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1. INTRODUCTION

It is well known that high�temperature supercon�
ducting cuprates belong to the class of materials with
strong electron correlations (SECs). Recent investiga�
tions of high�temperature superconductors (HTSCs)
by scanning tunnel spectroscopy (STS) and angle�
resolved photoemission spectroscopy (ARPES) have
revealed a number of characteristic features of the nor�
mal phase of such materials [1, 2]. First, this concerns
the existence of a pseudogap in a wide doping range
[3–6]. Several theories for the origin of the pseudogap
have been developed, but it still remains unclear. The
second distinguishing feature of such materials is a
peculiar dependence of the Fermi surface on the dop�
ing level. ARPES experiments have revealed the exist�
ence of an arc structure associated with a nonuniform
distribution of the spectral weight of Fermi quasiparti�
cles over the Fermi surface [7–9]. The results of theo�
retical calculations indicate the presence of a pocket in
the vicinity of point (π/2, π/2) in the first quadrant of
the first Brillouin zone under weak doping [10–15].
The specific behavior of the Fermi surface in the
region of the pseudogap state is manifested in different
values of the electron spectral weight in different

regions of the surface [10]. Another experimentally
observed feature is the sharp variation in the slope of
the dispersion curve (kink) below the Fermi level [7,
16]. The emergence of the kink is attributed to the
electron–phonon interaction and to the spin�fluctua�
tion mechanism, as well as with the purely electron–
electron interaction due to correlation effects [17, 18].

In attempts at interpreting the origin of high�tem�
perature superconductivity in doped Mott–Hubbard
insulators, the main attention was concentrated on
analyzing the changes in the topology of the Fermi
surface with the doping level. In [10], the evolution of
the Fermi surface is described using the spin–polaron
approach. The doping level is taken into account in the
frustration parameter in the spin Hamiltonian. The
changes in the Fermi surface in HTSC cuprates were
investigated in [11] using the effective p–d Hubbard
model. The arc structure of the Fermi state in the weak
doping range was revealed. The origin of kinks on the
dispersion curves was also considered. Quantum phase
transitions were studied in [12, 15] using the general�
ized tight binding method with ab initio calculations of
the (GTB + LDA) model parameters. These calcula�
tions were performed for the LSCO system and
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showed good qualitative agreement with experimental
data. In particular, the existence of a pocket near point
(π/2, π/2) in the range of weak doping was demon�
strated; upon a transition through critical point pc1,
this pocket is transformed into two pockets in the
vicinity of point (π, π) in the weak�doping region; after
the transition through the second critical point pc2,
only one large surface around point (π, π) is left. Anal�
ogous results were also obtained within the cluster
generalization of the dynamic mean field theory
(CDMFT) [14, 19].

In this study, we use the cluster approach, which
has been widely employed in recent years [20]. The
advantage of this approach is that SECs and the short�
range order, which plays a significant role in the
description of low�dimensional magnetic systems, are
taken into account directly. The foundation of this
method was laid long ago and was successfully
employed in analyzing HTSC cuprates in [21–23].
The cluster perturbation theory contains two main
stages in constructing the solution; the first stage
involves the choice of the cluster taking into account
the symmetry of the initial lattice and the construction
of intrinsic multielectron states for the given cluster
using the exact diagonalization method; at the second
stage, the intercluster interaction is taken into account
in perturbation theory. In this study, we are using the
Hubbard model [24] written in the representation of
Hubbard operators [25] (X representation) as the basic
mode. The cluster is chosen in the form of a 2 × 2
square with four sites. Such a configuration fully
reflects the symmetry of the initial lattice. The X rep�
resentation makes it possible to easily pass from the
Hamiltonian of the initial lattice to the cluster Hamil�
tonian and to obtain the solution for the Green’s func�
tion in the Hubbard�I approximation. It was shown in
[26] that the X representation makes it possible to
introduce the concept of the f�factor, which deter�
mines the measure of the spectral weight for a Fermi
quasiparticle. The control over this quantity at the first
stages of calculation makes it possible to reduce the
computer time without introducing noticeable distor�
tions in the final result of computation.

The structure of the article is as follows. In Section 2,
the cluster perturbation theory in the X representation
is briefly considered. We describe the procedure of
determining the Green’s function for an infinite lat�
tice in the antiferromagnetic and paramagnetic states.
The scheme of formation of Hubbard quasiparticles
for a nonzero doping level is presented. In Section 3,
the proposed method is tested by calculating the
dependence of the ground�state energy on Coulomb
interaction parameter U and on the concentration; the
results are compared with those obtained by other
authors. In Section 4, the formation of in�gap states
and the redistribution of the spectral weight among
these states and Hubbard subbands are described. In
Section 5, the evolution of the Fermi surface upon a
variation in the hole concentration is considered. The

effect of hopping between the second and third nearest
neighbors on the spectral weight redistribution in the
dispersion relation and on the Fermi surface is ana�
lyzed in Section 6. Section 7 contains a discussion and
qualitative comparison of our results with those
obtained in other experimental and theoretical works.

