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1. INTRODUCTION

In our previous study [1], the coagulation kinetics
of metal nanocolloids with different degrees of poly�
dispersity was analyzed using the Brownian dynamics
method. It was found that the results obtained contra�
dict the conclusion of the Muller–Smoluchowski the�
ory that the coagulation of nanocolloids accelerates
with an increase in the degree of their polydispersity
[2]. This contradiction can be observed at a low viscos�
ity of a dispersion medium, upon stabilization of
nanoparticles with adsorption layers (ALs), and when
both of the factors are combined; simulation by the
Brownian dynamics method did not exhibit the accel�
erated coagulation predicted by the theory.

Nevertheless, a number of experiments on the
coagulation kinetics of polydisperse metal colloids
attest to accelerated coagulation in systems containing
particles with greatly different sizes [2–5].

According to the existing ideas [6–8], a polydis�
perse ensemble composed of metal nanoparticles
reaches the thermodynamic equilibrium, provided
that the electrochemical potentials of electrons in the
particles are equalized due to their exchange through
an electroneutral interparticle medium. The electron
tunneling effect (ETE), which is observed upon acci�
dental collisions between particles of different sizes
and their interaction through thin (less than 1 nm)
polymer ALs, may be one of the ways of this exchange.
The equilibrium interparticle gap at the moment of
interparticle collision at a corresponding AL thickness

must be no larger than 1–1.2 nm, which is sufficient
for a noticeable tunneling current [9]. It was demon�
strated that the ETE can result in mutual heteropolar
charging of particles with different sizes at the moment
of their collision [9]. The predominant electron trans�
fer from one particle to another is conditioned by the
dependence of the electron work function on particle
size; the transfer promotes equalization of the Fermi
levels in particles of different sizes. As a result of this
exchange, one particle acquires a positive charge,
whereas the other becomes negatively charged to
induce electrostatic attraction in addition to the Van
der Waals interaction.

Quantum�size corrections to the work function of
particles with different sizes in a silver nanocolloid,
which ensure the mutual heteropolar charging of the
particles, were taken into account, and the electro�
static effects accompanying the interaction between
charged particles were analyzed and taken into
account in this study. As opposed to [9], a dynamic
approach to the description of the mutual heteropolar
charging of particles upon their collisions and disinte�
gration of particle aggregates was implemented in this
study. Furthermore, the effect of this process on the
particle coagulation kinetics was assessed.

The possibility of the realization of the ETE, which
causes an additional electrostatic interaction between
nanosized particles, was demonstrated in [9]. The
ETE made it possible to clearly explain the experi�
mental results reported in [10, 11], where the forma�
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tion of two�dimensional superlattices in bimodal gold
organosols was investigated. The superlattices con�
sisted of hexagonal sublattices formed from monodis�
perse particles with a certain size ratio, with the sublat�
tices being enclosed into one another. This crystal lat�
tice geometry cannot be explained using the Van der
Waals and elastic interactions alone; however, it can
result from the selective attraction of particles with dif�
ferent sizes.

The possible existence of forces generated by
mutual charging in ensembles of small particles and
the experimental data on the dependence of the work
function on the size of a spherical particle were dis�
cussed in, e.g., [6–8]. Note that the electron transfer
via tunneling between metal particles forming ordered
monolayer films was investigated in a large number of
studies (see review [12]).

The goal of this work was to employ the Brownian
dynamics method for studying the effect of ETE on
coagulation of polydisperse metal nanocolloids with
allowance for realistic models of interparticle interac�
tions and dissipative forces.

2. MODEL

2.1. Electron Tunneling Effect and Mutual Heteropolar 
Charging of Particles of Different Sizes

The development of electrostatic attraction, in
addition to the Van der Waals interactions in an
ensemble of polydisperse particles, is accompanied by
an increase in the coagulation efficiency of collisions
between particles of different sizes. The depth of the
secondary potential well in the potential energy of pair
interparticle interaction is markedly enlarged as com�
pared with that for particles of the same size (Fig. 1)

due to the additional attraction between the particles
of different sizes, and this phenomenon affects the rate
of coagulation.

The possibility of tunnel electron exchange, result�
ing in the heteropolar charging of particles, is deter�
mined by a small distance (~1 nm) between particle
surfaces at the moment of their collision.

