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1. INTRODUCTION AND FORMULATION 
OF THE PROBLEM

Production of nanocolloids with desired proper�
ties, which are resistant to the coagulation of disperse
phase particles, is one of the topical problems of prac�
tical significance. This, in particular, concerns the
technologies for the production of drugs based on
metal hydrosols with long�term shelf life, develop�
ment of ultradisperse material�based chemical cata�
lysts stable to aggregation, nanocolloid�based nonlin�
ear optical limiters of laser radiation intensity for pro�
tection of fiber�optics communication lines, etc.

The inverse problem relevant to reducing the
aggregation stability of colloids is of practical signifi�
cance as well (e.g., upon the development of techno�
logical processes for purification of liquids from sus�
pended substances or separation of dispersed phases
with desired compositions from liquids).

The fast coagulation of unstabilized colloidal sys�
tems, when each collision of particles upon thermal
motion results in their aggregation, was described by
Smoluchowski as applied to an initially monodisperse
system composed of spherical particles [1–5]. One of
the conclusions of this theory is the known expression
for coagulation half�time t1/2, which corresponds to
the moment at which the total number of particles in a
system (including particle aggregates) halves:

(1)

where ν0 is the initial concentration of particles in a
disperse system, η is the viscosity of a dispersion
medium, T is temperature, and kB is Boltzmann’s
constant. This expression was obtained assuming that
the Brownian diffusion coefficient D of particles is

1 2 03 8 ,t k T= η νB

related to their radius R via the equation D =
kBT/(6πηR).

The coagulation half�time is related to the rate
constant of fast coagulation Kfast as follows:

(2)

In the Smoluchowski theory modified by Muller as
applied to fast coagulation of polydisperse sols, it is
stated that the coagulation rate of polydisperse systems
is higher than that of monodisperse ones [5].

The formula for the rate constant of fast coagula�
tion of a polydisperse sol Kfast_nm (reflecting the fact of
coalescence of aggregates or individual particles with
sizes Rn and Rm and total size Rnm) appears in the
Muller theory as:

(3)

At Rn = Rm, Eq. (3) yields a constant corresponding to
a monodisperse system. The dependence of parameter
Kfast_nm on the ratio between the sizes of coagulating
particles Rm/Rn is shown in Fig. 1.

In the case of the so�called slow coagulation of
partly stabilized colloidal systems [1, 2], according to
the Fuchs theory, the rate constant can be described by
the following simplified expression:

(4)

Here, Rnm = Rm + Rn, Dnm = Dm + Dn is the sum of the
diffusion coefficients of colliding particles; and P ≤ 1 is
the steric factor, which, in particular, takes into
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account the spatial arrangement of particles upon a
collision; and ΔU is the energy barrier. The energy bar�
rier may be generated by repulsive interactions of poly�
mer adsorption layers (ALs) or electrical double layers
of electrostatically stabilized colloidal particles.

Since the rate constant of fast coagulation is Kfast =
4πDnmRnm, the following equation is valid for the factor
of coagulation deceleration:

(5)

As was mentioned above, the presence of ALs on
disperse phase particles is one of the reasons for decel�
erating coagulation of a colloidal system. In particular,
ALs inhibit coagulation in the secondary potential
minimum. This deceleration is caused by the fact that
the depth of the secondary potential minimum
decreases with increasing AL thickness, which allows
the particles with high kinetic energy to leave the
potential well at a certain viscosity of the dispersion
medium (Fig. 2).

In addition to the thickness of a polymer AL, its
elasticity modulus is an important factor influencing
the coagulation rate of disperse phase particles. An
increase in the elasticity modulus of an AL enhances
energy barrier ΔU, which is related to the elastic repul�
sion of particles, and strongly decelerates the coagula�
tion.

