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INTRODUCTION

Graphene is now considered to be a most promis�
ing material. A great many investigations have been
devoted to the properties of this unique material [1–4]
and various methods for synthesizing it have been sug�
gested [5–8]. Graphene, like all real crystals, has
defects that seriously affect its properties. These can
appear in the stages of growth or purification as a result
of ionic bombardment and so on. Crystal lattice
defects obviously affect the electronic and mechanical
properties of graphene.

Defects of different types can be present in
graphene layers: Stone–Wales defects, mono� and
bivacancies, and adatoms of carbon and other ele�
ments. The presence of these defects has been proved
experimentally [9–12]. If methods for synthesizing
graphene sheets on different substrates are used,
stresses must be present in the prepared carbon struc�
tures due to the difference between the lattice param�
eters for the structure itself and for the substrate [7].
Such stresses in the material can change its properties,
influencing the stability and mobility of defects. There
are many papers devoted to analyzing the structure
and mechanisms of the formation of defects in
graphene layers [9, 11]. In virtually none of them,
however, is the dynamics of vacancies considered for
deformed layers, i.e., layers with stress.

The aim of this work is a theoretical investigation of
the dependences of stability and mobility of mono�
and bivacancies on the degree of lattice deformation
and temperature.

CALCULATION METHODS

Calculations were performed within the density
functional theory (DFT) formalism using the VASP
(Vienna ab Initio Simulation Package) program [13–
15]. Pseudopotentials (Vanderbilt potentials [16]) and
a plane�wave basis expansion of the wave functions are
used in this program for quantum�chemical calcula�
tions. The calculations were performed with allowance
for periodic conditions. A 7 × 5 supercell of rectangu�
lar graphene cells corresponding to 17.196 × 21.274 Å
(referred to below as Х and Y lattice vectors) (figure)
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was used to exclude the mutual influence of vacancies
in one plane.

In order to exclude interaction between graphene
plates, a vacuum space was of 10 Å was inserted
between them. The cutting energy of plane waves used
in our calculations was 286.7 eV. The calculations were
performed by dividing the reciprocal lattice space into
a 3 × 3 × 1 network using the Monkhorst Pack method
[17]. The self�coordinated geometry optimization pro�
cedure was performed with a precision of 1 × 10–3 eV.
The nudged elastic band method [18] was used to find
the transition state and potential barriers for the hop�
ping of vacancies in graphene.

The defect�free graphene structure and the struc�
tures with mono� and bivacancies containing 140,
139, and 138 carbon atoms, respectively, was initially
simulated. To discover the effect of uniaxial deforma�
tion on the stability and mobility of defects in a
graphene layer, calculations were performed with
alternating changes in the lattice translation vectors in
the X and Y directions. Defect�free and defect struc�
tures were considered with decremented and incre�
mented (by 2 and 5%) translation vectors along each of
the directions. Geometry was optimized such that
pressure was present only along the pre�selected direc�
tion.

Formation energies of vacancies was determined
according to the formula

Еv = Еdef.str – Еndef.str + Еat С, (1)

where Еv is the formation energies of mono� and biva�
cancies, Еdef.str is the energy of a structure with a
vacancy, Еndef.str is the energy of a vacancy�free struc�
ture, and Еat С is the energy of carbon atom in the
graphene phase.

To analyze the mobility of monovacancies in
dependence on the degree of deformation, we calcu�
lated the rate constants for the hopping of vacancies.
The rate constants for the graphene plane were calcu�
lated within the transition state theory with allowance
for the zero point energy Е0 of atom vibration using the
Arrhenius formula:

, (2)

where Eb is the potential barrier height, defined as the
difference between the energies of the transition com�
plex and the equilibrium state. The energy was calcu�
lated for the transition state with allowance for the
zero point vibration energy,
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where N is the number of displaced atoms. The preex�
ponential factor A was calculated using the Vineyard
formula,

where Т is temperature, and  and  are vibration fre�
quencies for the optimum and transition state, respec�
tively.

RESULTS AND DISCUSSION

The dependence of formation energies (Еv) of
mono� and bivacancies on the applied deformation
was obtained from the data obtained after optimizing
the structures’ geometry (Table 1).

