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1. INTRODUCTION

Although high�Tc superconducting cuprates have
long been studied, two global problems—(i) the
nature of the “anomalous” normal state and (ii)
mechanisms of superconductivity with the  pair�

ing symmetry—are still incompletely solved. What is
the role of the electron (magnetic, charge, current)
Bose�like fluctuations, along with phonons, in the for�
mation of the superconducting state? How does a
transition from a Mott–Hubbard insulator upon dop�
ing with holes or electrons to a Fermi liquid normal
metal occur in highly doped cuprates through a non–
Fermi liquid pseudogap state in the low�doping
region? These and many other fundamental problems
of the physics of high�Tc superconductivity are cur�
rently the focus of attention. In our opinion, strong
electron correlations in cuprates are responsible for
such a slow progress in the theory of high�Tc super�
conductivity. The traditional density functional theory
methods are inapplicable in this situation. Several
research groups are developing multielectron
approaches to describe the electronic structure of sys�
tems with strong electron correlations (see [1]). In this
review, we focus on the results obtained within the
combined local density approximation (LDA) and
generalized tight�binding (GTB) method. This com�
bined method involves the ab initio LDA calculation
of the parameters of the multielectron tight�binding
Hamiltonian with the Coulomb interactions and clus�
ter perturbation theory within the generalized tight�
binding method [2, 3]. Within this approach, it is pos�
sible to construct a set of effective Hamiltonians with
the form depending on the energy scale under consid�
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eration. For example, to study the optical and photo�
electron spectra on a scale of 10 eV, it is necessary to
use the multiband p–d model including various d
orbitals of copper and p orbitals of oxygen [4]. To ana�
lyze angle�resolved photoemission spectroscopy
(ARPES) data at a scale of 1–2 eV, it is possible to
develop the two�band Hubbard model with singlet and
triplet bands of Hubbard fermions; this model in the
limit of strong correlations is modified to the singlet–
triplet t–J model [5]. Finally, to calculate the Fermi
surface and superconducting pairing, it is sufficient to
use the low�energy limit with one band of Hubbard
fermions, which is described by the extended t–J
model, e.g., taking into account three�site correlated
hopping (the t–J* model [6]) or four�spin ring
exchange (the t–J*–Jc model [7]). In most cases, the
parameters of these model Hamiltonians can be found
from ab initio calculations, which are often nontrivial.
In particular, the calculation of the effective exchange
parameter between nearest neighbors in cuprates
required the inclusion of all interband transitions
within the multiband p–d model; the signs of the
exchange interaction involving singlet and triplet
bands were antiferromagnetic and ferromagnetic,
respectively [8]. The microscopic model Hamilto�
nians thus obtained are examined in various approxi�
mations from the mean field approximation for sys�
tems with strong electron correlations (Hubbard 1
approximation) to the generalized mean field approx�
imation including the dependence of the static mass
operator on the wave vector within cluster perturba�
tion theory exactly taking into account the short�range
order in 2 × 2 clusters. The results are usually in quali�
tative agreement with the experimental data and with
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the calculations of other teams (Russian teams headed
by A.F. Barabanov, V.V. Val’kov, and N.M. Plakida and
many foreign teams; see references below). Below, we
will consider the Fermi surfaces for various doping
concentrations, compare the contributions from the
magnetic and phonon pairing mechanisms, and
describe changes in the electronic structure within the
cluster approach.

2. ELECTRONIC STRUCTURE
OF CUPRATES

Investigations of cuprates within the LDA + GTB
method begin with the ab initio calculations of the
electronic structure. Although the local density
approximation does not provide the correct ground
state of strongly correlated systems, the data thus
obtained make it possible to determine, first, the min�
imum set of orbitals that should be included in the
effective model and, second, the parameters of this
model. To this end, the electronic structure of cuprates
found in the LDA calculations is projected on Vanier
functions in the basis of p orbitals of oxygen and eg

orbitals of copper [9]. It is noteworthy that the multi�
band p–d model thus written includes the Coulomb
interaction between electrons at one and several
neighboring sites. Further, within the tight�binding
method, the transition from the realistic multiband
model to the effective low�energy singlet–triplet Hub�
bard model occurs in which the parameter Ueff = Ect

describes the gap with charge transfer. In the limit of
strong electron correlations, the model is simplified by
the perturbation�theory exclusion of interband transi�
tions and two�particle states of electrons [10, 11]. We
note that we use the Hubbard operator representation
in the effective Hamiltonian and in further calcula�
tions. This makes it possible to accurately take into
account the constraint on the filling of two�particle
states at one site. In this case, Hubbard operators are
constructed on the eigenstates of the Hamiltonian of