The coagulation in the secondary potential mini�
mum can also be decelerated in the case of electrostat�
ically stabilized colloids. The deceleration is also asso�
ciated with aggregate disintegration; in this case, only
a small fraction of particles are, as a rule, capable of
overcoming the energy barrier and coagulating in the
primary minimum. In such systems, slow coagulation
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in the secondary minimum takes place only for submi�
cron particles, whereas the coagulation of nanosized
particles is possible only in the primary minimum
[6, 7].

One of the reasons for the deceleration of the
aggregation is the low viscosity of a dispersion
medium. At a weak viscous friction, particle coagula�
tion is impossible even at a very deep secondary poten�
tial minimum (10kBT and deeper) (Fig. 2c). Under
these conditions, particles possessing appreciably high
energy are almost elastically reflected from the poten�
tial barrier (Fig. 2c) and the viscous dissipation does
not have time to reduce their energy to a level that
would ensure their capture in the secondary mini�
mum.

It should be emphasized that, on the other hand, as
can be seen from Eq. (1), an increase in the viscosity
is, per se, an additional factor of coagulation deceler�
ation due to a reduction in the particle mobility. How�
ever, this kind of deceleration is only observed when
the viscosity increases to the value at which the effi�
cient dissipation of the energy of colliding particles
begins to cause coagulation in the secondary mini�
mum.

The concepts of accelerated coagulation of poly�
disperse colloidal systems (compared to monodisperse
ones) are rather common [1–5] and considered to be
applicable to interpreting the regularities of coagula�
tion of an arbitrary disperse system regardless of its
specific parameters. However, these concepts may be
erroneous, since they do not allow for the coagulation
conditions and the properties of a disperse system.
Additional comparative studies are required to assess
the validity of these concepts.

The Brownian dynamics method is an efficient
approach to studying coagulation kinetics. This
method enables one to most realistically simulate par�
ticle motion under the conditions of dissipative and
stochastic forces and allow for different types of inter�
particle pair interactions, which result in the forma�
tion and partial disintegration of aggregates. The
development of computer engineering has made the
Brownian dynamics method an efficient tool for
studying the processes of structure formation in colloi�
dal systems with viscous dispersion medium and
enabled one to resolve problems that were previously
unsolvable.

This study was aimed at verifying the thesis postu�
lated in the Muller–Smoluchowski theory concerning
accelerated coagulation of colloidal systems with high
degrees of polydispersity, determining the boundaries
of applicability of this theory, and ascertaining the rea�
sons for the deviations from it. The formulated prob�
lem was solved using the Brownian dynamics method.

2. METHOD

Simulation of particle coagulation using the
Brownian dynamics method is one of its conventional
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Fig. 1. The rate constant of fast coagulation Kfast_nm/kBT
of a polydisperse ensemble of particles as a function of
their size ratio (Rm/Rn). The viscosity and temperature of
the interparticle medium are η = 10–3 Pa s and T = 300 K,
respectively.
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applications [6–9]. This method allows one to moni�
tor the process and vary any parameters of a system,
namely, the sizes and materials of particles, thick�
nesses and elastic properties of adsorption layers, vis�
cosities and temperatures of dispersion medium, etc.
The use of realistic models of interparticle pair inter�
action makes it is possible to reproduce the conditions
of both fast and slow coagulation with allowance for
disintegration of the aggregates being formed.

Metal sols with a liquid dispersion medium (dis�
perse phase consisting of nanosized silver nanoparti�
cles) were selected as the object of the study performed
within the framework of the Brownian dynamics
model (see [7]). The simulation was carried out in a
cubic cell, the sizes of which were larger than the aver�
age particle diameter by two to three orders of magni�
tude. At the initial moment, N nanoparticles were ran�
domly and uniformly distributed in the cubic cell. The
collisions of the particles with cell walls were consid�
ered to be elastic.

