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INTRODUCTION

At present, a constantly increasing number of basic
and applied investigations have been devoted to the
development of fundamental foundations of branches
that are alternatives to semiconductor electronics. The
main goal of photonics is to create information trans�
mission and processing facilities in which photons,
rather than electrons, would be the basic carriers. To
create optical integral schemes, “optical semiconduc�
tors,” i.e., materials that have photonic band gaps in
their intrinsic energy spectra and that were termed the
photonic crystals are also necessary. This is a new class
of materials for optoelectronics and nanophotonics,
which are attracting interest as new optical materials
with unique properties [1–4]. The occurrence of pho�
tonic band gaps makes it possible to control spontane�
ous emission; these gaps lead to light localization
effects and open the way for applications of photonic
crystals in laser engineering, quantum computers, and
systems of optical communication and information
transmission. Photonic crystals with tunable spectral
characteristics are of considerable interest. The spec�
tral properties of a photonic crystal can be significantly
changed by placing resonant media into its periodic
structure. However, these changes manifest them�
selves only in a narrow frequency range near the reso�
nant frequency; therefore, this photonic crystal is
termed the resonant photonic crystal. The combina�
tion of the dispersion of a resonant medium with an

intrinsic dispersion of a photonic crystal opens up new
opportunities for controlling the spectral and optical
properties of photonic crystals. In [5, 6], particular
features of the band structure and of the transmission
spectrum of two�dimensional (2D) resonant photonic
crystals in which a resonant gas serves as one of the
composite materials were studied. Composite media
with metal nanoparticles are of great interest in con�
nection with the creation of nanostructured metal–
dielectric photonic crystals and devising new methods
of light control on their basis [7, 8]. For a nanocom�
posite that consists of metallic nanoparticles sus�
pended in a transparent matrix, the occurrence of a
resonance of an effective dielectric permittivity has
been predicted [9, 10]; at the same time, the optical
characteristics of the initial materials do not show any
resonant properties. The position of the resonance,
which lies in the visible light range, depends on the
dielectric permittivities of the initial materials and the
concentration and shape of nanoparticles.

In this work, using a modified transfer�matrix
method [11, 12], which follows from the finite differ�
ence method in the time domain [13, 14], we study the
transmission spectra of 2D resonant photonic crystals
of the following two types: (i) elements of the crystal of
the first type are nanocomposite cylinders that form a
square lattice in vacuum, and (ii) elements of the crys�
tal of the second type are cylindrical holes that form a
square lattice in a nanocomposite matrix. The nano�
composite consists of metallic nanoparticles that are
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dispersed in a transparent matrix and is characterized
by the effective resonant dielectric permittivity

.

PHYSICAL MODEL 
OF A PHOTONIC CRYSTAL

Consider, as in [6], a resonant photonic crystal in a
shape of a plate that is infinite in two directions, has a
finite thickness, and is in vacuum. We will assume that
the axes of cylinders are perpendicular to the xy plane
and are parallel to the z axis and the centers of the cross
sections of cylinders form a square lattice in the
xy plane. Waves with an s polarization propagate in the
xy plane along the x axis. For the resonant photonic
crystal of the first type, the nanocomposite cylinders
that form its crystalline structure consist of spherical
silver nanoparticles randomly distributed in a trans�
parent dielectric matrix (Fig. 1). The resonant photo�
nic crystal of the second type consists of infinite cylin�
drical holes that form a square lattice in a nanocom�
posite matrix.

The dielectric permittivity  is defined by the
Maxwell�Garnett formula, which is widely used in
studies of matrix media that contain dispersed inclu�
sions of a small volume fraction [9, 10, 15, 16],

(1)

where f is the filling factor, i.e., the fraction of nano�
particles in the matrix;  and  are the dielectric
permittivities of the metal of which nanoparticles are
made and of the matrix, respectively; and ω is the radi�
ation frequency. The size of nanoparticles is much
smaller than the wavelength and the penetration depth
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of the field into the material. The dielectric permittiv�
ity of the metal of nanoparticles can be found using the
Drude approximation,

(2)

where  is the constant that takes into account the
contributions from interband transitions of coupled
electrons,  is the plasma frequency, and  is the
quantity that is the inverse of the electron relaxation
time.

