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1. INTRODUCTION

It is known that all high�temperature cuprate
superconductors consist of alternating conducting and
dielectric layers, the former containing various num�
bers (n) of CuO2 planes. The importance of coupling
between CuO2 layers was established shortly after the
discovery of high�temperature superconductivity,
since it was found that the superconducting transition
(critical) temperature Tc increased in each cuprate
family (homologous series of Bi, Tl, and Hg�based
superconductors) when the number of CuO2 planes
was changed from n = 1 to 3. Based on these findings,
it could be expected that, by increasing the number of
CuO2 planes to n ~ 10 (which is allowed in crystal
chemistry), it would be possible to reach Tc ≈ 300 K.
The creation of artificial multilayer structures of the
Bi�22(n – 1) system with Tc = 250 K for
Bi2Sr2Ca7Cu8O20 + x (Bi�2278) [1] seemed to confirm
this hypothesis. However, these structures turned out
to be unstable. Later, stable Bi�2278 structures were
created using molecular beam epitaxy (MBE), but
their Tc values did not exceed 60 K [2]. Moreover, it
was also demonstrated [2] that a Bi�2212 film of unit�
cell thickness (with n =2 CuO2 planes) has Tc = 70 K.

The subsequent progress in MBE technology
revealed the role of individual LaSrCuO layers, as
parts of a multilayer La1.55Sr0.45CuO4/La2CuO4
metal–dielectric heterostructure, in the formation of

the superconducting state of the whole sample [3]. It
was found that suppression of the superconductivity in
a single La2 – xSrxCuO4 layer (assumed to be doped to a
nearly optimum level) significantly influences Tc of
the whole structure. These results indicate that each
individual CuO2 layer plays an important role in the
achievement of superconductivity in a volume sample.
The nature of the Tc dependence on the number of
CuO2 planes in the unit cell is still not completely
clear.

In this study, we will not consider the role of tun�
neling between superconducting layers through
dielectric interlayers in the unit cell (according to the
“high�temperature cuprate superconductor as hetero�
structure” model [4]). We restrict ourselves to the
influence of the presence of two CuO2 planes in a sin�
gle superconducting metallic layer.

Generally speaking, the addition of a second CuO2
plane permits growth of Tc by two types of mecha�
nisms. The first type, which can be called dynamic, is
related to interplanar interactions and hopping. The
second type is based on specific features of the struc�
ture and the distribution of impurities and, hence, can
be called impurity mechanisms. The present study is
devoted to the dynamic mechanisms of single�elec�
tron hopping, interplanar exchange interaction, and
interplanar hopping of quasi�particle pairs.
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Experimental NMR data revealed the inequiva�
lence of two external and n – 2 internal CuO2 planes in
the structures with n ≥ 3 [5]. For this reason, we will
restrict ourselves to two�layer structures of the
YBa2Cu3O7 (YBCO) and Bi�2212 types with equiva�
lent CuO2 planes. Chakravarty et al. [6] proposed an
effective theoretical mechanism of the increase in Tc
in these structures based on the postulated tunneling
of Cooper pairs between CuO2 planes with a tunneling
probability amplitude of TJ ~ 10Δ0, where Δ0 is the
superconducting gap in one plane. However,
Schneider and Singer [7] demonstrated the inapplica�
bility of this approach to real high�temperature
cuprate superconductors by estimating from experi�
mental data the ratio (η) of the free energy due to
interplanar coupling to the total energy of a supercon�
ductor for various families of cuprates. In particular,
this ratio was η ~ 10–3 for YBCO and η ~ 10–4 for Hg
cuprates. The smallness of η is evidence in favor of the
model of a Josephson structure with weak coupling
that does not influence the superconducting proper�
ties of separate CuO2 planes.

Recently, we studied theoretically the role of hop�
ping between CuO2 planes in the normal phase and
obtained bilayer splitting of the Fermi surface that was
known earlier from experimental angle�resolved pho�
toelectron spectroscopy (ARPES) data [9, 10]. In the
present study, the bilayer system is considered using
the t–J model in a regime of strong electron correla�
tions. A superconducting phase for  symmetry of

the gap with a magnetic mechanism of pairing is
described using a generalized mean field theory of the
Bardeen–Cooper–Schrieffer (BCS) type. It will be
shown that the interplanar hopping does not increase
the critical temperature. Thus, we conclude that the
dependence of Tc on the number of CuO2 planes
should be searched in the class of impurity mecha�
nisms.