In the general case, the coefficient of electron tun�
neling from particle i with radius Ri and energy W(Ri)
through potential barrier W0(x) of an arbitrary shape is
determined by the following expression [13]:

(1)

where C ≈ 1 is a constant.
In the simplest case of a rectangular barrier with

width L, the expressions for coefficients j, Dij of elec�
tron tunneling from particle i to particle Dji and in the
opposite direction are written as:

(2)

where W0 is the potential barrier height and WF is the
Fermi level in particle i or j (in our case, L corresponds
to h equal to the sum of the thicknesses of deformed
adsorption layers on the particles in the contact zone).
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Fig. 1. Pair potential dependences of the total interparticle interaction ((a) Van der Waals and elastic and (b) Van der Waals, elas�
tic, and Coulomb) for a pair of particles with radii (1) Ri = 1 and Rj = 5, (2) Ri = 2 and Rj = 4, and (3) Ri = Rj = 3 nm. Thickness
of the polymer AL for all of the pairs is hi = hj = 0.5 nm. The elasticity modulus of AL is Ee = 3 × 109 N/m2. The charge value for
the pair Ri = 1 and Rj = 5 nm is ±20e and, for the pair Ri = 2 and Rj = 4 nm, it is ±10e (e is the elementary charge, kB is Boltzmann’s
constant, T = 300 K).
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Variation in the work function with particle size Ri
is determined by the following factors [8]:

(3)

The physical meanings of the characteristics intro�
duced into Eq. (3) are as follows: Wbulk is the work

function for a bulk metal and ΔWbulk(Ri) =  is

the size correction to the work function in case of a
spherical particle with radius Ri [14], where ε is the
permittivity of an environment, ε0 is the permittivity of
vacuum, and e is the elementary charge. In the
approximation of perfectly spherical particles, the
dimensional correction to the Fermi energy ΔWF(Ri)
is described as [8, 15]

(4)

where WF =  is the Fermi energy of a bulk

metal; Ri, Si, and Vi are the radius, surface area, and
volume of a particle, respectively; ne is the electron
concentration in a particle; m is the effective mass of
the electrons; and kF is the Fermi wave number.

The fourth term, Wim, em = eϕi, is the additional
electrostatic attraction, which is responsible for an
increase in the electrostatic potential of an emitting
particle in the field of an oppositely charged neighbor�
ing particle [16]. Actually, this term reflects the poten�
tial energy of an emitted electron in the field of the two
particles. It is expressed via the charges of the emitting
qi and neighboring qj particles,

(5)

and the capacitance coefficients cij, which are derived
using the method of electrical images and written as
follows [16]:

(6)

In Eqs. (6), γ = Rj/Ri and x = Rij/(Ri + Rj), where Rij is
the distance between the particle centers. Parameter β
is related to the distance between the centers of the
nanoparticles as follows:

(7)
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Let us consider the way in which the size and elec�
trostatic corrections to the work function in the
Brownian dynamics model may result in the asymme�
try of counter electron fluxes between two metal nano�
particles, which, in the long run, leads to mutual
charging of particles of different sizes.

Taking into account that electron tunneling occurs
through a gap of a variable thickness corresponding to
the distance between two spherical surfaces with radii
Ri and Rj, the expression for the electron flux from par�
ticle i via an elementary ring surface with radius x and
surface area 2πxdx is modified according to the follow�
ing relationship [9] (x is the coordinate along the axis
perpendicular to the intercenter vector, 0 ≤ x ≤ Ri, and
Ri is the radius of the smaller particle):

(8)

where factor  determines the mean electron
velocity related to the electron velocity at the Fermi
level, , and factor 1/6 corresponds to the fraction of
electrons moving along the direction of intercenter
vector Rij.

Tunneling coefficients Dij and Dji are determined by
expressions

(9)

where L is the current width of the interparticle gap.

Then, the numbers of electrons transferred from
particle i to particle j during iteration time step Δt are
equal to
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The charge value at the current iteration step varies
according to the calculated number of electrons trans�
ferred at this step:

(12)

The equilibrium charge of the particle pair is
attained over time teq; as this time passes, the electron
exchange ceases:

(13)

It should be noted that the characteristic time of
the establishment of the equilibrium between the
charges in a particle pair is longer than the coagulation
half�time and is equal to 10–7 s, whereas the coagula�
tion half�times are shorter by one or two orders of
magnitude depending on the viscosity of an interparti�
cle medium.