The function  is complex,

By neglecting the small factor , we find the posi�
tion of the resonant frequency, which depends on the
characteristics of initial materials and concentration f
of the disperse phase,

(3)

At the point , the function  turns to

zero and  acquires a maximal value. The func�

tion  also turns to zero at the point

(4)

In the interval , the function ;
i.e., in this frequency range, the nanocomposite is
similar to a metal.

METHOD OF CALCULATION 
OF THE SPECTRUM AND FIELD

IN THE MEDIUM

To calculate the transmission spectrum of s polar�
ized electromagnetic waves that propagate in the
xy plane and the electric vector of which is parallel to
the z axis, we used the formalism of the transfer�matrix
method, which was developed for one�dimensional
layered media and then was expanded to two� and
three�dimensional photonic crystals. The transfer�
matrix relates the amplitudes of plane waves at the exit
from the medium with amplitudes of waves at the
entrance to the medium. This matrix is formed by
multiplication of matrices that relate the amplitudes of
plane waves in adjacent thin layers into which the sam�
ple is separated. However, in a photonic crystal with a
dimensionality higher than the first, the transfer�
matrix is unstable and exponentially diverges because
its eigenvalues increase according to a geometric pro�
gression law with increasing number of layers. To elim�
inate this peculiarity, the transfer�matrix is trans�
formed into scattering matrix, which makes it possible
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Fig. 1. Scheme of the layer of the structure of a two�dimen�
sional photonic crystal of the first type that is composed of
six rows of nanocomposite cylinders with a dielectric per�
mittivity  that form a square lattice in vacuum; d is the
lattice period, θ is the angle of incidence (top view).

mixε



OPTICS AND SPECTROSCOPY  Vol. 112  No. 4  2012

SPECTRAL PROPERTIES OF A TWO�DIMENSIONAL RESONANT 587

to eliminate numerical instabilities and calculate the
transmission coefficients.

To construct the transfer�matrix, we will use two
Maxwell electrodynamic equations written in the inte�
gral form in the Gaussian CGS units. These are the
Faraday induction law,

(5)

and the Ampere circulation theorem, which was gen�
eralized by Maxwell with allowance for the displace�
ment current,

(6)

Here, B and D are the magnetic and electric induc�
tion vectors, respectively; H and E are the vectors of

1

s l

d d d
c dt

− =∫ ∫B s E l
�

4 1 .

s l

dI d d
c c dt
π

+ =∫ ∫D s H l
�

the magnetic and electric field strengths, respectively;
the contour l is the boundary of the surface S; and I is
the current that, in this problem, is zero.

As an integration contour, we will choose cells of a
numerical grid (Fig. 2) [11, 13, 14]. A half�integer
index of the magnetic field means that nodes of the
magnetic field are located precisely in the middle
between nodes for the electric field. The electric con�
tour for the Faraday law (5) consists of the lines of the
strengths  and  that emerge from the plane of
the figure and are directed along the z axis,

(7)

Here, H ' is the cell�averaged amplitude of the x com�
ponent of the magnetic field; d =  –  is the
dimensionless increment of the phase that was
obtained as a result of differentiating the stationary
magnetic field  =  with respect to time.
Similarly, the other two electric contours yield

(8)

, (9)

where H is the cell�averaged amplitude of the y com�
ponent of the magnetic field. For simplicity, we use the
square grid  = .

The magnetic contour for Ampere theorem (6) is a
square cell of the grid lying in the plane of the figure,

(10)

Here,  is the complex dielectric permittivity of an
optical medium in the cell including the absorption via
the imaginary part. It is assumed that the medium
within the cell is homogeneous.

 is eliminated from system (7)–(10),

(11)
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Fig. 2. Numerical grid. Circles denote lines along the
z axis, which is perpendicular to the plane of the figure.
The lines of the strength that are involved in formulas of
(7)–(10) of transfer to the adjacent layer are shown in bold.



588

OPTICS AND SPECTROSCOPY  Vol. 112  No. 4  2012

VETROV et al.