The structure of this article is as follows. Section 2
describes the t–t '–t ''–t⊥–J*–J⊥ model with interlayer
hopping (t⊥), interplanar exchange (J⊥), and interpla�
nar pair hopping.

Section 3 gives the main relations of the general�
ized mean field theory for a superconducting phase
with allowance for the short�range antiferromagnetic
order, and Section 4 presents the results of numerical
simulating the influence of interlayer hopping (t⊥) on
the Tc value. Section 5 considers the behavior of the
isotopic effect parameter in systems with interlayer
splitting. In Section 6, the results are discussed and
compared to experimental data. Preliminary results of
this investigations were reported in part in [11].

2. BILAYER CUPRATES:
t–t '–t ''–t⊥–J*–J⊥ MODEL

It is commonly accepted that the electron structure
and all important characteristics of high�temperature
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cuprate superconductors in both normal and super�
conducting phases are determined by the behavior of
particles inside the CuO2 layer, while the role of all
other atoms in the cell is entirely reduced to supplying
current carriers to the copper–oxygen layer. The main
argument in favor of the possibility of ignoring the
atomic environment of the CuO2 layer is based on the
fact that the valence shell energies in atoms of these
metals are significantly lower than the characteristic
band energies in the CuO2 plane. In the copper–oxy�
gen plane, the dynamics of electrons is realized on the
3d orbitals of copper and 2p orbitals of oxygen, so that
a multiband p–d model offers a natural basis for
describing the electron structure in this plane. In the
presence of strong electron correlations, it is necessary
to modify the usual one�electron approach to the
description of these systems [12, 13]. Because of
strong Coulomb repulsion on one atom, states with
numbers of particles differing by unity have signifi�
cantly different energies. A realistic multiband Hub�
bard model constructed on the basis of one� and two�
particle states determined in the p–d model gives a
more adequate description in this case. In the region
of low�energy excitations in the limit of strong elec�
tron correlations, this model reduces to the t–t '–t ''–
J* model [14–19]. As for the superconducting phase,
we are primarily interested in states near the Fermi
level, while states deep in the band are less important.
Therefore, it is expedient to use the t–t '–t ''–J* model
for the superconducting state as well [16, 17].

The stoichiometric composition of a bilayer super�
conducting cuprate in the absence of doping (e.g., for
YBa2Cu3O7) corresponds to one hole in each CuO2
plane. Except for the case of one missing apical oxy�
gen, each CuO5 pyramid repeats the unit cell of an
La2Sr2 – xCuO4 crystal. For this reason, we assume that
the electron structure of the bilayer system differs from
that of a single layer [19] only by the splitting of bands
in each layer into bonding and antibonding ones
(bilayer splitting) [9, 20–25] as a result of interlayer
interactions. Allowance for interlayer hopping and
exchange interaction modifies the t–t '–t ''–J* model
into the t–t '–t ''–t⊥–J*–J⊥ model.

For a superconducting electron fluid, the fraction
of the free energy density along the c axis relative to the
total free energy density in cuprates is very small (η ~
0.001) [7, 26–31]. This indicates that multilayer
cuprates are quasi�two�dimensional systems and,
hence, allows us to ignore processes related to single�
particle hopping and pair tunneling between unit cells
along the c axis. For this reason, we will only consider
hopping along the c axis between two CuO2 planes
inside one bilayer within a single unit cell. A similar
approach was used earlier to investigate multilayer
structures [32–38]. Hopping is formally treated as
transitions from a band of the upper CuO2 plane to a
band of the lower plane and vice versa. In the Hamil�
tonian, this process is represented as a term with the
characteristic dependence on the two�dimensional
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(2D) wave vector: t⊥(k) = t⊥(coskx – cosky)
2. This form

of the hopping integral as a function of the 2D wave
vector follows from the results of band calculations
[39] and is consistent with ARPES experiments [9,
20]. The square of the difference of cosines appearing
in the expression for t⊥(k) is related to an effective
overlap of the  orbitals of copper, which is pro�

vided by real overlap of the s orbitals and by the s–p
and p–d hybridization. Direct overlap of the 

