange limit t/U  0, only the t–J model is con�
sidered [17, 18]. It contains only the first correction to
the ground state energy of the unreduced Hamiltonian
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Here,  = (1 – ) is the projection operator for
the creation of an electron with spin σ at site i, where
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(niσ – )/2) is the spin operator, where  = –σ; and

Jij = 2 /U is the effective exchange integral for the
nearest neighbors. In addition to the Heisenberg
exchange J, the same order of perturbation theory
gives three�site terms H(3) proportional to tijtjk/U. The
latter describe the processes involving the electron
hopping between three sites with the spin flip or with
the conserved spin projection at the intermediate site.
In contrast to the t–J model given by Eq. (1), these
contributions qualitatively change the quasiparticle
spectrum in the normal phase [22, 23] and signifi�
cantly suppress the critical temperature for the super�
conducting phase [24, 25]. Therefore, they should be
taken into account in a consistent formulation of the
theory.

In the range of intermediate correlations, where
the electron mobility grows, it is necessary to take
into account the higher order corrections to Hamil�
tonian (1), namely, those proportional to ~t(t/U)3. As
was shown in [18, 20, 26], these corrections (accurate
to constant terms) have the form

(2)

Subscripts j1, j2, and j3 enumerate the first, second, and
third neighbors of site i, respectively. Sites i, j, k, and l
correspond to four spins circulating clockwise within
the unit Cu4O4 square plaquette. The first three terms
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in the previous expression have the structure similar to
the exchange interaction specified by Hamiltonian (1).
Therefore, these terms being taken into account lead
only to a renormalization of the exchange integral.
The last three terms in Eq. (2) describe the so�called
four�spin ring exchange characterized by the parame�

ter Jc ~ /U3.

First, a significant role of the multiparticle ring
exchange has been noticed for the 3He quantum crys�
tal in the analysis of its unusual magnetic properties
[27]. Soon after the discovery of the cuprate supercon�
ductors, Roger and Delrieu [13] argued that the ring
exchange in these compounds can be comparable to
the Heisenberg exchange. Such situation occurs
because the on�site Coulomb repulsion for conduc�
tion holes in the Cu–O plane far exceeds the energy
difference between the one�electron states at oxygen
and copper. This favors the exchange interaction via
the intermediate oxygen.

Roger and Delrieu [13] showed that, in the multi�
band Emery model, which is quite realistic for
cuprates, in the case of half filling, the expansion of
the Hamiltonian in terms of parameter tpd/Vpd at large
on�site Coulomb repulsion of holes Ud reproduces the
effective spin Hamiltonian with the dominant contri�
bution of the four�spin ring exchange. Here, Vpd is the
Coulomb repulsion between oxygen and copper atoms
and tpd is the corresponding hopping integral. The
computations involving the exact diagonalization of
small clusters [8, 14] confirmed a significant although
not dominant role of the ring exchange in cuprate
superconductors. At the charge transfer energy Δ =
Ep – Ed = 1.2 eV, the values obtained for effective
Heisenberg and ring exchange integrals are compara�
ble, J ≈ 0.7 eV and Jc ≈ 0.5 eV.

Indeed, it turns out that the whole class of phe�
nomena observed in cuprates cannot be described in
terms of the conventional Heisenberg Hamiltonian. It
is possible to treat them only taking into account the
processes involving the four�spin ring exchange [1–4,
13]. A nonzero ring exchange on the order of (0.2–
0.5)J is needed to reproduce the anomalous structure
of spin excitation spectra observed in experiments
using both inelastic light scattering [1, 2, 8, 28, 29] and
inelastic scattering of polarized neutrons [3–6].

For example, it was noticed in [3] that, in the
framework of the spin�wave theory, the addition of the
longer range spin interactions and the four�spin ring
exchange (2) to the Heisenberg Hamiltonian with the
nearest�site exchange leads to the qualitative modifi�
cation of the magnon spectrum [30] along the Bril�
louin zone boundary. To detect the dispersion of the
spin excitations just at the Brillouin zone boundary,
the method of position�sensitive neutron scattering
spectroscopy with high k�wave resolution was applied
for the first time. The analysis of the measured spectra
for La2CuO4 compound below the Néel temperature

tij
4

has clearly demonstrated that the Heisenberg model is
insufficient for the description of the observed spin
excitations. Furthermore, the studies of spin correla�
tions in the paramagnetic phase of the same com�
pound [5] have shown that good agreement between
the observed diffuse neutron intensity and high�tem�
perature series expansion of the equal�time spin corre�
lations is observed only when the ring exchange is
taken into account. The characteristic amplitude of
the ring exchange thus obtained, Jc ≈ 0.25J, agrees well
both with the estimate reported in [3], Jc ≈ 0.27J, and
with the results of ab initio calculations [10, 11], where
Jc/J ~ 0.3.

The magnetic interactions in cuprates are usually
considered among the main candidates to underlie the
mechanism of the superconducting pairing. Since the
magnitude of the ring exchange is comparable to that
of the Heisenberg exchange, it is important to under�
stand how the ring exchange affects the characteristics
of the Cooper pairing. In this work, we approach this
problem by estimating the effect of the four�spin
exchange Jc on the superconducting transition tem�
perature.

As was mentioned above, the Hamiltonian under
study is the sum of the t–J model written taking into
account the three�site correlated hopping and the
four�spin ring exchange H(4)

(3)

It is convenient to rewrite expression (3) in terms of
the Hubbard X�operators since they make it possible
to automatically take into account the constraint on
the filling of the two�particle states in calculations.