2. METHOD

In this study, we confine our analysis to a 2D square
lattice. The Hubbard model is undoubtedly a good
approximation for describing systems with strong
electron correlations [24]. In spite of its apparent sim�
plicity, this model, which was proposed more than
40 years ago, is extremely rich from the physical point
of view and remains a basic model for analyzing a large
class of materials with SECs. The Hamiltonian of the
2D one�band Hubbard model has the form

(1)

where  and aiσ are the creation and annihilation
operators for an electron with spin σ at the ith site;

niσ = aiσ is the operator of the number of electrons

with spin σ (  = –σ); ε is the electron energy at the
site; μ is the chemical potential; tij is the hopping inte�
gral from site j to site i; and U is the parameter of the
Coulomb interaction at the site.

For the unit cell, we choose a square 2 × 2 cluster
and regroup the terms in Hamiltonian (1) so that the
intracluster interactions are separated from the inter�
cluster interactions:

(2)

where f and g are the cluster indices. The subsequent
procedure includes calculation of the complete set of

eigenstates and eigenvectors of Hamiltonian ( f) by
the exact diagonalization method, as well as the con�
struction of the corresponding cluster X operators and
the transition to Hamiltonian H in the X representa�
tion. As a result, for the operator of electron annihila�
tion at site i belonging to cluster f, we obtain the fol�
lowing representation:

(3)

indicating that the electron is described by a superpo�

sition  of various quasiparticles (Hubbard fermi�
ons), each of which corresponds to the excitation from
the multielectron initial state  to the multielectron
final state . This procedure was described in greater
detail in [26]. Here, we have used the following nota�
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tion for the X operators:  ≡  = , where
α = α(n, m); n and m are the final and initial states of
the cluster, respectively; and f is the cluster index. A
more detailed description of the properties of X oper�
ators can be found in [25, 27–29]. After transforma�
tions, Hamiltonian (2) assumes the form

(4)

where εn is the energy of the cluster in state n and 
are hopping integrals between clusters.

Taking into account the homogeneity conditions,
we can write Hamiltonian (4) in terms of the recipro�
cal space:

(5)

where  is the wavevector assuming the values in the
reduced Brillouin zone. This computation step will be
considered again at a later stage.

Using the Hubbard�I approximation for interclus�

ter hopping Tαβ( ), we can obtain the solution for the

Green’s function Dαβ( , ω) =  in the fol�

lowing matrix form:

(6)

where

(7)

(8)

(9)

Here, D0(ω) is the local (cluster) Green’s function;
F(α) is the filling factor, μ is the chemical potential,
and N is the number of electrons in a cluster.

The relation connecting the electron Green’s func�

tion Gσ(k, ω) =  defined on the initial lat�
tice with the Green’s function in the X representation,
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which is defined on the superlattice, has the form
[26, 30]

(10)

where Nc is the number of sites in a cluster (which is
four in our case), k is the wavevector defined in the ini�
tial Brillouin zone, and i and j are the indices of the
intracluster sites. Here, we have taken into account the

fact that Green’s function Dαβ( , ω) is a periodic
function in the reciprocal space of the superlattice,

and wavevector k can be written in the form K + ,
where K is the translation vector of the reciprocal
superlattice. This allows us to write the equality

Dαβ( , ω) = Dαβ(k, ω) [20]. Green’s function Gσ(k, ω)
and the corresponding spectral function

(11)

are calculated in the initial Brillouin zone.
The total number of states in a 2 × 2 cluster is 44 =

256. When all possible excitations are taken into
account exactly in representation (3) of X operators,
the sum rule holds:

(12)

In the cluster perturbation theory [20, 30], the Lanc�
zos algorithm is used as a rule for determining the
ground state and the closest excited states of Hamilto�
nian H0. In this case, most of high�energy states are
omitted, which violates the sum rule.

In all computations performed in this study, we trace
the value of the f �factor introduced in [26] to control
the total spectral weight of Fermi quasiparticles:

(13)

Exact calculations yield f = 1. All results presented
below were obtained for f > 0.995. It turned out that
the number of energy levels considered here can be
substantially reduced, retaining only about 30 states so
that the error in the sum rule does not exceed 1%.
Therefore, we refer to our version of the cluster pertur�
bation theory with controllable spectral weight as the
norm�conserving cluster perturbation theory (NC�
CPT).