the CuO6 cluster as  =  and describe hole
quasiparticle excitations. The effective Hamiltonian of
the upper Hubbard band of holes in single�layer
cuprates has the form
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Here, μ is the chemical potential of the system; tfg and

 are the amplitudes of intra� and interband hops,

respectively; Jfg = /Ueff is the exchange interaction

parameter; and  ≡ –σ. The following model param�
eters were obtained within the above scheme for the
La2CuO4 compound: t = 0.932, t ' = –0.12, t '' = 0.152,
J = 0.298, J ' = 0.003, and J '' = 0.007. The LDA +
GTB scheme makes it possible to microscopically
explain the necessity of the inclusion of intraband
hops up to the third coordination sphere. Longer hops
make only insignificant quantitative corrections to the
dispersion of quasiparticles [9]. We also emphasize the
role of three�site correlated hops H(3). These hops
should be taken into account not only because the

parameter /Ueff and exchange integral Jfg have
the same order of magnitude. As was previously shown
[6, 12], the three�site interactions strongly affect the
spectrum of quasiparticle excitations in the presence
of the short�range magnetic order in the system.

As is known, the inclusion of the interactions of an
electron with the fluctuating short�range antiferro�
magnetic order provided agreement [13–16] between
the quantum oscillation data [17, 18] and ARPES data
[19, 20] at low doping. At the same time, the short�
range antiferromagnetic order with the correlation
length ξAFM ≈ 10 Å also exists at optimal doping [21].
For this reason, it is topical to take into account this
order not only in low�doped systems. At low tempera�
tures (T < 10 K), fluctuations are quite slow with a
characteristic lifetime of about 10–9 s at a scale of
about the size of the antiferromagnetic microdomain
ξAFM [22]. This time is much larger than the character�
istic times of the recovery of the equilibrium in the
Fermi system in ARPES measurements (10–13 s) [23]
and the period of the rotation of the electron in a

cyclotron orbit on the Fermi surface (2π  ≈ 10–12 s,
where ωc is the cyclotron frequency) in the experi�
ments reported in [17, 18]. Thus, when calculating the
dynamics of the quasiparticle against the background
of the antiferromagnetic order, the dynamics of the
magnetic order itself can be neglected and only its spa�
tial inhomogeneity should be taken into account. To
calculate the corresponding corrections to the mass
operator of the Green’s function Gkσ(E) =

, we used the method [24, 25] based on
the projection of higher Green’s functions on the
function Gkσ(E). Neglecting the dynamical correc�
tions, we obtain [26, 12]
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where the mass operator Σk is expressed in terms of the
static spin correlation function

and the kinematic spin correlation function

as

The self�consistent calculation of the correlation
functions Cq and Kq and chemical potential μ makes it
possible to construct the family of Fermi surfaces for
various doping concentrations (Fig. 1). The Fermi
surface twice changes its topology with doping. At low
doping, when the short�range magnetic order occurs,
there are four hole pockets near the (π/2, π/2) points,
as could be expected for a hole in the antiferromag�
netic phase. The size of hole pockets increases with
doping. Near the first critical point xc1 ≈ 0.15, a bridge
is formed on the line (π, 0)–(π, π). In the range
between the first and second critical concentrations,
xc1 < x < xc2 ≈ 0.24, there are two surfaces centered at