Here, the zeros denote the triangle blocks of the
matrices the elements of which are zeros. By denoting
the field in the layer of the medium as F the transfer�

matrix as , we can write (13) in the compact form

(14)

The vector of the field  consists of two blocks, which
determine the electric  and magnetic

 components. The dimension of the block M
is equal to the number of nodes in the layer of the com�
putational grid. The transfer�matrix is formed by com�
bining four square matrices with a dimension of

.
The field in the node of the grid can be represented

as a superposition of plane waves,

(15)

(16)

Here,  and  are the amplitudes of waves that are
incident onto layer of the grid from the left and from

the right. The set of wavenumbers  corre�
sponds to the wavenumber . The y com�
ponent of the wave vector , which is tangential to
the layer of the grid, is preserved upon passage from
layer to layer. In accordance with the Bloch theorem,

 =  + , where  is the integer between
 and  (for even M), d is the lattice period of

the photonic crystal, and  is the wave vector of the
incident wave. Equations (15) and (16) can also be
written in the matrix form

where  is the field transformation matrix and  is the
vector of the amplitudes of plane waves, which consists
of blocks  and . The transfer�matrix

 can also be transformed to the wave representa�

tion ,
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Transfer�matrix (13) contains a numerical instabil�
ity. The eigenvalues of this matrix exceed unity and
increase according to a geometric progression law as
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matrices of adjacent layers are multiplied. The trans�
fer�matrix of the one�dimensional problem can also
diverge in the case of the total internal reflection if a
surface wave with an imaginary wave vector transverse
to layers appears. In the two�dimensional problem,
these surface waves should be taken into account in
any case. The described instability occurs due to the
violation of the cause�and�effect relation. The waves

 that are incident on the layer are defined via the
waves  that are reflected from the layer and that are
a consequence of the interaction of the light with the
layer,

 (18)

Equation (18) can also be described as

(19)

Therefore, the formalism of the light scattering by
the layer restores the physical meaning with the aid of

the scattering matrix , which consists of complex

transmission  and reflection  ampli�
tude coefficients. Each of these coefficients does not
exceed unity in magnitude, which prevents the diver�
gence.

However, the numerical difficulty of combining
matrices for adjacent layers is the price one has to pay
for the stability of the scattering matrix. For transfer�
matrices, it suffices to perform the matrix multiplica�

tion  = , which, for sparse matrices,
requires about  operations. For scattering matri�
ces (Fig. 3), the formula of multiple scattering [12] is
used
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denote the four blocks of the matrix . This cal�
culation requires about O(M3) elementary operations.
Therefore, a significant advantage in calculations is
obtained if nonsingular transfer�matrices of individual
layers in a thin stack are initially combined and then
the scattering matrices of adjacent stacks are com�
bined.
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 layers. The energy transmission and reflection coef�
ficients  and  are given by

(21)

where  are elements of the middle column for

the matrices  and , which correspond to the ampli�
tudes of scattered waves. The ratio  is responsi�
ble for the area through which an oblique ray is inci�
dent onto the layer. Surface waves are not involved in
the energy transfer transverse to layers.

To calculate the field in a medium, one has to
impose the boundary condition at the entrance of the
medium. The field at the left boundary of the medium is

The amplitudes of reflected waves  are deter�

mined from the matrix . The vector of waves that
are incident from the left will contain only one non�
zero element , which corresponds to a plane
input unit wave. From the field at the boundary, one
can easily obtain amplitudes of waves  and of field
strengths  and local intensity  of the field in the
nth layer,

(22)

To this end, it is necessary to store partial scattering

matrices , , …,  or transfer�matrices

 in computer memory. However, in
practice, it is convenient to calculate these matrices
again.

CALCULATION RESULTS 
AND THEIR DISCUSSION

First of all, we consider the results of calculation of
transmission spectrum (21) for a plate of a 2D reso�
nant photonic crystal of the first type. The crystal con�
sists of infinite nanocomposite cylinders that form a
square lattice in vacuum. For silver, ,  eV,
and  eV; for the matrix, . The period
of the structure of the photonic crystal is d = 138 nm.
The filling factor, i.e., the fraction of the nanocompos�
ite in the photonic crystal, is defined by the expression

F =  = 0.28, where r is the cylinder radius. The
frequency dependences of the real  and imagi�

nary  parts of the dielectric permittivity that
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were calculated by formula (1) show that the fre�
quency  that corresponds to the resonance in cylin�
ders is shifted toward the low�frequency range as the
volume concentration of nanospheres increases. In
this case, the halfwidth of the resonant curve 

changes insignificantly, the curve  becomes
considerably modified, and the frequency range in
which  increases. As an example, Fig. 4 shows
the dependences  and  for two values of
the filling factor, f = 0.01 and f = 0.1.