Let us consider in greater detail the procedure of
formation of a cluster lattice (superlattice). The choice
of the cluster is a separate problem occupying an
important position in cluster theories [20, 30]; how�
ever, we will not consider this problem here and con�
fine our analysis to a 2 × 2 cluster. Such a choice of the
cluster gives three versions of coverage of the initial
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Fig. 1. Possible version of coverage of the initial square lat�
tice by 2 × 2 clusters. Points and circles denote the sites of
the initial lattice and of the cluster superlattice, respec�
tively. The following notation for covers is used in the text:
K1 (a), K2 (b), and K3 (c).
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square lattice (see Fig. 1). The first version (K1)
(Fig. 1a) is the most obvious due to the coincidence of
the point symmetry group with the initial lattice and is
most widespread. However, the other two versions (K2
and K3; Figs. 1b and 1c) can also be used in construct�
ing the superlattice. Version K2 can be obtained from
K1 by a displacement of neighboring (along the y axis)
chains of clusters by the elementary translation vector
of the initial lattice along the x axis, while version K3
can be obtained by a displacement along the y axis.
Clearly, the point symmetry group in the latter config�
urations does not coincide with the initial lattice. In
this case, the paramagnetic (spatially uniform) and
antiferromagnetic (with a reduced Brillouin zone)
states are possible. Cover K1 corresponds to the anti�
ferromagnetic state [20]. This clear from the disper�
sion curve depicted in Fig. 2a, on which splitting of the
upper and lower Hubbard bands takes place at the
boundary of the antiferromagnetic Brillouin zone at
point (π/2, π/2). To construct a spatially homoge�
neous solution, we choose a linear superposition of
covers K2 and K3. This is attained by averaging the
jump matrix that determines reciprocal Green’s func�
tion (6):

(14)

where k is the wavevector assuming the values in the
initial Brillouin zone.

Let us consider this stage in greater detail. Using
any cover (K1, K2, or K3), we can introduce the inter�

cluster jump matrix Tαβ( ) (see relation (5)) as a func�

tion of wavevector  defined in the corresponding
reduced Brillouin zone. In view of translational sym�
metry of the reciprocal space, we can write

where K is the translation vector of the reciprocal
space of the superlattice (which is a function of cover).
Let gx and gy be the elementary translation vectors in
the reciprocal space of the initial lattice. Then covers
K1, K2, and K3 satisfy the following equalities:

(15)

(16)

(17)

where n and m are integers. Pay attention to the fact

that the dependence of Green’s function Dαβ( , ω) on

the wavevector is determined by jump matrix Tαβ( )
(6); i.e., we can write analogous equalities (15)–(17)
for the given Green’s function. On the other hand, the
Green’s function defined by expression (10) must cor�
respond to the symmetry of a square lattice. Using
cover K1, it is possible to restore the symmetry of the
initial square lattice because the corresponding jump
matrix is symmetric relative to translations by vectors
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gx and gy (the coefficients at integers are identical and
equal 0.5). However, jump matrices for covers K2 and
K3 do not exhibit such symmetry; consequently, the
use of these covers separately does not yield a correct
result.

Taking into account equalities (16) and (17) and

the remarks concerning wavevectors k and  following
expression (10), we can perform averaging procedure
(14) at each point k of the initial Brillouin zone, which
makes it possible to obtain a new jump matrix possess�
ing translational symmetry of the reciprocal space of
the initial lattice. This allows us to use formula (6)

(with substitution   k) for calculating the best
approximation of the Green’s function in the X repre�
sentation, which is directly used in expression (10).

It should be noted that after such a procedure,
Green’s function (6) is defined in the initial Brillouin
zone, and Green’s function (10) possesses the symme�
try of a square lattice. Indeed, the dispersion relation
obtained in this way (see Fig. 2b) does not contain a
gap and corresponds to the paramagnetic state. We will
confine our analysis to the paramagnetic state, which
exhibits the short�range antiferromagnetic order due
to spin correlations of the first and second neighbors in
the cluster. Note that an analogous averaging proce�
dure based on the boundary conditions is often used in
studies with exact diagonalization of final clusters
[31, 32].