Cq = 2 e i f g–( )q– Sf
zSg

z〈 〉
f g–( )∑

Kq = 2 e i f g–( )q– Xf
2σXg

σ2〈 〉
f g–( )∑

Σk
2

1 x+
��������� 1

N
���=

× tk q–
1 x–

2
��������� Jq

t̃ k q–
2

Ueff

��������–⎝ ⎠
⎛ ⎞– 1 x+( ) t̃ k t̃ k q–

Ueff

��������������������������–
⎩
⎨
⎧

q

∑

× 3
2
��Cq tq

1 x–
2

���������Jk q–– x
t̃ q

2

Ueff

������– 1 x+( ) t̃ k t̃ q

Ueff

����������������������– Kq
⎭
⎬
⎫

.–

the point (π, π). The smaller pocket is of electron
character and disappears at x  xc2. The large hole
pocket becomes more circular with an increase in x.
Only this pocket remains at x > xc2. It is worth noting
that the critical concentrations are calculated with a
certain error. First, the model parameters were
obtained through the complex procedure of the pro�
jection of the LDA wavefunctions on the Vanier func�
tion basis and can be changed when varying this basis.
Second, the method for determining the Green’s
functions is approximate. The inclusion of higher
order contributions can change quantitative values of
the critical points. We believe that the qualitative pic�
ture at low temperature hardly changes, because it is
determined by the general properties of the dispersion
of the electron against the background of the fluctuat�
ing short�range antiferromagnetic order [27]. We also
note that similar changes in the Fermi surface were
obtained for the Hubbard model taking into account
not only the real part of the mass operator but also its
imaginary part [29], as well as in the calculations
within the spin�fermion model [30]. A similar trans�
formation with the appearance of a doubly connected
Fermi surface in the intermediate composition range
was recently revealed in the ab initio quantum�chem�
ical calculations taking into account various multi�
electron configurations [31]. Qualitative agreement of
our results with the mentioned calculations performed
in various approximations is due to the common idea
that the electronic structure is everywhere determined
by the short�range magnetic order.

Fig. 1. Calculated sections of the Fermi surface in La2 ⎯ xSrxCuO4 at various doping concentrations [27] in comparison with the
ARPES data with different resolutions taken from (right corners) [28] and (left corners) [20]. The larger hole pocket becomes
more circular with an increase in x.
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Thus, the reported investigations of the doping�
induced evolution of the Fermi surface of cuprates
demonstrate a soft behavior of quasiparticle bands,
which is common for all strongly correlated systems.
According to [32, 33], transformations of the topology
of the Fermi surface in a three�dimensional com�
pound, which are due both to the appearance of a new
segment and to a change in connectivity, are accompa�
nied by the appearance of a singularity in the density of
states, δN(ε) ~ (ε – εc)

1/2, and by a change in the ther�
modynamic potential δΩ ~ (εF – εc)

5/2. In other
words, quantum phase transitions in three�dimen�
sional systems are 2.5�order transitions. Here, εc is the
energy of the quasiparticles at the critical point and εF

is the Fermi energy. We now consider singularities in
the density of states of cuprates at the first and second
critical points. We take into account that these com�
pounds cannot be treated as isotropic three�dimen�
sional systems because of strong anisotropy of the
electronic and magnetic properties. Owing to this cir�
cumstance, calculations for single�layer cuprates can
be performed only inside one CuO2 plane.

The calculations show that the first critical point xc1

corresponds to a logarithmic feature in the density of
states. The disappearance of the electron pocket near
the second critical point xc2 is described by a Heaviside
step feature [34]. We emphasize that both types of sin�
gularities are in agreement with the general properties
of Van Hove singularities for two�dimensional electron
systems [35]. In contrast to the universal behavior in
three�dimensional systems, the thermodynamic
potential of two�dimensional electrons has the addi�

tional singular contribution δΩ ~ (εF – εc)
2 in the case

of the step singularity in the density of states or the
additional singular contribution δΩ ~ (εF –
εc)

2ln  in the case of the logarithmic singularity
[36]. Thus, the quantum phase transition in cuprates
at xc2 is a second�order transition. The singularity at
the first critical point xc1 is stronger. Therefore, the
Sommerfeld parameter γ = Ce/T determined by the
electron specific heat also has a step singular term at
x ≈ 0.24 and has a logarithmic jump δγ ∝ ln(εF – εc) ∝
ln(x – xopt) at x ≈ 0.15. A similar jump of the specific
heat was revealed within the Hubbard model by the
continuous�time dynamical cluster quantum Monte
Carlo method [37].

The fact that the doping�induced evolution of the
properties of cuprates from the Mott–Hubbard insu�
lator to a normal metal is not smooth and passes
through a number of quantum critical points is widely
discussed. Some authors [38–42] attribute the critical
concentration to the formation of a pseudogap state at
x < p*, where p* = 0.19–0.24. At the same time,
according to the Hall effect measurements [43, 44],
the quantum phase transition occurs at the optimal
doping popt = 0.15. The calculations of the concentra�
tion dependences of the superconducting transition
temperature Tc(x) and the kinetic energy of holes
Ekin(x) performed within the proposed approach show
that the coincidences between xc1 and popt, as well as
between xc2 and p*, are not accidental (Figs. 2, 3).
First, the maximum of the critical temperature in the
BCS theory is determined by the maximum in the
density of states. For this reason, considering the
exchange mechanism of superconducting pairing in

εF εc–

Fig. 2. Density of states calculated for the critical concen�
tration xc1 = 0.15 as the sum of the regular and singular
contributions, εc1 = εF(xc1) [34]. The dotted line corre�
sponds to the logarithmic approximation for the singular
contribution. The inset shows the concentration depen�
dence of the superconducting transition temperature for
xopt = xc1.