During the period corresponding to the coagula�
tion half�time, the average absolute value of the charge
of N = 100 silver nanoparticles with radii Ri = 1 and
Rj = 5 nm in a bimodal ensemble is equal to 4e, while
that for an ensemble consisting of particles with radii
Ri = 2 and Rj = 4 nm is equal to 1.5e.

The pattern of particle charge distributions in
bimodal ensembles is illustrated by histograms in
Fig. 2. It is clear that the range of particle charges is
wider for the ensemble with the higher degree of poly�
dispersity. This type of particle charging promotes a
considerable increase in the depth of the secondary
potential minimum and, therefore, enhances the
coagulation efficiency of the collisions.
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2.2. The Brownian Dynamics Model with Allowance 
for the Dynamic Electrostatic Interparticle Interaction

Let us supplement the Brownian dynamics model
[1] with allowance for the mutual heteropolar charging
of particles of different sizes and the electrostatic
interaction thereof (including its short�range compo�
nent). 

The fundamental possibility of ETE upon colloidal
crystallization of bimodal gold nanoparticles was
demonstrated in [9]. Fixed particle charges, which
were assessed using the tunneling coefficients and the
times of interparticle diffusion contacts, were consid�
ered in that work. 

Here, we take into account the dynamic tunnel
electron exchange with regard to variations in the
charges of colliding particles of different sizes during
the time of the contact between their adsorption layers
at each iteration step.

The total pair interaction energy [1] comprises the
Van der Waals (Uv), elastic (Ue), and electrostatic (Uq)
interparticle interactions: Utot = Uv + Ue + Uq(Rij, t).
Moreover, the modified Brownian dynamics model
allows for the energy of electrostatic interaction
between nanoparticles with charges Zi(x, t) and Zj(x, t)
varying with time:

(14)

The first term in Eq. (14) corresponds to the energy
of interaction between the charged particles with
allowance for the electrical image forces (see [16]),
whereas the two latter terms correspond to the intrin�
sic energies of the particles.
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Fig. 2. Histograms of particle charge distribution in ensembles with (a) Ri = 2 and Rj = 4 and (b) Ri = 1 and Rj = 5 nm: hi = hj =
0.5 nm; N is the number of particles in an ensemble, with the particles having charge Qe in elementary charge units (e).
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It should be noted that it is more reasonable to use
the expression for the total energy of the electrostatic
(with allowance for the image forces) interaction in
the calculations than the equation for the Coulomb
interaction. This circumstance can be explained by the
fact that expression (14) more adequately describes
the short�range component of the interaction between
conducting particles of finite sizes with allowance for
the image charges induced in them upon electron tun�
neling from an emitting particle to a neighboring one.
This additional short�range component of the interac�
tion obviously enhances the coagulation efficiency of
the collisions.

As can be seen from Fig. 3a, the total energy of the
electrostatic interaction in a pair of particles with radii
of 1 and 5 nm is higher than the energy of the Coulomb
and the Van der Waals interactions at interparticle dis�
tances corresponding to the area of the contact
between the adsorption layers of the particles.

In particular, at a gap width of 0.5 nm (twofold
deformation of the AL), the energy of the electrostatic
pair interaction is equal to –17kBT (T = 300 K),
whereas the Coulomb interaction energy is approxi�
mately –10kBT. When the particle adsorption layers
are in contact with one another (the interparticle gap
is 1 nm), the energy of the interparticle electrostatic
interaction is –14kBT, while the Coulomb interaction
energy value is –9kBT.

The values of the electrostatic and Coulomb ener�
gies become equal at a gap width of approximately
5 nm. Thus, allowance for a more realistic electro�
static interaction between nanoparticles is a significant
factor accelerating sol coagulation.

Figure 3b illustrates the dependence of the pair
interaction forces on interparticle distance. The
resultant of the forces is calculated at each iteration

step t with allowance for the total energy of pair inter�
particle interaction Utot(Rij, t) = Uv(Rij) + Ue(Rij) +
Uq(Rij, t) for all pairs particles that comprise particle i
under consideration.