orbitals and px, py orbitals of the adjacent layers is
extremely small because the major electron density
fraction of these orbitals is distributed in the CuO2

plane. As a result, the absolute value of the interlayer
hopping integral is smaller by an order of magnitude
than that for the intraplane hopping, which makes it
possible to consider the former hopping as a small per�
turbation between the two CuO2 planes. The presence
of quasi�particle hopping between planes in the t–J
model automatically leads to the appearance of inter�
layer exchange interactions, but these–as will be
shown below–do not play any significant role in the
mechanism of superconductivity. In describing the
superconducting phase, it is also important to take
into account the hopping of quasi�particle pairs
between layers, i.e., the hopping of a Cooper pair as
the whole. Note that the hopping of Cooper pairs
between layers is analogous to the Josephson effect for
a weak contact between two superconductors.

The Hamiltonian of the t–t '–t ''–t⊥–J*–J⊥ model
is written in terms of Hubbard operators, which pro�
vide a natural and convenient algebra for describing
systems with strong electron correlations. The Hub�

bard operator  corresponds to quasi�particle exci�

tations from a two�hole Zhang–Rice state  to a
one�hole state  on the fth site, which form the
upper Hubbard hole band. Thus, in the case of a
bilayer cuprate, the total Hamiltonian of the t–t '–t ''–
t⊥–J*–J⊥ model can be written as follows:

(1)

d
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2
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Here, subscript “α” refers to up (u) and down (d)

CuO2 planes; Jfg = 2 /Ect is the parameter of the
effective exchange interaction associated with hop�
pings to the lower Hubbard band and back; tfg are the

intraband hoppings between unit cells;  are the
interband hoppings between unit cells; Ect is the
dielectric gap with charge transfer; and ε1 and ε2 are
the energies of local states for the cell with one and two
holes, respectively. The values of model parameters for
a single CuO2 layer were calculated earlier [19] ab ini�
tio using the local density approximation (LDA) with
the generalized tight binding (GTB) model. Hamilto�
nians , Hexch, and Hpair describe interlayer hopping,

interlayer exchange interaction, and interlayer pair
hopping, respectively. In the latter Hamiltonian, u1, u2

and d1, d2 refer to pairs of sites in the up and down
CuO2 planes, respectively. The coefficient t⊥(mu, nd) in
expression (2) is the Fourier transform t⊥(k) of the
integral of interlayer hopping between sites in the
up (mu) and down (nd) planes. The characteristic val�
ues of the intracell hopping integral t⊥ that can be
extracted from LDA calculations [39] (t⊥ = 0.25/4 =
0.06 eV) or from ARPES data [40] (t⊥ = 0.5 × 0.057 ≈
0.029 eV) are two orders of magnitude lower than the
maximum integral tpd of in�plane hopping between dx

orbitals of copper and p orbitals of oxygen. It is also
necessary to bear in mind that, on the passage from
description of the usual fermions to Hubbard’s fermi�
ons, the effective value of the interlayer hopping inte�
gral decreases as a result of multiplication by the Cleb�
sch–Gordan and genealogical coefficients. Figure 1
presents the coordinate dependence of this integral
plotted as t⊥(R) = t⊥(mu, nd). 

The dependence of the interlayer exchange param�
eter J⊥(mu, nd) on the distance between sites in the up
(mu) and down (nd) CuO2 planes is determined by the
form of this function in the k space:

(5)
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The interlayer pair hopping in the reciprocal space is
described by the following Hamiltonian:

(6)

where the hoping integrals T⊥(k) are determined by

the (k)/t01 values [6] as

(7)

The parameters of the t–t '–t ''–t⊥–J*–J⊥ model
Hamiltonian (borrowed from [19] are as follows (in
electronvolts):

Note that, in fact, we need to speak about a certain
region of possible parameters for the reduction of var�
ious realistic models (e.g., the multiband p–d model)
to the t–t '–t ''–J* model. Variation of the model
parameters in this region would mostly be related to
choosing the number of energy levels to be taken into
account in the initial (nonreduced) Hamiltonian. The
problem of determining these intervals of parameters
has been considered in much detail [41, 42].