Fig. 3. Concentration dependence of the kinetic energy of
holes [34]. The dashed line shows the usual behavior char�
acteristic of a normal two�dimensional metal, triangles
show the calculation in the idealized pseudogap model
[38, 40], and circles show the calculation with Green’s
function (2).
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model (1), we conclude [45] that the optimal doping
indeed corresponds to the critical concentration:
xopt = 0.15 = xc1 (Fig. 2). Second, an analysis indicates
that the kinetic energy of charge carriers Ekin(x) =

(x) decreases strongly at x < 0.24 (Fig. 3).

This decrease in the kinetic energy is described by an
exponential law Ekin(x)/Ekin(xc2) = exp[–4Δpg/J] with
the pseudogap parameter Δpg depending on the doping
concentration. For the doping concentrations above
the critical value x > 0.24, the behavior of the function
Ekin is usual, characteristic of a normal two�dimen�
sional metal with the concentration of holes nh = 1 +
x; i.e., the kinetic energy is proportional to the Fermi
energy and number of holes, Ekin ~ ξF ~ nh. We
attribute a decrease in the kinetic energy at concentra�
tions x < xc2 to the formation of the pseudogap, which
is qualitatively confirmed by the calculations of Ekin(x)
in the simplest model [38, 40] of the electron gas with
a triangular pseudogap.

Similar sequences of doping�induced transforma�
tions of the Fermi surface were obtained within the p–
d model in [29], where the dynamical corrections of
the mass operator of the Green’s function were taken
into account in the disjoint diagrams approximation,
and in [46, 47] for a Mott–Hubbard insulator in the
cluster generalization of the dynamical mean field
theory. In spite of differences in details (both poles and
zeros of the Green’s function were revealed in [46,
47]), similar evolutions of the electronic structure in
our approach and in works where dynamical correla�
tions were taken into account indicate that the pro�
posed method is applicable, at least for low tempera�
tures. In this limit, the properties of the normal phase
of strongly correlated systems are significantly deter�
mined by the spatial inhomogeneity of correlations.
The character of the k dependence of the self�energy
part of the Green’s function plays a significant role in
the description of electron correlations in CuO planes
[48, 49] and the phase diagram of cuprates [50, 51]. A
further development of the proposed method
undoubtedly requires the inclusion of dynamical
effects. Below, we describe one of the variants for such
a development.

3. PROBLEMS OF THE DESCRIPTION 
OF SUPERCONDUCTING STATE IN SYSTEMS 
WITH STRONG ELECTRON CORRELATIONS

Any commonly accepted concept of the mecha�
nism of the formation of a superconducting state in
cuprates is still absent. The problem is that such a con�
cept should explain not only high transition tempera�
tures, but a whole set of unusual properties of these
compounds. At the same time, the appearance of kinks
in the dispersion law observed by the ARPES methods
[19], excitations in the spectra obtained with inelastic
neutron and X�ray scattering [52–54], and features of

t0nK0nn∑

tunnel experiments [55, 56] can be interpreted in
alternative scenarios of pairing owing to the interac�
tion of electrons both with spin excitations and with
phonons. The phonon and electron contributions to
the function Π(Ω) describing the interaction of fer�
mion quasiparticles with boson excitations were sepa�
rated in [57] using nonequilibrium optical spectros�
copy with femtosecond resolution. The calculation of
the corresponding coupling constants showed that the
phonon contribution is smaller than the electron one
by a factor of only two and cannot be neglected. In the
absence of a clearly dominant pairing mechanism, the
superconducting state of cuprates should be described
within a self�consistent theory including the interac�
tions of electrons with various boson excitations, both
electron and phonon. The characteristic times of these
interactions are different. For this reason, the dynam�
ical retardation effects (see, e.g., [58]) should be taken
into account in the complete realistic picture. This
problem is generally very difficult. It begins with the
mean field theory formulated for the strong electron
correlation regime. Below, we briefly report some
results obtained in model (1) including the electron–
phonon interaction.