It was found that bivacancies are more thermody�
namically advantageous than monovacancies in a
nondeformed graphene structure.

The pattern of defect stabilities, however, changes
upon the deformation of the investigated structures. It
was established that compressive deformation along
the Х direction (or tensile deformation along the Y
direction) lowers the energy of bivacancy formation,
increasing their stability. In this case, bivacancies are
more stable than in nondeformed structures. Under
the same conditions, their stability is higher than that
of monovacancies.

Any deformation of a structure with monovacan�
cies enhances their stability relative to a nondeformed
structure. Nothing similar was observed in the case of
bivacancies.

Applying a uniaxial tensile deformation along the Х
direction (or compressive deformation along Y direc�
tion) results in the stabilization of monovacancies with
respect to bivacancies. Under these conditions, the
formation energy of bivacancies in deformed struc�
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Table 1. Dependence of the energies of defects on defor�
mation

Deformation Emv, eV Ebv, eV

Without deformation 7.808 7.302

Compression X 5% 5.379 2.386

Compression X 2% 6.962 5.587

Stretching X 2% 7.681 9.131

Stretching along X by 5% 7.373 10.136

Compression along Y by 5% 6.552 8.465

Compression along Y by 2% 7.417 7.894

Stretching along Y by 2% 7.361 6.860

Stretching along Y by 5% 6.838 6.223

Note: Emv and Ebv are the energies of formation for mono� and
bivacancies, respectively.
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tures is higher (i.e., their stability is lower) than in
nondeformed structures.

The concentrations of mono� and bivacancies in
the graphene structure thus likely depend on the direc�
tion of the stress that arises due to interaction with the
substrate.

The kinetic parameters of the process are calcu�
lated below. Potential barrier energies (Eb) for the
motion of vacancies along the Y direction were calcu�
lated using the nudged elastic band method. It should
be noted that the Y direction of deformation is parallel
to the motion of a vacancy, while the Х direction is per�
pendicular. For nondeformed structures containing
mono� and bivacancies, the barrier value was 1.07 and
6.02 eV, respectively. The rather high value of the
potential barrier energy for structures with bivacancies
testifies to the low�probability mobility of these
defects. It can be seen from the calculations that the
potential barrier value depends on the degree of struc�
tural deformation and the type of defect.

It is known that graphene can exist over a wide
range of temperatures. Calculations of the rate con�
stants for the hopping of vacancies were therefore per�
formed at 77, 298, and 873 K (Table 2).

It can be seen from Table 2 that deformation can
lead to both an increase and a decrease in defect
mobility. The mobility of a monovacancy is increased
upon compression of the structure along the direction
parallel to the motion of the vacancy (Y) or its stretch�
ing along the perpendicular direction (Х). A reduction
in the mobility of a monovacancy is observed upon
tensile deformation along the Y direction or compres�
sive deformation along the Х direction.

An increase in mobility due to deformation leads to
the random migration of a monovacancy. It should
not, however, result in the recombination of single
monovacancies into a bivacancy, since the thermody�
namic stability of bivacancies is considerably reduced

and that of monovacancies is enhanced by deforma�
tions facilitating single vacancy migration.

The mobility of monovacancies increases with
temperature (Table 2), as is the case for most pro�
cesses.
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Table 2. Temperature dependence of the hopping constant (s–1) of vacancies

Deformation (monovacancy) T = 77 K T = 298 K T = 873 K

Without deformation 1.80 × 10–58 3.40 × 10–6 5.68 × 106

Compression along X by 5% 7.44 × 10–106 8.91 × 10–20 0.21 × 103

Compression along X by 2% 4.09 × 10–60 3.92 × 10–6 1.08 × 107

Stretching along X by 2% 1.43 × 10–48 2.70 × 10–3 5.32 × 107

Stretching along X by 5% 1.91 × 10–22 7.43 × 101 2.61 × 109

Compression along Y by 5% 3.87 × 107 2.05 × 1011 1.51 × 1012

Compression along Y by 2% 5.06 × 10–23 7.08 × 103 8.70 × 109

Stretching along Y by 2% 6.49 × 10–82 6.86 × 10–12 4.83 × 104

Stretching along Y by 5% 9.72 × 10–195 3.57 × 10–41 1.13 × 105