The Hubbard operators are defined as  = ,

where  and  vectors describe possible states in the
lattice. In the hole representation for the hole�doped
cuprates, we have  = { , } with the spin projec�
tion σ = ±1/2; that is, the  states form the upper
Hubbard hole band. The  state with one hole at site
i corresponds to the configuration of the copper–oxy�
gen orbitals with the occupation of d9p6 and d10p5

types. The singlet  =  state with two holes per site
corresponds to the d8p6, d9p5, and d10p4 configurations.
In the new representation, contributions Ht–J, H(3),
and H(4) have the form
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Here,  and tij are the intra� and interband hopping
integrals, respectively, and μ is the chemical potential.

For brevity, we introduced the notation  =

Jij(  – ) and  =  + ninj,

where ni =  + .

The normal G(k, E) and anomalous F(k, E)
Green’s functions were determined using the general�
ized Hartree–Fock approximation in the framework
of the irreducible linear operator technique [31, 32]. It
is well known that the short�range antiferromagnetic
order does not vanish up to the optimum doping and
significantly affects the formation of the quasiparticle�
related characteristics within both the low doping and
optimum doping ranges [33]. At the same time, the
spin dynamics at low temperatures is much slower
than the electron one [34–36]. Therefore, in the self�
energy term, we take into account only static spin cor�
relation functions; i.e., we neglect the dynamics of the
short�range antiferromagnetic order but consider its
spatial inhomogeneity, Σ(k, ω)  Σ(k). For the t–J*
model, the calculation procedure, the explicit form of
the self�energy term, the approximation used, and the
obtained results are described in detail in [37, 38]. The
averages arising as the contributions of the non�
Heisenberg ring exchange in the course of the decou�
pling of the equations for the Green’s functions were
simplified by separating the two�operator Green’s
function cq = exp[–i(Ri – Rj)q] from the

product of four spin operators. We assume the isotropy

of the spin liquid; hence, we have cij = 3  =

. In the normal phase, the corrections

coming from the non�Heisenberg exchange H(4) are
proportional to the product Jc(k, q)ckcq. At the charac�
teristic values of the ring exchange parameter, Jc ~
0.3J, and of the nearest�neighbor spin function, ck ~
⎯0.3, these corrections are as small as several percent
of the band width and do not modify the form of the
dispersion law and the density of states. The main con�
tribution of the ring exchange manifests itself in the
renormalization of the coupling constant for the
superconducting pairing in the equation for Tc. Deriv�
ing the latter equation, we took into account that the
order parameter for the symmetrical solution corre�
sponding to the singlet pairing has the following prop�
erty: Δk = Δ–k. In view of Eq. (2), the Fourier trans�
form of the Heisenberg exchange parameter includes
the neighbors up to the third coordination sphere.
However, in the final equation for Tc, the contribution
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coming from the second neighbors disappears since it
does not meet the  symmetry of the gap. We omit

the contribution coming from the third neighbors gen�
erating the next harmonic of the gap because it is neg�
ligibly small. Eventually, for the BCS�type theory, the
equation for the superconducting transition tempera�
ture can be represented in a form similar to that for the
t–J model

(5)

Here, ξp is the dispersion law for the quasiparticles in
the superconducting phase and kB is the Boltzmann
constant. We separate the contributions from the
Heisenberg exchange, three�site hopping, and ring

exchange in the renormalized coupling constant:  =

J. The antiferromagnetic nearest�

neighbor spin correlation function has the negative
sign. Therefore, the ring exchange, as well as the
three�site hopping, suppresses the superconducting
pairing induced by the Heisenberg exchange. The
above expression demonstrates that the contribution
of the ring exchange to the coupling constant is an
order of magnitude smaller than that of the Heisen�
berg exchange. However, under a consistent formula�
tion of the theory, namely, taking into account the
three�site interactions, its relative role increases. At
the values of parameters characteristic of the LSCO
system [39] and Jc = (0.27–0.3)J, the ring exchange
leads to the lowering of the maximum of the critical
temperature in the t–J model by only 5–7%. At the
same time, the maximum critical temperature in the
t–J*–Jc model is 25–30% lower than that for the t–J*
model (see Fig. 1a). The corresponding changes in the
coupling constant in units of the Heisenberg exchange
are illustrated in Fig. 1b. The ring exchange is most
clearly pronounced in the range of low doping x,
where it suppresses superconductivity. With growth of
x, its effect decreases owing to the decay of the short�
range magnetic order.

Another well�known mechanism compensating
the contribution of the Heisenberg exchange to the
Cooper pairing is the intersite Coulomb interaction.
On the one hand, the intersite Coulomb interaction,
as well as the exchange one, is proportional to the
squared overlap of the orbitals of the neighboring
atoms. This means that it has the same order of mag�
nitude and can appreciably suppress superconductiv�
ity induced by the Heisenberg exchange [40, 41]. On
the other hand, it is not clear from the very beginning
that the intersite Coulomb interaction should also
compensate the contribution of the ring exchange.
Moreover, based on the structure of the Hamiltonian
for the ring exchange, it is possible to suggest that the
situation is just the opposite [42]. Then, the ring

d
x

2
–y

2

1 J̃ 1
N
���

pxcos pycos–( )2

ξp

��������������������������������
ξp

2kBTc

������������.tanh
p

∑=

J̃

1 1 x+
2

���������– c01
Jc

J
���+⎝ ⎠

⎛ ⎞



196

JETP LETTERS  Vol. 95  No. 4  2012

SHNEYDER et al.

exchange can play even a more significant role than
that following from the above estimates.
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