In principle, it is also possible to average a more
physical quantity like the spectral function. However,
it is much more technically complicated because the
entire body of computations in this case should be per�
formed for each cover separately with different sets of

poles; i.e., functions (k, ω) and (k, ω) must
first be evaluated and then averaged. The advantage of
our approach is that averaging is carried out at the ini�
tial stage of computation. This allows us to unambigu�
ously determine the poles of the Green’s function and
their spectral weight for each value of wavevector k in
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Fig. 2. Dispersion curves for the undoped case (ne = 1)
along symmetric direction Γ  X  M  Γ in the
first quadrant of the first Brillouin zone: (a) cover K1 and
(b) with averaging over two configurations K2 and K3. The
following notation is used: Γ = (0, 0), X = (π, 0), and M =
(π, π).
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the first Brillouin zone and to substantially reduce the
computer time.

Here, we analyze the properties of systems with
SECs with various doping levels x, where x is the hole
concentration on the cluster. Before we analyze the
results, it should be clarified how the doping level is
taken into account in the computational algorithm
used here. The procedure of exact diagonalization of
the Hamiltonian of a 2 × 2 cluster gives a complete set
of eigenvalues and eigenvectors determining the Hil�
bert space. Figure 3 shows schematically the low�
energy part of this space. In the case of half�filling
(without doping) and T = 0, nonzero filling factor (9)
contains transitions between the ground state in the
subspace with N = 4 and the states in the subspaces
with N = 3 and N = 5 (marked by solid arrows in
Fig. 3). In the case of hole (electron) doping, we must
take into account the possibility of filling of the ground
state in the subspace with N = 3 (N = 5). As a result,

additional transition with a nonzero filling factor
appear (marked by dashed arrows in Fig. 3 in the case
of hole doping). It should be noted that we consider
only one�electron transitions with a change in the
number of particles by ±1. Pay attention to the nota�
tion used here. Since the number of sites in the cluster
is four in our case, doping to cluster (x) and doping to
site (p) are connected by the relation x = 4p.

3. GROUND STATE ENERGY

A good verification of the method proposed in the
previous section is the comparison of the ground�state
energy obtained using the given approach with the
results of nonperturbative computations.

Let us calculate the ground state energy confining
our analysis only to jumps between the nearest neigh�
bors. In our case, it is convenient to use the following
formula for computing the ground state energy per
site:

(18)

(the derivation of this formula can be found, for exam�
ple, in [30, 33]). Here, εk = –2t(coskx + cosky) is the
quasiparticle spectrum in the absence of interaction
(lattice constant is set as unity); k is the wavevector
assuming its values in the initial Brillouin zone, and N
is the number of sites in the initial lattice.

Figure 4a shows the concentration dependences of
the ground�state energy per site, calculated by differ�
ent (including nonperturbative) methods. It can be
seen that our result is in good agreement with the
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Fig. 3. Diagram of the low�energy part of the Hilbert space
for a 2 × 2 cluster. The probability of filling is 1 – x for the
ground energy level with N = 4 and x for the energy level
with N = 3. Solid arrows depict annihilation of an electron
for zero doping level (x = 0), and dashed arrows show addi�
tional transitions which must be taken into account in the
case of doping (x ≠ 0); N is the number of electrons in a
cluster.
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results obtained by the variational and quantum
Monte Carlo methods [34, 35]. Excellent agreement is
observed with the results of calculations by the exact
diagonalization method for the 4 × 4 cluster [36].
Comparison of our calculations with the results
obtained in [37] based on the cluster perturbation the�
ory supplemented with a variational procedure shows
good agreement for small U and provides the best
result in the remaining range of values.

We supplement analysis of the ground�state energy
by tracing its dependence on the doping level. Figure 4b
shows the dependences of the ground state energy per
cite, E0, on the doping level for three values of param�
eter U/t = 2, 4, and 8. It can be seen that with increas�
ing concentration of holes to a doping level of 25%,
the value of E0 decreases for all values of U. This vari�
ation occurs more slowly for smaller values of U. The
energy value in this case increases with the Coulomb
repulsion parameter.

4. IN�GAP STATES

Analysis of systems with SECs revealed that doping
affects the energy band in the whole and requires the
rejection of the “hard band” concept. It was found, in

particular, that doping leads to the formation of in�gap
states [38]. In this section, we report on the results of
analysis of these states using the cluster approach and
taking into account jumps t only between the nearest
neighbors. All energies will be given below in the units
of t with a shift by U/2.

Information on the band structure can be obtained
from analysis of the density of states. As expected, in
the limit of zero doping level, splitting of the band into
the lower and upper Hubbard bands (LHB and UPB,
respectively) is observed. Upon an increase in the hole
concentration, a rearrangement of the two subbands
takes place with the formation of in�gaps states
between them. It is clear from Fig. 5 that an insignifi�
cant concentration leads to the formation of in�gap
states near the top of the LHB at U = 8. Analogous states
also appear near the bottom of the UHB at U = 2. A fur�
ther increase in the concentration leads to an increase
in the spectral intensity and to a broadening of the
band of these states. Calculations show that at U >
U1 ≈ 3.5, the in�gap states are localized near the top of
the LHB, while in the range U0 < U < U1, such states
are localized near the bottom of the UHB. Here, we
have determined the lower limit of U for the existence
on in�gap states, U0 ≈ 1.5, below which such states are
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Lorentzian halfwidth is δ = 0.001t; Δ is the bandwidth for the in�gap states.
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not observed. This is explained by merging these states
with the UHB for any doping level (see below).