Hpair T⊥ k( ) Xk
SσX k–

SσX k–
σSXk

σS
H.c.+( ),

k

∑=

t⊥
2

T⊥ k( )
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2 k( )
t01

���������� kxcos kycos–( )4
.=

ε2 ε1– 0.091, ε2– 2ε1 Ect, Ect+ 2,= = =

t t01≡ 0.93, t ' t11≡ 0.12, t ''– t02≡ 0.15,= = =

J J01≡ 0.295, J ' J11≡ 0.003,= =

J '' J02≡ 0.007,=

t̃ t̃ 01≡ 0.77, t̃ ' t̃ 11≡ 0.08, t̃ ''– t̃ 02≡ 0.12.= = =

3. DESCRIPTION
OF THE SUPERCONDUCTING PHASE

The energy characteristics, such as the dispersion
and superconducting gap, have been calculated using
the method of motion equations for the two�time
retarded four�component Green’s function

which consists of normal and anomalous in�plane
components,

and interlayer components,

The equation of motion contains high�order Green’s
functions, which can be projected using the method of
irreducible Mori operators [42, 43] onto the basis set
of normal Green’s functions,

and anomalous Green’s functions,

.

As a result, we obtain the anomalous means

anomalous interlayer means

and two energy gaps, which include all possible inter�
actions leading to the potential pairing of particles:

(8)

(9)

where pσ =  and x is the concentration of doping
holes. The first term on the right�hand side of Eq. (8)
reflects the kinematic mechanism of pairing[ 44], the
second term is related to the exchange, the third and
fourth are due to three�center interactions in one
CuO2 plane, and the last term allows for the hoppings
between CuO2 layers. The appearance of supercon�
ducting gap (9) is due to the possible pairing of quasi�
particles from different planes by means of interlayer
exchange interaction. The symmetry of the gap will be
considered below. In the general case, the supercon�
ducting gap in each CuO2 plane has the form of Δu(d) =

, where phase θ is the sum of the mean phase
θ0 and phase fluctuation δθ.
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Fig. 1. Coordinate dependence of interlayer hopping inte�
gral (Rxy is the distance in plane between (0, 0) site in one
layer to (x, y) site in the adjacent layer, t⊥ is assumed to be
0.1 eV).
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For multilayer compounds, the form of the super�
conducting gap taking into account the mean phase
was determined in [45]. That self�consistent calcula�
tion using a system of equations for each CuO2 plane
of the multilayer compound with allowance for the
interaction between neighboring layers gave the fol�
lowing expression [45]:

where j runs through the numbers of CuO2 layers and
p is the total number of these layers. For example, in
our case p = 2 and, hence, Δ1 = Δ2. Below we will rely
on this result and assume mean phases in the neigh�
boring layers to be the same and equal to zero. Phase
fluctuations in the order parameters begin at tempera�
tures about 15 K above Tc, and the phase rigidity grows
with decreasing temperature [46] to reach a maximum
upon the Berezinskii–Kosterlitz–Thouless (BKT)
transition, where the system becomes two�dimen�
sional. On passing toward higher temperatures, phase
fluctuations at the BKT point break the 2D supercon�
ductivity. The phase difference between the adjacent
planes along the c axis in single�layer cuprates vanishes
due to the pair tunneling between planes, which leads
to the establishment of phase coherence and thus
forms the 3D superconductivity. For this reason, the
3D superconductivity is retained above TBKT up to Tc.
Since the region of 3D superconductivity (dome�
shaped for both single� and multilayer cuprates) is
qualitatively the same as the concentration depen�
dence of Tc obtained in our calculations and only
exhibits quantitative differences, we use the mean field
approximation without taking into account fluctua�
tions in the order parameter. The real parts of super�
conducting gaps for the up and down layer are
assumed to the same, while the phase is assumed to be
fixed and equal to zero.

The system of the equations of motion for both
normal and anomalous in�plane and interlayer Green
functions is as follows:

(10)
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where

(11)

is the law of dispersion in the normal phase;

(12)

is the self�energy operator expressed via the in�plane

kinematic correlators Kq = , in�plane spin

correlators Cq = , and interlayer kinematic

correlators  =  with the coefficients

(13)

(14)

and

(15)

is the bilayer splitting of the quasi�particle band of one
CuO2 layer with the interlayer spin correlator C⊥ =

. 