The equations of motion were solved for all the par�
ticles at each iteration step:

(6)

where ri,  mi, and Fi = (Fр)i + (Fnp)i are the coordi�
nate, velocity, mass, and the resultant of potential
(Fр)i = –grad(Utot)i and nonpotential (Fnp)i forces act�
ing on an ith particle, respectively, and (Utot)i is the
total energy of the interaction of the ith particle with
other particles or external fields. The nonpotential
forces comprise dissipative forces (in particular, vis�
cous friction force Ff) and stochastic hydrodynamic
force Fс. The Nordsieck�Gear fifth�order predictor–
corrector method was used to solve the motion equa�
tions in this study. The resultant of the forces was cal�
culated at each moment t based on the total energy
(Utot)i of pair interaction between the ith particle and
all other particles in the cell. The total interparticle
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Fig. 2. The pair interaction potentials for particles with radii (1) Ri = 3 and Rj = 3, (2) Ri = 2 and Rj = 4, and (3) Ri = 1 and Rj =
5 nm: AL thicknesses are (a) hi = hj = 0.5 and (b) hi = hj = 0.1 nm. Imitation of the particle (c) capture in the potential well and
(d) escape from it when it is reflected from the barrier at a high initial kinetic energy.
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interaction energy comprised the Van der Waals and
elastic interactions.

The interparticle pair interactions in the Brownian
dynamics model were thoroughly described in [7]. Let
us briefly discuss them.

The Van der Waals attraction is described in terms
of the Hamaker–de Boer approximation (see, e.g.,
[10]), according to which the energy of the dissipative
interaction between two spherical particles
formed from the same material with radii Ri and Rj is
described as

(7)

Here, h = Rij – (Ri + Rj) is the interparticle gap, Rij is
the distance between the particle centers, and AН is the
effective Hamaker constant (its value for silver hydro�
sol particles is AН ≈ 50kBT [11] at T = 300 K). For con�
tacting particles, gap h is equal to the total thickness of
the deformed ALs of the particles; the initial thickness
of an AL is considered to be independent of the parti�
cle radius.

The potential energy of the elastic interaction
between two spherical particles with polymer ALs (this
energy is caused by AL deformation in the region of
the contact) can be described by the following expres�
sion [7, 12]:

(8)

where hi and hj are the thicknesses of undeformed
adsorption layers of the ith and jth particles, respec�
tively; Ee is the effective elasticity modulus of polymer
adsorption layers (it is assumed to be the same for all of
the particles); and σe is the Poisson coefficient. Since

σe ≈ 0.15 and  this parameter will be ignored
below.

In this study, we confine ourselves to discussing
coagulation of colloidal particles stabilized with poly�
mer AL alone.

Realization of the Brownian motion implies the
fluctuation interaction of particles with environments,
which causes random changes in the trajectories of
particle motion and must compensate for the action of
dissipative forces and maintain the mobility of the dis�
persed phase. In this model, stochastic hydrodynamic
force Fs(t) was characterized by the Gaussian distribu�
tion of amplitude and described by a δ�correlated ran�
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dom process. During each time step Δt, a spherical
particle undergoes the action of the stochastic hydro�
dynamic force. Prior to each integration step, the pro�
jections of random force Fs,i (i = x, y, z) onto the coor�
dinate axes are selected from the Gaussian distribution
with the zero average value and the following devia�
tion:

(9)

The viscous friction force, which is the main factor
of kinetic energy dissipation, is determined by the
Stokes formula for spherical particles of radius Ri as
follows:

(10)

where η is the dynamic viscosity of the dispersion
medium and v is the particle velocity.

The presence of the stochastic and dissipative
forces in the Brownian dynamics model results in a
probabilistic character of nanoparticle aggregation
and partial disintegration of subaggregates being
formed, which reproduces the conditions that are
taken into account in the Fuchs theory of slow coagu�
lation.