3. RESULTS AND DISCUSSION

Bimodal ensembles composed of N = 100 silver
nanoparticles with radii 2 and 4 or 1 and 5 nm were
simulated. The thickness of the polymer adsorption
layer for all particles was assumed to be hi = hj =
0.5 nm, and the characteristic values of the interparti�
cle gap were h = 0.5–0.8 nm. Coagulation half�time
t1/2 was calculated as depending on the initial concen�
tration ν0 of particles in an ensemble for two
viscosity values of the dispersion medium (η = 10–3

and 10–4 Pa s).
The dependences of the coagulation half�times on

particle concentration t1/2(ν0) determined using the
Brownian dynamics method for the viscosity of the
dispersion medium corresponding to a hydrosol (η =
10–3 Pa s) are shown in Fig. 4a. As can be seen from
Fig. 4a, the allowance for ETE and the ETE�induced
mutual heteropolar charging of particles with different
sizes results in an approximately 20�fold acceleration
in the coagulation of the bimodal ensembles as com�
pared to the monodisperse ensemble of particles with
a radius of 3 nm.

Analogous dependences plotted with no allowance
for ETE [1] are shown in Fig. 4b for comparison.
These dependences illustrate the violation of the
“conventional” regularity for the coagulation of poly�
disperse colloids.

Figures 5a and 5b show the t1/2(ν0) dependences
obtained for a dispersion medium with the viscosity
value that is characteristic of certain organosols (η =
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10–4 Pa s). In this case, the aggregation rate of the
bimodal colloid (Fig. 5a) with allowance for ETE is
higher by almost an order of magnitude than that of
the monodisperse ensemble.

An approximately twofold decrease in the aggrega�
tion rate at the lower viscosity of the interparticle
medium, as compared to the medium with the higher
viscosity (η = 10–3 Pa s) (see the positions of curves 1
and 2 in Figs. 4a and 5a), is explained by partial disin�
tegration of the aggregates being formed.

Figure 6 shows the t1/2(ν0) dependence for the
ensembles with the Gaussian size distribution of parti�
cles (confined to the radius range of 1–5 nm), which is
more natural for real disperse systems; the average par�
ticle radius is 3 nm, and the root�mean�square devia�
tion is 2 nm. At the interparticle medium viscosity cor�
responding to water (hydrosol), η = 10–3 Pa s, the
effect of the mutual charging is found to accelerate the
coagulation of the polydisperse ensemble by almost an
order of magnitude, as compared to monodisperse
systems (see Fig. 6a, curves 1, 3).

However, at η = 10–4 Pa s (Fig. 6b), the mutual
charging has a substantially weaker effect on the accel�
eration of the coagulation in the ensemble with the
same degree of polydispersity (see curves 1, 2) because
of the considerable disintegration of aggregates being
formed.

CONCLUSIONS

The conditions under which the coagulation of
metal nanocolloids can be accelerated with an
increase in the degree of their polydispersity and the

conditions under which polydispersity has no effect on
the coagulation kinetics have been established and
analyzed in this study.

A physical model eliminating the controversy in the
results obtained using the Brownian dynamics method
and the conventional Muller–Smoluchowski theory
for coagulation of polydisperse colloidal systems has
been proposed.

It has been demonstrated that mutual heteropolar
charging of particles with different sizes due to inter�
particle electron tunneling results in an additional
interparticle electrostatic interaction (as compared
with monodisperse systems). This phenomenon may
considerably accelerate the coagulation of polydis�
perse metal nanocolloids. Using the example of silver
colloids and using the Brownian dynamics method, it
has been demonstrated that the effect of mutual het�
eropolar particle charging changes the interparticle
potential and accelerates the coagulation in ensembles
of polydisperse nanoparticles by more than an order of
magnitude. It should be emphasized that the proposed
model is primarily applicable to systems containing no
free electric charges in dispersion medium, because
the adsorption of these charges can neutralize the
intrinsic particle charge resulting from the mutual
charging.

The results obtained suggest that it is necessary to
modify the models of polydisperse metal sol coagula�
tion with regard to the electron tunneling effect and
mutual heteropolar particle charging. It is noteworthy
that this effect can take place not only when the work
function depends on the particle size, but also for het�
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erocolloids (heterosols), in which the work function is
determined by both the size and material of particles.
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