One of the key problems of the physics of high�Tc

superconductors is the study of the temperature isoto�
pic effect, i.e., a strongly nonmonotonic doping
dependence of the isotopic effect exponent α(x) [59].
The exponent α(x) is minimal at the optimal doping
point and is almost an order of magnitude smaller than
a value of 1/2 predicted in the BCS theory for normal
metals and reaches its maxima at the boundaries of the
superconducting state. The isotopic effect exponent in
a low doped sample is much larger than 1/2. Some
authors treated this behavior as evidence of a smallness
of the electron–phonon contribution to the pairing
potential. However, considering the BCS theory
superconductivity taking into account competing
exchange and phonon pairing mechanisms, we
showed that the form of the concentration depen�
dence of the isotopic effect constant, i.e., the positions
of the minimum and maxima of the function α(x), is
determined by the logarithmic singularity in the den�
sity of states near the critical point xc1 = xopt. In this
case, it does not correlate with the relation between
the pairing coupling constants [60], whose doping
dependence has strong singularities [61]. We do not
discuss the asymmetric growth of the isotopic effect
exponent near the boundaries of the superconductivity
region. First, our approach begins with the atomic
limit and, for this reason, overestimates the contribu�
tion to the self�energy in the band limit, i.e., for a
highly doped sample. Second, we disregard the possi�
ble admixture to the superconducting OP from the

 component with the s symmetry in the low�dop�

ing region [62–64], where real compounds undergo a
transition from the tetragonal phase to the orthorhom�
bic one. Furthermore, we ignore the charge�ordering
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effects responsible for the anomalies in the properties
of the La2 – xSrxCuO4 at x = 1/8.

Below, we discuss the description of superconduc�
tivity in systems with strong electron correlations
within numerical nonperturbative cluster approaches.
The calculated pair correlation functions are usually
very small. For this reason, various authors made dif�
ferent conclusions about the possibility of 

superconductivity in the strong correlation regimes
within the Hubbard model or t–J model (see discus�
sion in [65]). At the same time, in all numerical meth�
ods such as the quantum Monte Carlo method and
exact diagonalization of the cluster, investigations of
magnetic pairing mechanisms are limited by a finite
size of the cluster. For this reason, the reliability of the
results obtained taking into account pairing only at the
nearest neighbors is an open question. We considered

the correlation function Bq =  describing
superconducting pairing of Hubbard fermions in the
t–J model for the BCS theory [66]. Correlations are
nonlocal, are spatially distributed, and decrease slowly
with the distance. The size obtained for a Cooper pair
is close to the experimental value ξ ≈ 30 Å of the cor�
relation length in high�Tc superconductors. For a two�
dimensional square lattice, we also analyzed the prod�
uct of the correlation function and the number
of neighbors zn in the nth coordination sphere (Fig. 4a)
and, correspondingly, the fraction of correlations Pn

that are taken into account when only the nth coordi�
nation sphere is included (Fig. 4b). According to the

d
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2
–y

2

Xq
σ2X q–

σ2〈 〉

B r( )

calculations, the contribution of the first coordination
sphere is not determining and is no more than 20% of
the total value. These results indicate that the numeri�
cal calculations for small clusters strongly underesti�
mate the energy gain in the superconducting phase as
compared to the normal phase.

To conclude this section, we give an example dem�
onstrating the competition between various exchange
pairing mechanisms in cuprates. As is known, a num�
ber of properties experimentally observed in cuprates
cannot be explained within the usual Heisenberg
Hamiltonian. The observed anomalous structure of
spectra of spin excitations can be described only by
taking into account four�spin ring exchange processes
[67–71]. According to the cited works, the magnitude
of the ring exchange Jc in the CuO2 plane is smaller
than the Heisenberg exchange J only by a factor of 3–
5. For this reason, there is a question: How significant
is its effect on the Cooper pairing owing to magnetic
interactions? We showed [7] that the equation for the
superconducting transition temperature in the BCS
theory for Hamiltonian (1) taking into account the
ring exchange can be represented in the form similar
to the equation for Tc in the t–J model:

(3)

Here, ξp is the dispersion of quasiparticles in the
superconducting phase and kB is the Boltzmann con�
stant. We separate the contributions of the Heisenberg

1 J̃ 1
N
���

pxcos pycos–( )2

ξp

��������������������������������
ξp

2kBTc
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Fig. 4. (a) Correlation function and (b) fraction of correlations taken into account for the nth coordination sphere [66].
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exchange, three�site hopping, and ring exchange in
the renormalized coupling constant:

 = .