3. RESULTS AND DISCUSSION

The kinetics of coagulation of monodisperse and
bimodal ensembles composed of N = 100 nanoparti�
cles with a density equal to that of silver were compar�
atively studied. The radius of the particles of the mon�
odisperse ensemble was 3 nm; the radii of the particles
in the bimodal ensembles were equal to 2 and 4 or 1
and 5 nm. The thickness of polymer ALs on the parti�
cles was selected to be h = 0.1 nm (to implement the
regime of fast barrierless coagulation, Fig. 2b) and h =
0.5 nm (to investigate slow coagulation in the second�
ary potential minimum, Fig. 2a). The viscosity values
of the dispersion medium were taken equal to η =
10⎯3 Pa s, which corresponds to a hydrosol at T =
300 K, and η = 10–4 Pa s, which is close to the viscosity
of dispersion medium of certain types of organosols.

Coagulation half�times t1/2 for the ensembles of sil�
ver nanoparticles were calculated at these parameter
values, and their dependences on the initial particle
concentrations were plotted (Figs. 3–6). 

One of the goals of the study was to ascertain the
conditions at which the Muller–Smoluchowski theory
and the Brownian dynamics method yield consistent
results. For this purpose, the regime of fast coagulation
of a colloidal system had to be realized. The necessary
conditions for this realization are the minimum thick�
ness of the adsorption layers on the particles (0.1 nm)
and a relatively high viscosity of the dispersion
medium (η = 10–3 Pa s), which ensures the efficient
dissipation of the kinetic energy of colliding particles.

In order to investigate the coagulation kinetics, the
ratio between the aggregation half�time values
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obtained for a monodisperse sol using the Muller–
Smoluchowski theory (t1/2,MS(ν0)) and the Brownian
dynamics method (t1/2,BD(ν0)), t1/2,MS(ν0)/t1/2,BD(ν0),
was calculated in a wide range of initial particle con�
centrations from 1.08 × 1022 to 1.63 × 1024 m–3

(Fig. 3a). It was demonstrated that, at concentrations
lower than 1024 m–3, the ratio t1/2,MS(ν0)/t1/2,BD(ν0)
tends to unity and reaches a value of 1.836 at ν0 =
1.08 × 1022 m–3. A decrease in the t1/2,MS(ν0)/t1/2,BD(ν0)
ratio with a reduction in the concentration is caused
by a decline in the average energy of the Van der Waals
interparticle attraction due to an increase in the inter�
particle distances.

However, at very low concentrations, the computa�
tion time increases abruptly (by an order of magnitude
and above), because approaching particles have large
interparticle distances to overcome during chaotic
Brownian drift. Therefore, in the subsequent calcula�
tions, we confined ourselves to the concentration
range of the disperse phase particles ν0 = 1.08 × 1024–
1.63 × 1024 m–3. Within this concentration range, the
coagulation half�time calculated using the Brownian
dynamics method differs twofold for the monodisperse
sole and by an order of magnitude for the bimodal sols.
An increase in the particle concentration made it pos�
sible to considerably reduce the computation time due
to a decrease in the average interparticle distance. As a
result, larger amounts of computations could be per�
formed and the basic statistical regularities of the
coagulation kinetics could be determined.

It should be noted that the Muller–Smoluchowski
theory does not allow for changes in the effective inter�
particle interaction with concentration. Therefore, a
significant deviation of times t1/2,BD(ν0) from the theo�
retically predicted ones t1/2,MS(ν0) is observed upon
increasing particle concentrations. Concentration
dependences of t1/2,MS(ν0)/t1/2,BD(ν0) are strongly
oscillating due to the stochastic character of the
Brownian dynamics process. After averaging over ten
values, the relative error for each value of the concen�
tration dependence of t1/2,MS(ν0)/t1/2,BD(ν0) is equal to
15–20%.

Thus, Figs. 3a and 3b illustrate the concentration
dependences of t1/2,MS(ν0)/t1/2,BD(ν0) for the monodis�
perse ensemble composed of N = 100 silver nanoparti�
cles at the viscosities of the dispersion medium η =
10⎯3 and 10–4 Pa s, respectively. Figures 3c–3f show
the same dependences for the bimodal ensembles.
Figures 3a, 3c, and 3e demonstrate the general ten�
dency toward a rise in the t1/2,MS(ν0)/t1/2,BD(ν0) ratio
with increasing concentration under the conditions of
the high coagulation efficiency of interparticle colli�
sions.