Figure 5a presents a seed transmission spectrum
(f = 0) for s�polarized waves that propagate in the
xy plane along the x axis when the light is normally
incident onto the plate from vacuum. The width of the
band gap of the transmission spectrum of the plate is
consistent with the width of the gap in the x�direction
of the Brillouin zone [5] and is in the range from 320
to 473 nm. Figures 5b and 5c show the intensity distri�
bution normalized to the intensity  of the radiation
incident onto the sample calculated by formula (22)
for the frequency of the first side maximum of the low�
frequency boundary of the band gap. It can be seen
from these figures that the electromagnetic field is
localized at the center of the plate and that sharp
intensity maxima of the electromagnetic field that are
localized at the centers of rods are observed. If dielec�
tric rods in a 2D photonic crystal are replaced by
metallic rods, the effect of localization of the radiation
at frequencies that correspond to the boundaries of the
band gap is also observed [17].

At a finite concentration of spheres in a nanocom�
posite, the transmission spectrum qualitatively
changes. Thus, at the filling factor f = 0.01 and speci�
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fied parameters of the system, the resonant frequency
 (Fig. 4a) proves to be at the low�fre�

quency edge of the band gap of the seed photonic crys�
tal (Fig. 5a). As a result of the resonant situation that
arises in this case, an additional transmission band
with a width of ≈25 nm appears in the broadened band
gap (Fig. 6a). At a larger factor, f = 0.1, and corre�
sponding shift of  (Fig. 4b), the additional transmis�
sion band, as can be seen from the figure, considerably
broadens and shifts toward the high�frequency range.
As f increases from 0.01 to 0.1, the band gap width
increases by 40%. For the frequencies that correspond
to the band gap boundaries, the character of the field
distribution and the degree of its localization change
insignificantly in the cases with f = 0.01 and f = 0.1.
The intensity maxima at the center of the resonant
photonic crystal for the frequencies that correspond to
the band gap boundaries hardly differ from each other
at all at f = 0.01 and f = 0.1 and are equal to the maxi�
mal intensity  of the seed photonic crystal
(Fig. 5c). However, for the frequencies that corre�
spond to the intensity maxima of additional transmis�
sion bands, the intensities at the center of the plate
decrease significantly, which is demonstrated in
Figs. 6b and 6c.

/0 0.272pω ω ≈

0ω

/ 0 4I I =

A characteristic dependence of the transmission
spectra on the angle of incidence is presented in Fig. 7
for two crystals of the first type with different lattice
constants. For the crystal with the previous period, d =
138 nm, the additional transmission band is shifted
with an increase in the angle of incidence. Its width
increases with a high�frequency shift of the band gap
boundaries in accordance with the Bragg condition
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Fig. 4. Dependences of the imaginary ( , dashed curve)
and real ( , solid curve) parts of the effective dielectric
permittivity  on the normalized frequency . The
filling factor is  f = (a) 0.01 and (b) 0.1.
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Fig. 5. (a) The transmission coefficient as a function of the
frequency for s polarized waves that propagate in the plate
along the x�direction; (b, top view and c, side view) the
spatial intensity distribution in a photonic crystal for the
frequency of the first side maximum of the low�frequency
band gap boundary. The filling factor is f = 0.
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(Fig. 7a). A maximal intensity for the frequency that
corresponds to the maximum of the additional trans�
mission curve is observed at the center of the plate.
The calculations show that, at , the intensity at
the center of the plate is 1.5 times higher compared to
the case in which .

40θ = °

0θ = °

An increase in the period to d1 = 207 nm at
unchanged factors, f = 0.01 and F = 0.28, as well as the
remaining parameters of the system, leads to a situa�
tion that, at , the resonant frequency of the
nanocomposite proves to be near the high�frequency
boundary of the seed (f = 0) band gap. In this case,
mixing of photonic modes with the resonant mode
causes the band gap to split; as a result of which an
additional transmission band appears in the broad�
ened band gap. With increasing , the interaction effi�
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Fig. 6. (a) The frequency dependences of the transmission
coefficient calculated for the filling factor f = 0.01 (solid
curve) and f = 0.1 (dashed curve); the angle of incidence is