The ring exchange, as well as three�site correlated
hopping [6], suppresses superconducting pairing
induced by the Heisenberg exchange. This is obvious
because the antiferromagnetic spin correlator C01 for
nearest neighbors is negative. Although the contribu�
tion from the ring exchange to the coupling constant is
much smaller than the Heisenberg contribution, its
relative role increases in the consistent development of
the theory taking into account three�site hopping,
which reduces the critical temperature by an order of
magnitude. For the characteristic parameters of the
LSCO system [9], the critical temperature in the t–
J*–Jc model is 25–30% smaller than that in the t–J*
model. We recall that the intersite Coulomb interac�
tion weakly screened in cuprates [72, 73] is another
mechanism compensating the Heisenberg exchange
contribution to Cooper pairing. This demonstrates the
problem of the relation between various mechanisms
of superconducting pairing in real compounds.

4. CLUSTER PERTURBATION THEORY 
IN THE REPRESENTATION 
OF HUBBARD OPERATORS

The above results were obtained in the generalized
Hartree–Fock approximation. As was mentioned
above, its main disadvantage is the absence of correla�
tions. One of the possible variants for the development
of the theory involves the cluster perturbation theory
[74, 75], which has long been proposed to study the
high�Tc superconducting cuprates [76–78]. The
application of the cluster approach to study systems
with strong electron correlations expands [49] owing
to the main advantage of this method—direct inclu�
sion of strong electron correlations and short�range
order, which is significant for the description of low�
dimensional magnetic systems.

A feature of the proposed approach is the use of the
representation of the Hubbard X operators. This
makes it possible to simplify the implementation of the
method and, more important, to introduce a quantity
controlling the calculation error, which significantly
reduces the computation time [79]. At the first stage,
the exact diagonalization of the cluster (structure ele�
ment of the superlattice), which is determined by the
possibility of covering the initial lattice, is performed.
Then, the intercluster interaction is taken into
account within perturbation theory. The Hamiltonian
of the two�dimensional single�band Hubbard model
has the form

(4)

J̃ 1 1 x+
2

���������– C01
Jc

J
���+⎝ ⎠

⎛ ⎞ J

H ε μ–( )niσ
U
2
���niσniσ+

iσ

∑ tijaiσ
† ajσ.

i j≠ σ,

∑–=

Here,  and aiσ are the creation and annihilation
operators for an electron with spin σ at the ith site,

niσ =  is the operator of the number of electrons

with spin σ (  = –σ), ε is the energy of the electron
on the site, μ is the chemical potential, tij is the hop�
ping integral from the jth site to the ith site, and U is
the Coulomb interaction parameter at the site. Equa�
tion (4) is written for a square lattice whose structure
parameter is one site. Another structure element can
be defined in the same lattice. We take it in the form of
a 2 × 2 square cluster. Thus, we can describe the initial
lattice in terms of a new lattice with a basis (superlat�
tice). We group the terms in Hamiltonian (4) so as to
separate the intracluster interactions from intercluster
interactions:

(5)

where f and g are cluster indices. In the description of
the electronic structure by Hamiltonian (4), the Hub�
bard X operators are defined at single�site eigenstates.
Generalizing this procedure, we define the X operators
at cluster eigenstates. To this end, we obtain the com�
plete set of eigenstates and eigenvectors of the Hamil�

tonian ( f) by the exact diagonalization method. As
a result, we obtain the following expansion for the
annihilation operator of an electron at the ith site
belonging to the fth cluster in the cluster X operators:

(6)

Here,  ≡ , where α = α(n, m); n and m mark
the initial and final states of the cluster, respectively;
and f is the cluster index. The properties of X operators
were described in detail in [80–83]. According to
Eq. (6), the electron can be represented in the form of
the superposition of certain quasiparticles, Hubbard

fermions ; each quasiparticle corresponds to exci�

tation from multiparticle initial state  to multipar�
ticle final state . This procedure was described in
more detail in [79].

Using expansion (6), Hamiltonian (4) can be rep�
resented in the form

(7)

where εn is the energy of the cluster in the nth state and

 are the intercluster hopping integrals. To obtain
the dependence on the wave vector, it is necessary to
transfer from the direct space to the reciprocal one.
Below, we will be interested only in intercluster inter�
action in Hamiltonian (7). Taking into account the
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uniformity of the lattice, this interaction can be repre�
sented as

(8)

where  is the wave vector in the reduced Brillouin
zone. The procedure of the formation of the cluster
lattice was described in detail in [84].