The dependence of the total spectral weight WinGS
of in�gap band on the doping level reveals a monotonic
increase for various values of Coulomb parameter U
(see Fig. 6). It can be seen from Fig. 6a that for U = 8,
the spectral weight WUHB of the UHB decreases with
increasing doping level in accordance with variation in
WinGS. It can be stated that the spectral “flows” from
the UHB to the band with in�gap states. Figure 6b
shows analogous dependences for U = 2. However, a
considerable difference in the concentration depen�
dence of WLHB is observed. In the latter case, the total
weight of the LHB noticeably increases with the dop�
ing level. On the whole, the spectral weight flows from
the UHB to LHB and into in�gap states. Figure 6a and

6b show the numerical values of the rate of increase in
total spectral weight WinGS and the concentration
dependence of bandwidth Δ of in�gap states. The val�
ues of these quantities at U = 8 are approximately four
times higher than the corresponding values at U = 2.
This difference strongly affects the concentration
range in which the in�gap states can be determined
rigorously. For this reason, the dependence of the
spectral weights was traced only to values of p = 0.11 at
U = 8 and p = 0.25 at U = 2 because a further increase
in concentration leads to merging of the in�gap states
with the Hubbard band and to the formation of the
single band. It should be noted in this connection that
for U = 8, such a merging occurs with the LHB, while
for U = 2, the in�gap states merge with the UHB.
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Analysis of the distribution of the spectral weight
among the Hubbard bands and in�gap states revealed
an interesting peculiarity. Figure 6 shows only the
curves describing the total spectral weight in the LHB
(Fig. 6c) and in the band on in�gap states (Fig. 6d) as
functions of the doping level for various values of U.
The above analysis shows that functions WLHB(p) and
WinGS(p) cannot be determined for the entire concen�
tration range; for this reason, the curves terminate at
bold dots. It can be seen that the variation of Coulomb
repulsion parameter U leads to a substantial variation
of function WLHB(p). The value of WLHB decreases
upon an increase in the hole concentration for U >
7and increases for U < 7. The dependence correspond�
ing to U = 12 deserves special attention (Fig. 6c). It
can be seen that the major part of this curve lies under
the dashed line corresponding to function WLHB = 1 –
p determining the lower value of the density of states
required for populating of the LHB with all electrons.
This means that the number of states in the LHB is
insufficient for populating all electrons of the system;
therefore, a part of electrons populate in�gap states.
According to calculations, the number of states in the
band of in�gap states is large enough for that (see Fig.
6d), which is clear from the comparison with function
WinGS = p (dashed line). Thus, for U = 12, the Fermi
level in the range of weak doping falls into the band of
in�gap states (Fermi level pinning). It should be noted
that for lower values of U, the Fermi level lies in the
LHB in the entire doping range. An analogous pinning
of the Fermi level due to a redistribution of the spectral
weight among the band is also observed using cover K1
[39].

5. REARRANGEMENT
OF THE FERMI SURFACE

Let us now analyze the Fermi surface for various
hole doping levels. In this section, we confine our
analysis to the Hubbard model with following param�
eters: U = 8t and t ' = t '' = 0. Note that in the course of
calculations, we controlled the value of the f�factor so
that the condition f > 0.995 was satisfied for all results
considered below. Recent experimental studies have
revealed two main features in the behavior of the
Fermi state depending on the concentration in high�
Tc superconducting materials. These are the change in
the topology and the nonuniform redistribution of the
spectral weight of quasiparticles over the Fermi state.
Such a behavior is primarily associated with the exist�
ence of short�range magnetic order. The cluster
approach makes it possible to directly take into
account this order and to estimate its effect on the
quasiparticle spectrum.