; (b, c) the spatial intensity distributions calculated
for the frequency of the maximum of additional transmis�
sion in the band gap for the cases f = 0.01 and f = 0.1,
respectively.
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Fig. 7. The frequency dependences of the transmission
coefficient at the resonant frequency of resonant photonic
crystals with different lattice periods: (a) d = 138 nm and
θ = 0° (solid curve) and θ = 40° (dashed curve), (b) d1 =
207 nm and θ = 0° (solid curve) and θ = 40° (dashed
curve), and (c) d2 = 230 nm and θ = 0° (solid curve) and
θ = 30° (dashed�and�dotted curve).
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ciency of photonic modes with the resonant mode
decreases because the boundary of the seed band gap is
shifted toward the high�frequency range. As a result,
the additional transmission band almost vanishes and
the band gap width increases 1.4�fold (Fig. 7b). A dif�
ferent situation arises if  nm. In this case, the
resonant frequency is located in the continuous spec�
trum of the seed photonic crystal (f = 0) and, as a result

2 230d =

of mixing of modes, an additional band gap arises
(Fig. 7c).

Now, we proceed to consideration of calculation
results for the sample of a resonant photonic crystal of
the second type, elements of which are empty infinite
cylindrical holes that form a square lattice in a nano�

composite matrix. The filling factor is =  =
0.72. The width of the first band gap of the transmis�
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Fig. 8. (a) The frequency dependences of the transmission coefficient calculated for (solid curve) a photonic crystal of the first
type with a fraction of nanocomposite F = 0.28 and (dashed curve) photonic crystal of the second type with F = 0.72. The filling
factor is f = 0.01. The remaining parameters are the same as in Fig. 6. (b, d, c, e) The intensity distributions for the frequency
that corresponds to the low�frequency band gap boundary calculated for (b, top view and d, side view) a photonic crystal of the
first type and (c, top view and e, side view) photonic crystal of the second type.
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sion spectrum of a plate of a seed photonic crystal
(f = 0), as in the case of the sample of the crystal of the
first type, is consistent with the width of the gap corre�
sponding to the x�direction of the Brillouin zone [5].
For the factor f = 0.01, it can be seen from Fig. 8a that,
in the range of existence of the band gap of the reso�
nant photonic crystal, the transmission spectra of the
crystals of the two types differ insignificantly, which
evidently follows from the coincidence of the nano�
composite fractions in the photonic crystals. In addi�
tion, the intensity of the electromagnetic field acquires
a maximal value at the center of the layer of the reso�
nant photonic crystal and, for the resonant photonic
crystal of the second type, it is two times higher than
the intensity for the crystal of the first type. Figures 8b,
8d and 8c, 8e show the spatial intensity distribution for
the frequency that corresponds to the low�frequency
band gap boundary for the crystals of the first (brush)
and second (sponge) types, respectively. It can be seen
from these figures that the intensity distributions for
the resonant photonic crystals of the two types are
qualitatively different. Thus, for the crystal of the first
type, the localization occurs in nanocomposite rods,
whereas, for the crystal of the second type, it is
observed in the nanocomposite matrix.

CONCLUSIONS

We calculated the transmission spectra and the spa�
tial intensity distributions for two�dimensional reso�
nant photonic crystals that consist of nanocylinders
forming a square lattice in vacuum or, on the contrary,
of empty cylinders forming a square lattice in a nano�
composite matrix. We revealed a number of important
features in the transmission spectrum of a photonic
crystal, which are primarily determined by the reso�
nant character of the effective dielectric permittivity of
the nanocomposite and by the significant dependence
of this permittivity on the filling factor f, the volume
fraction of nanospheres in the dielectric matrix.

We analyzed how the structure of the transmission
spectrum and the spatial intensity distribution in 2D
resonant photonic crystals vary at different positions
of the resonant frequency of the nanocomposite with
respect to the boundaries of the seed band gap. We
showed that, in the case of equal fractions of the nano�
composite in the photonic crystals, the transmission
spectra of the resonant photonic crystals of the two
types in the range of existence of the band gap differ
insignificantly; however, the spatial intensity distribu�
tions have qualitative differences.

The considered effects make it possible to consid�
erably expand the possibilities of controlling the trans�
mission parameters of 2D resonant photonic crystals
and the electromagnetic field distribution in the sam�

ple by means of variation of the lattice period, the con�
centration of nanospheres and/or the filling factor of
the electromagnetic field of the photonic crystal by the
nanocomposite, as well as by means of scanning the
band gap with respect to the resonant frequency of the
nanocomposite.
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