We seek the Green’s function Dαβ( , ω) =

 in the Hubbard�I approximation. The

matrix equation for the Green’s function has the form

(9)

where

(10)

(11)

(12)

Here, D0(ω) is the local (i.e., cluster) Green’s func�
tion, F(α) is the filling factor, μ is the chemical poten�
tial, and N is the number of electrons in the cluster. To
analyze the electronic properties, it is necessary to cal�
culate the single�particle Green’s function, Gσ(k, ω) =

, defined on the initial lattice. In terms of
the Green’s function in the X representation defined
on the superlattice, the single�particle Green’s func�
tion can be determined from Eq. (9) without breaking
the translational symmetry as [75, 79]

(13)

where Nc is the number of sites in the cluster (in our
case, Nc = 4), k is the wave vector defined in the initial
Brillouin zone, and i and j are the indices of the intra�
cluster sites. Here, we took into account that the

Green’s function Dαβ( , ω) is a periodic function in
the reciprocal space of the superlattice and the wave

vector k can be represented in the form k = K + ,
where K is the translation vector of the reciprocal

superlattice. Therefore, Dαβ( , ω) = Dαβ(k, ω) [49].
The Green’s function Gσ(k, ω) and corresponding
spectral function

(14)

are calculated in the initial Brillouin zone.
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When all possible excitations are taken into
account in the representation of X operators (6), the
following sum rule is satisfied:

(15)

As was mentioned above, the total spectral weight of
the Fermi quasiparticles is controlled in all our calcu�
lations by the f factor introduced in [79] as

(16)

In the case of the exact calculation, f = 1. All results
presented below were obtained with f > 0.995. It
appeared that the number of energy levels under con�
sideration can be strongly reduced so that the error in
the sum rule is no more than one percent. For this rea�
son, we call our version of cluster perturbation theory
as norm conserving cluster perturbation theory.

We consider the doping procedure in the described
calculation scheme [84]. We define the doping con�
centration x as the concentration of holes in the clus�
ter. The exact diagonalization of the Hamiltonian of
the 2 × 2 cluster provides the complete set of eigenval�
ues and eigenvectors which specify the Hilbert space.
At half filling and T = 0, the transitions between the
ground state in the subspace with N = 4 and states in
subspaces with N = 3 and N = 5 have nonzero filling
factor (12). In the case of hole doping, it is necessary
to take into account the possibility of population of the
ground state in the subspace with N = 3. As a result,
additional transitions with a nonzero filling factor
appear. We consider only single�electron transitions
with a change in the number of particles by 1. Since
the number of sites in the cluster is 4, doping per clus�
ter x is expressed in terms of doping per site p as x = 4p.

The main results obtained within the norm con�
serving cluster perturbation theory are as follows. The
calculated energy of the ground state as a function of
U [84] is in good agreement with the results obtained
by nonperturbative variation and quantum Monte
Carlo methods [85, 86]. Agreement with the exact
diagonalization calculations for the 4 × 4 cluster is very
good [87]. Comparison with [88], where variational
cluster perturbation theory was used, shows good
agreement at small U values and provides the best
result at larger U values.

The “rigid band” representation is inapplicable to
study systems with strong electron correlations. It is
known that doping of such systems leads to the forma�
tion of in�gap states [89], which appear in the band gap
and can significantly change the conducting proper�
ties of these systems. Our cluster calculations taking
into account hops between the nearest neighbors show
the presence of such in�gap states [84]. The distribu�
tion of the spectral weight over the Hubbard bands and
intraband states has an interesting feature. The num�
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ber of states in the lower Hubbard band at U = 12t is
insufficient for all electrons of the system. For this rea�
son, some electrons occupy in�gap states. According
to the calculation, the number of in�gap states is suffi�
cient for these electrons. Thus, the Fermi level in the
low�doping region and at U = 12t is in the band of in�
gap states, where its pinning occurs [90, 84].

To compare the results with the situation in real
cuprates, we took into account the effect of hopping
between non�nearest sites [84]. In the case of the 2 × 2
cluster, hopping between the first and second neigh�
bors is already taken into account in the calculation of
the eigenstates of the cluster. Hopping between third
neighbors is taken into account only in the intercluster
interaction. The calculations with the parameters
from [12] showed the presence of pseudogap states and

an inhomogeneous distribution of the spectral weight
of quasiparticles over the Fermi surface [91]. Analysis
of a series of quantum phase transitions with doping
demonstrated that such changes in the electronic
structure can be observed in experiments only with the
corresponding high resolution. In our calculations,
the energy resolution is determined by the half�width
of the Lorentzian δ.