Before we analyze the results, the following
remarks are due. In view of the approximation used
here, we obtain quasiparticles with an infinitely long
lifetime, which does not allow us to estimate the
broadening of the spectral lines. Nevertheless, line

broadening appears in numerical calculations when
the delta�function is replaced by the Lorentzian with a
preset halfwidth. In this section, the Lorentzian half�
width is δ = 0.1t. Such a choice is dictated primarily by
the desire to match the results of theoretical calcula�
tions with experimental ARPES data. In calculating
the spectral weight of quasiparticles on the Fermi
state, we took into account the contribution from the
states in the range of ±0.2t from the Fermi level, which
is also associated with the technique of ARPES exper�
iments. The typical energy resolution in the ARPES
techniques is 10–45 eV [7, 40–42], while the fitting
value of the hopping parameter for the nearest neigh�
bors in the tight binding method is t = 0.25–0.40 eV
[7, 43, 44]. Therefore, the value of the broadening
parameter usually varies from 0.02t to 0.15t [14, 19].
For example, the ARPES results presented in [7] were
obtained with a resolution of δ = 0.02 eV, and param�
eter t was fitted to a value of 0.25 eV. This gives δ =
0.08t. Here, we use typical values of broadening
parameter δ. The true linewidth in ARPES is deter�
mined not only by the resolution in the energy and
wavevector, but also by dynamic processes. The simu�
lation of these processes by the Lorentzian width is too
simplified and can be treated only as qualitative. For
this reason, we do not consider specific experimental
spectra, confining ourselves to model calculations.

Figure 7 shows the evolution of the density of states
and Fermi state upon variation in the hole concentra�
tion. First, it is clearly seen that the spectral weight dis�
tribution over the Fermi state is nonuniform and
depends on the doping level (see Figs. 7b–7e). For
some values of the hole concentration, the Fermi state
has an arc structure. For a doping level of about 22%,
the Fermi state topology is transformed, and a transi�
tion from a conditionally “hole” pocket (see below) at
point (π, π) to an electron pocket at point (0, 0) takes
place. These facts indicate that in the range of strong
doping, the electron system exhibits a transition to the
Fermi�liquid behavior. Simultaneously with the Fermi
state evolution, we can observe the behavior of the
density of states at the Fermi level (see Fig. 7a). It can
be seen that at a doping level of 8%, the Fermi level
falls into the region with a lowered density of states
(pseudogap) and remains in this region up to a doping
level of 22%. The Fermi level attains the minim den�
sity of states for a doping level of 13%. In this concen�
tration range, the distribution of the spectral weight
over the Fermi state is nonuniform.

If we now disregard the available experimental
accuracy and simulate the decrease in the linewidth,
we can obtain a more comprehensive pattern of Fermi
state variations occurring in the same concentration
range. Let us consider the Fermi state evolution for a
lower value of the Lorentzian half�width (δ = 0.01t)
and reduce the range of states being taken into account
near the Fermi level to ±0.02t. It turns out that with
such a resolution, the density of states has a larger
number of singularities, and the Fermi state evolution



126

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 114  No. 1  2012

NIKOLAEV, OVCHINNIKOV

upon a change in the doping level occurs in a more com�
plex way, which is manifested in a sequence of topologi�
cal variations (Fig. 8). It can be seen from the density of

states that upon an increase in the doping level, the
Fermi level passes through two Van Hove singularities
and falls into the first pseudogap. Figures 8b–8e show
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the FSs with a spectral weight distribution for the same
values of concentration as in Fig. 8a; therefore, the
conformity of the Van Hove singularities and topolog�
ical rearrangements of the Fermi state can be easily
seen. It is clear that with the resolution adopted here,
regions on the Fermi state with a weak spectral weight
appear, supplementing information on the total Fermi
state. The concept of the simple hole pocket near
point (π, π) is obviously not realized for these param�
eters. In the case of ultraweak doping, we observe hole
pockets in the antinodal direction ((π, 0)  (π, π),
(0, π)  (π, π)), which merge for a certain concen�
tration at the point of nodal direction ((0, 0)  (π,
π)), forming a more complex topology of two surfaces.
This variation in the topology is manifested in the den�
sity of states in the form of the first Van Hove singular�
ity. The surface with a weak spectral weight forms an
electron pocket around point (π, π). Upon an increase
in the hole concentration, the surface with a large
weakly nonuniform distribution of spectral weights
experiences another topological transformation. This
leads to the formation of an electron pocket around
point (0, 0). Accordingly, this variation in the Fermi
state topology is manifested in the density of states in
the form of the second Van Hove singularity.

Concluding this section, we emphasize that the
singularities revealed above appear due to the exist�
ence of the short�range magnetic order in the system,
which is directly taken into account in the cluster
approach.