However, at a lower viscosity and, hence, weaker
dissipation of particle kinetic energy (η = 10–4 Pa s;
see Figs. 3b, 3d, and 3f), the t1/2,MS(ν0)/t1/2,BD(ν0) ratio
decreases because of more frequent disintegrations of
subaggregates being formed as compared with these
dependences at η = 10–3 Pa s (Figs. 3a, 3c, 3e). More�

over, as can be seen from Fig. 2a, the potential well for
a particle pair with radii Ri = Rj = 3 nm is deeper than
that for pairs with Ri = 2 and Rj = 4 or Ri = 1 and Rj =
5 nm. This fact is responsible for the greater number of
subaggregate disintegrations in the case of bimodal
ensembles.

The comparative kinetics of aggregation of mono�
disperse and bimodal colloids at different viscosities of
the dispersion medium and AL thicknesses on nano�
particles is shown in Fig. 4. This figure clearly shows
the deviation of the aggregation half�times analytically
calculated for polydisperse colloids (curves 3) from
those obtained using the Brownian dynamics method
at increasing influence of the factors of coagulation
deceleration. These factors are determined by the
thickness of AL (curves 1, 2) and the viscosity of a dis�
persion medium.

At a high viscosity of a dispersion medium and a
small thickness of an AL, which provide a high effi�
ciency of particle coalescence upon collisions
(Figs. 4a, 4c, 4e, curves 1), a correlation with identical
dependences obtained using the Muller–Smolu�
chowski theory (curves 3) takes place. Namely, the
aggregation half�time decreases with increasing parti�
cle concentration. However, an increase in the poly�
dispersity is accompanied by oppositely directed ten�
dencies in the kinetic dependences corresponding to
curves 2 and 3 in Figs. 4a, 4c, and 4e at increased AL
thicknesses. The coagulation decelerates with a rise in
the degree of polydispersity that can be seen from the
mutual arrangement of curves 2 and 3 corresponding
to particle coagulation in the presence of a potential
barrier (2) and to the Muller–Smoluchowski
theory (3).

Even more obvious deviation of the data of the ana�
lytical Brownian dynamics theory takes place when
the viscosity of the dispersion medium is reduced by
an order of magnitude (Figs. 4b, 4d, 4f). For AL thick�
ness hi = 0.1 nm (curve 1) and particle sizes Ri = 1 and
Rj = 5 nm, the coagulation half�times shown in Fig. 4f
are considerably longer than those corresponding to
the monodisperse sol and the bimodal sol with particle
sizes Ri = 2 and Rj = 4 nm (Figs. 4b, 4d). At AL thick�
ness hi = 0.5 nm and increased polydispersity of the
sols, the coagulation time is even longer than that pre�
dicted by the analytical theory (see the mutual
arrangement of curves 2 and 3 in Fig. 4f) in addition to
decelerated coagulation.

This behavior of the coagulation half�time can be
explained by a smaller depth of the potential well for a
particle pair with sizes Ri = 1 and Rj = 5 nm, as com�
pared to particle pairs with radii Ri = 2 and Rj = 4 or
Ri = Ri = 3 nm (Fig. 2a), which is responsible for the
decelerated coagulation of highly polydisperse parti�
cles.

Figure 5 shows the dependences obtained for the
monodisperse and bimodal colloids at a small AL
thickness and two viscosities of the dispersion medium
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Fig. 3. The ratios between the coagulation half�time t1/2, MS corresponding to the Muller–Smoluchowski theory and that calcu�
lated in terms of the Brownian dynamics model t1/2, BD as functions of the concentration of silver particles ν0 for (a, b) a mono�
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ulus of polymer AL is Ee = 3 × 109 N/m.
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using the Brownian dynamics method and the
Muller–Smoluchowski theory.