It is noteworthy that the Green’s function has not
only poles but also zeros. This was shown within the
cluster dynamic mean field theory in [46, 92]. The
structure of poles and zeros obtained in our calcula�
tion (Figs. 5a, 5d, 5g) qualitatively coincides with the
results obtained in [92]. The sequence of topological
transformations of the Fermi surface corresponds to
the results obtained in [12, 30, 27]. The distribution of

Fig. 5. Concentration dependences of the (a, d, g) Fermi surface and maps of the spectral weight at broadening δ = (b, e, h) 0.01t
and (c, f, i) 0.1t. The numbers on panels (b, e, h) show the inhomogeneous distribution of the spectral weight [91].
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the spectral weight A(k, εF) in the limit δ  0 should
provide the same picture of the Fermi surface that is
obtained from the analysis of dispersion laws. Indeed,
the comparison of the first and second columns in
Fig. 5 provides a similar picture. The maps of the spec�
tral weight show its inhomogeneous distribution in the
Brillouin zone. Similar regions with a low spectral
weight were previously obtained in [30]. However, the
third column (δ = 0.1), rather than second column
(δ = 0.01), in Fig. 5 corresponds to the really observed
ARPES spectra. The broadening of lines correspond�
ing to δ = 0.1 is large so that the small pocket is closed
to an arc (Fig. 5c), whereas only one arc instead of two
concentric pockets around the (π, π) point is observed
in the intermediate concentration region (Fig. 5f).
The ARPES picture corresponds to the actual Fermi
surface only in the high concentration region, where
there is one large surface (Figs. 5g, 5h, 5i). It is worth
noting that, despite a qualitative similarity of the evo�
lution of the Fermi surface with doping described in
the preceding section [12], the critical concentrations
of Lifshitz transitions do not coincide. These values
depend on the model (spin�fermion model [30], Hub�
bard model [29], or t–J model [12]), on the parame�
ters of the model, and on the approximation under
consideration.

Small hole pockets in low doped cuprates were
experimentally revealed when measuring Landau
quantum oscillations in high magnetic fields [17]. The

smearing of pockets to arcs upon broadening was
established by many authors [46, 13]. We showed that
broadening leads to the smoothing of the picture of
Lifshitz transitions and to a smooth healing of the
pseudogap near the (π, 0) antinodal point. The length
of the arc measured in ARPES is small in the doping
region p ≤ 0.05 and increases gradually with p. The
constancy of the spectral weight along the Fermi sur�
face at p ≥ 0.25 corresponds to the expected Fermi liq�
uid behavior.

According to the results reported above, the distri�
bution of the spectral intensity over the Brillouin zone
observed in ARPES at the linewidth δ = 0.1t cannot
provide the actual topology of the Fermi surface in
high�Tc superconducting cuprates. Only a decrease in
the linewidth by an order of magnitude makes it possi�
ble to obtain the actual Fermi surface from the spectral
intensity distribution.

Thus, the cluster approach even in the Hubbard�I
approximation for the intercluster interactions repro�
duces the main features of systems with strong elec�
tron correlations. This is primarily due to the exact
inclusion of the short�range order in the system. The
difference of our cluster perturbation theory from sim�
ilar theories is the use of the X Hubbard operator tech�
nique. This made it possible to introduce the f factor to
control the total spectral weight of quasiparticles in the
necessary accuracy limits [79, 84].

5. CONCLUSIONS

In this short publication, we have focused on our
methods and results and have not discussed many other
theories. We only mentioned that other approaches to
the description of superconductivity in cuprates and
the Hubbard model include the cluster methods (VCA
[94], CDMFT [95, 96], DCA [97, 98], see also review
[49]), functional renormalization group [99, 100],
quantum Monte Carlo method [101], bipolaron theo�
ries [102], theory of magnetic three�spin polarons
[103] (which is a new interesting variant of multielec�
tron theory), spin�fluctuation theories (FLEX [104,
105] and others [58, 106]), theory of resonance valence
bonds [107], and Gutzwiller approximation [108].

It is commonly accepted that the physics of the
high�Tc superconducting cuprates is determined by two
characteristic energy scales—superconducting gap and
pseudogap [93]. We have demonstrated within the pro�
posed approach that the evolution of the electronic
structure of cuprates at low temperatures passes through
two quantum critical points (Fig. 6). One of them, opti�
mal doping point xc1, is associated with the formation of
the maximum in the Tc(x) dependence. The other
point, xc2, lies at the interface of the transition from the
Fermi liquid state to non�Fermi liquid one and coin�
cides with the linear extrapolation of the concentration
dependence of the temperature of the formation of the
pseudogap state T*(x) to the intersection with the

Fig. 6. Experimental phase diagram of single�layer
cuprates [93] and the calculated quantum critical points
[27].
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abscissa axis (Fig. 6). The first critical point coincides
with the experimental value xopt in Fig. 6.
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