6. EFFECT OF DISTANT JUMPS

For a more complete comparison with real
cuprates, we must take into account the effect of jumps
between distant neighbors. In most theoretical publi�
cations, the authors confine analysis to jumps up to the
third neighbor inclusively because the allowance for
more distant jumps leads to insignificant corrections.
Let us consider the effect of jumps between the second
and third nearest neighbors using the cluster approach
described above. In our choice of model parameters,
we use the results of calculations performed in [12] for
the LSCO system. The set of parameters is as follows:
U = 4 eV, t = 0.93 eV, t ' = 0.12 eV, and t '' = 0.15 eV.
In our calculations, we use parameters normalized
to t: U = 4.3 eV, t ' = –0.13 eV, and t '' = 0.16 eV.
It should be noted that in the case of a 2 × 2 cluster, the
jumps between the first and second nearest neighbors
are taken into account even in calculation of the
eigenstates of the cluster, while the jumps between the
third nearest neighbors are taken into account only in
the interaction between clusters.

It should be noted that for systems with SECs, the
Green’s function has not only poles, but also zeros.
This result was obtained using the CDMFT + ED
method [14, 45]. In our calculations, the structure of
poles and zeros, which coincides qualitatively with the
results of [45], is also reproduced (Figs. 9a, 9d,

and 9g). The sequence of the changes in the Fermi
surface topology is the same as that obtained earlier in
[10, 12]. The maps of spectral weight distribution
A(k, εF) in the limit δ  0 must generally give the
same pattern of the Fermi surface as that obtained
from analysis of the dispersion relations. Indeed, com�
parison of the data from the first and second columns
in Fig. 9 gives an analogous pattern. The maps of the
spectral weight also show its nonuniform distribution
in the Brillouin zone. Similar regions with a small
spectral weight have been obtained earlier in [10].
However, the contemporary resolution level in the
ARPES spectra corresponds not to the second column
(δ = 0.01), but also the third column (δ = 0.1) in
Fig. 9. The broadening that appears as a result is so
strong that a small pocket is “washed off” into the arc
(Fig. 9c). Instead of two concentric pockets around
point (π, π) in the intermediate concentration range,
strong broadening also gives an arc (Fig. 9f). The pat�
tern following from ARPES corresponds to the Fermi
surface only in the range of high concentrations, in
which only one large surface is left (Figs. 9g–9i).
It should be noted that in spite of the qualitative simi�
larity of the evolution of the Fermi surface upon dop�
ing and the results of earlier works [12], the numerical
values of the critical concentrations for the Lifshitz
transitions do not coincides. These values obviously
depend on the type of the model (spin�fermion model
[10], Hubbard model [11], and t–J model [12]) and on
the numerical values of the model parameters.

The presence of a pseudogap in the vicinity of the
antinodal point (π, 0) and its gradual occlusion upon
an increase in the concentration is illustrated in
Fig. 10. The arc length measured in ARPES is small in
the doping range p ≤ 0.05 and gradually increases with
p. The constancy of the spectral weight on the Fermi
surface at p = 0.25 corresponds to the expected Fermi�
liquid behavior.

The in�gap states for U = 4.3t lie near the LHB and
have the largest spectral weight in the vicinity of point
M = (π, π) (Fig. 11).

The dispersion dependence along symmetric
direction Γ  X  M  Γ agrees well with the
results of other publications [19, 46] (see Fig. 11). In
particular, the saddle singularity with a large spectral
weight observed in the vicinity of point X is in good
agreement with ARPES experiments. Analysis of dis�
persion along the nodal direction has revealed seg�
ments with different slopes on the dispersion curves.
For a broadening of δ = 0.1t, this singularity is more
clearly pronounced for a large parameter U. It should
be noted that such a distortion of the dispersion curve
strongly resembles the kinks observed in numerous
experiments [13–16]. An increase in the resolving
power (i.e., a decrease in δ) has made it possible to dis�
tinguish segments with different slopes on the disper�
sion curve, which are separated from one another by
gaps (Fig. 11c). Analysis of the results shows that with
increasing Coulomb repulsion parameter U, these
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gaps become broader. The electronic mechanism of
kink formation has been observed earlier in [18].

Using the results obtained in [47], we considered
another set of model parameters for LSCO: U = 4.65t,
t ' = –0.17t, and t '' = 0.085t. On the hole, the behavior
of the main characteristics of the electron system is
similar to that described above (for parameter U =
4.3). A significant distinction is the absence of a hole
pocket in the nodal direction for low hole concentra�
tions. In this case, evolution of the Fermi state begins
with splitting of the arc and the formation of a struc�
ture similar to that depicted in Fig. 9e. Analysis shows
that the existence of a hole pocket in the nodal direc�
tion depends on the value of hopping t '' to the third
nearest neighbors. An increase in this parameter leads
to stabilization of the Fermi state pocket.