At preset concentrations of disperse phase parti�
cles, the Van der Waals attraction accelerates the coag�
ulation of the monodisperse and bimodal sols as com�
pared to the predictions of the Muller–Smoluchowski
theory. However, the violation of the “conventional”
relation between the coagulation times of the mono�
disperse and bimodal sols is easy to establish at inter�
particle medium viscosity η = 10–3 Pa s. This is evident
from the mutual arrangement of curves 2 and 3 in
Fig. 5a, where the average aggregation half�times of
the monodisperse (Ri = 3 nm) and bimodal (Ri = 2,
Rj = 4 nm) sols at some particle concentrations almost
coincide with one another and appear to be longer

than those corresponding to the ensemble with the
higher polydispersity.

An even stronger pronounced deviation from the
Muller–Smoluchowski theory takes place when the
medium viscosity is decreased by an order of magni�
tude (see the mutual arrangement of curves 1–3 in
Fig. 5c). In this situation, the bimodal colloid with the
higher degree of polydispersity (Ri = 1 and Rj = 5 nm)
coagulates slower than not only the bimodal sol with
the smaller difference between the modes (Ri = 2 and
Rj = 4 nm), but even than the monodisperse colloid
(Ri = 3 nm). This behavior of coagulation half�times
can be accounted for by the smaller depth of the
potential minimum for particles with greatly different
sizes (Fig. 2b).
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Finally, for coagulation in the presence of the
potential barrier (at a large thickness of AL), the
kinetic dependences calculated using the Brownian
dynamics method exhibit complete violation of the
“conventional” relation between the aggregation half�
times of the monodisperse and bimodal colloids.

Figures 6a and 6b show the concentration depen�
dences plotted for the average coagulation half�times
under conditions of the maximum influence of the
factors of its deceleration, i.e., at an AL thickness of
0.5 nm, which ensures the appearance of the second�
ary potential maximum and the energy barrier in the
pair interaction, and different viscosities of the disper�
sion medium. Under these conditions, an increase in
AL thickness, which causes a reduction in the depth of
the secondary potential minimum (Fig. 2a), facilitates
the disintegration of aggregates being formed. In com�
bination with an insufficient energy dissipation, which
takes place at low viscosities of the dispersion
medium, this fact additionally violates the coagulation
regularities corresponding to the Muller–Smolu�
chowski theory.

CONCLUSIONS

The results obtained and the tendencies revealed in
the work lead us to state the following.

Slow coagulation of polydisperse nanocolloids
accompanied by partial disintegration of subaggre�
gates being formed cannot be described by the
Muller–Smoluchowski theory. The theory is inappli�
cable under the following conditions: the existence of
a thick adsorption layer on particle surfaces, a high

elasticity modulus of the layer, a large height of the
potential barrier, and a low viscosity of a dispersion
medium.

A combination of these factors or a strong effect of
one of them does not allow one to use the Muller–
Smoluchowski theory to substantiate the accelerated
coagulation of polydisperse colloids observed in a par�
ticular experiment.

Sporadic experimental data, which indicate that
the coagulation of polydisperse metal sols is acceler�
ated as compared to that of monodisperse systems
(see, e.g., [13, 14]), and the results of studying the
coagulation of polydisperse metal sols [5], enable one
to conclude that there are certain mechanisms (that
have not been taken into account in the Brownian
dynamics method) that facilitate the acceleration of
the aggregation of polydisperse particles.

We suppose that one of these mechanisms may be
related to the electron tunneling effect, which induces
mutual heteropolar charging of particles with different
sizes at the moments of collisions. As a result, a
dynamic increase in particle attraction energy may
take place due to additional electrostatic interaction
between the particles, as well an increase in the depth
of the potential minimum and a rise in the coagulation
efficiency of interparticle collisions. A thorough anal�
ysis of the tunneling mechanism of coagulation accel�
eration was made in [15].
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