Generalizing our results, we can draw the following
conclusion. For linewidth δ = 0.1t, the spectral inten�
sity distribution over the Brillouin zone, which is
observed in ARPES, does not provide a comprehen�
sive answer to the question about the true topology of

the Fermi surface in HTSC cuprates. Only an order�
of�magnitude decrease in the linewidth makes it pos�
sible to obtain the true Fermi surface from the spectral
intensity distribution.

7. DISCUSSION OF RESULTS

Let us summarize our results. Comparison with the
results of other theoretical and experimental works
shows good agreement in a number of common char�
acteristic features of systems with SECs. First, this is
the existence of in�gap states in a wide range of doping.
Our calculations show that the spectral weight of the
in�gap band increases with the hole concentration
mainly due to the spectral weight of the upper Hub�
bard band (see Fig. 6). We have revealed a dependence
of the position of in�gap states on Coulomb repulsion
parameter U. In particular, these states appear near the
lower Hubbard band for U = 8 and near the upper
Hubbard band for U = 2. A difference in the spectral
intensity distributions also exists. In the former case,
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the spectral weight differs from zero for quasiparticles
near point M, and in the latter case, near points X and
N. Analogous behavior is also observed for other
model parameters.

Our analysis reveals that spectral weight WLHB of
the LHB also depends on the concentration and Cou�
lomb repulsion parameter U (see Fig. 6). Upon an
increase in this parameter, the behavior of the system
changes significantly. For U = 7, a change in func�
tional dependence WLHB(p) is observed, while for U =
12, spectral weight WLHB in the low doping range
decreases so strongly that the number of states in the
LHB becomes smaller than the total number of elec�
trons in the system. As a result, the Fermi level falls
into the region of in�gap states.

In this study, we have observed pseudogap states
and a nonuniform distribution of the spectral weight of
quasiparticles over the Femi surface. Our calculations
revealed a cascade of quantum phase transitions upon
an increase in the hole concentration, which could be
observed only with a high resolution (see Fig. 9) (we
mean the energy resolution in ARPES experiments).
In our calculations, the role of this quantity was played
by Lorentzian halfwidth δ, which is convenient for
simulating the theoretical calculation. It should be
noted that only qualitative comparison with ARPES
data was carried out.

In the case of nonzero distant jumps, we obtained
the Fermi surface in the form of an arc (see Figs. 9c, 9f,
and 9i), which conforms with ARPES data [9, 48]. We
revealed one more part of the Fermi surface with a very
small spectral weight (Fig. 9e), as well as zeros of the
Green’s function in the low�doping range, which cor�
respond to the results obtained using the CDMFT +

ED method [14]. For a certain set of model parame�
ters, a small pocket in the nodal direction was observed
on the Fermi level in the range of ultralow doping (see
Figs. 9a and 9b). Analysis of the results obtained with
different resolutions has made it possible to estimate
the role of resolution in ARPES experiments in analy�
sis of the dependence of the Fermi surface behavior on
the hole concentration. We hope that future experi�
ments with a better resolution will reveal a finer energy
structure of the electron system in materials with
SECs.

Small hole pockets in the range of weakly doped
cuprates were observed experimentally in measuring
Landau quantum oscillations in strong magnetic fields
[9]. The fact that the pockets are blurred into arcs
upon line broadening was noted by many authors (see
[14, 18]). We have proved that broadening blurs the
pattern of the Lifshitz transitions and leads to smooth
occlusion of the pseudogap (see Fig. 10).

The dispersion dependences along symmetric
directions (Fig. 11) are in good agreement with the
results of other studies (in particular, with study [19]
carried out using the cluster generalization of the
dynamic mean field theory). A number of publications
are devoted to analyzing the variation in the slope of
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the dispersion curve below the Fermi level (kinks).
Several types of kinks have been revealed [49, 50]. We
have demonstrated in this study that the dispersion
curve splits in the nodal direction into segments with
different slopes separated by gaps (see Fig. 11). Since
we have disregarded the phonon component in the
approach used here, the difference in the slopes is
associated with the direct interaction in the electron
subsystem. Thus, the experimentally observed kinks
can be a consequence of electron–electron interac�
tions leading to a distortion of the dispersion curve.
This conclusion agrees with the results obtained in
[50].

It should be noted that our results were obtained
using the cluster approach, in which the short�range
order can be taken into account exactly. We used the
technique of the Hubbard X operators, which allowed
us to introduce the quantity (f�factor) ensuring control
over the total spectral weight of quasiparticles within
the required accuracy limits. The calculated values of
the ground�state energy (see Fig. 4) and all other
results confirm the validity of the approach used here
for analyzing systems with strong electron correla�
tions. Preliminary results of this study were published
in [51].
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