In expressions (8)–(15), pσ + x =  +  is
the occupation factor of the band under consideration.
The occupation numbers of local states can be deter�
mined by jointly solving the chemical potential equa�
tion,

where x is the degree of hole doping per CuO2 layer,
with the basis set completeness condition

The total number of states for a one�particle sector of
the Hilbert space is

Since we are considering a paramagnetic phase, the
probability of filling of one�particle states with spins
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up (pσ = ) and those with spins down (  =

) is the same: pσ =  = (1 – x)/2. The doping
level is assumed to be the same in both CuO2 layers
and, hence, the occupation numbers are equal as well.

The interlayer kinematic correlators are calculated
self�consistently together with the in�plane kinematic
correlators and the chemical potential. The interlayer
spin correlator was calculated using exact diagonaliza�
tion of a bilayer cuprate cluster as described in the next
section.

Solving system of equations (10) gives the disper�
sion of quasi�particle bands in the superconducting
state,

(16)

where  = Δk + Δ⊥k and  = Δk – Δ⊥k, and deter�
mines the Green’s functions

(17)
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(20)

According to the spectral theorem, the interlayer
anomalous means are related to the interlayer

Green function  as
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As a result, the general expression for the supercon�
ducting gap takes the following form:

(22)

(23)

where τ = kBT and kB is the Boltzmann constant.
For single�layer cuprates, it was shown [44, 47] that

pairing within the t–t '–t ''–J* model is possible due to
the kinematic mechanism, exchange mechanism, and
three�center hopping mechanism. It is known that the
kinematic mechanism does not obey the condition of

 symmetry of the superconducting gap observed

in the ARPES experiments [48] and scanning tunnel�
ing spectroscopy [49, 50]. Nevertheless, it should be
noted that there is some evidence for deviations of the
gap function from coskx – cosky [51]. Expression (22)
shows that the pairing of separate quasi�particles via
interlayer hopping is impossible for the  symme�

try of the superconducting gap, since the product of
 and Δq in this sum gives a third power of the differ�

ence of cosines and this term disappears upon summa�
tion. In the case of a bilayer cuprate, in contrast to the
self�consistent equation for the superconducting gap
in a single�layer cuprate, the Δk gap related to the in�
plane pairing is supplemented by the Δ⊥k gap, which
reflects the interlayer pairing via exchange interaction.
We can naturally assume that Δk, as well as the main
superconducting gap Δ⊥k, possesses the  symme�

try. In the case of pairing in the CuO2 plane, consider�
ation is usually restricted to the exchange between
nearest neighbors. For the interlayer exchange, the
nearest neighbors are CuO2 layers in the unit cell with
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(Rx, Ry) = (0, 0), for which the magnitude of exchange
interaction is J⊥00 = 0.011 eV. In this case, terms J⊥00 in
the expansion of J⊥k ± q will not contribute to the equa�
tion for Tc, since they cancel the dependence on k and
q and, because of the  symmetry of the gap, the

summation over q eventually yields zero. Proceeding
from the structure of its contribution to the expansion
of Jk ± q, exchange J⊥01 between the next�neighboring
cells in the adjacent planes could potentially partici�
pate in pairing for the  symmetry of the gap.

However, the dependence of J⊥(k) on the wave vector
resulted in the fact that J⊥01 was zero. Therefore, it can
be seen that, in the adopted nearest�neighbor approx�
imation, the mechanism of pairing via interlayer
exchange interaction can be rejected.

In contrast to the hopping of separate quasi�parti�
cles, the anomalous Green’s function in the case of
pair tunneling,

exhibits direct entanglement with the normal Green’s
function

which leads to an additional contribution to the super�
conducting gap Δ⊥. However, taking into account the

 symmetry of the gap, the contribution from the

tunneling of quasi�particle pairs to the self�consistent
equation for the  symmetry of the gap disappears

for the same reason as that of separate one�particle
hopping. Indeed, the product of an even power (sec�
ond for single�particle hopping and fourth for pair
hopping) of the difference of cosines in the hopping
integral and the cos kx – cos ky factor due to the gap
symmetry leads to vanishing of the sum with respect
to q.

Eventually, with allowance for the  symmetry

of the gap,

in the approximation of J01 exchange between nearest
neighbors in the CuO2 layer, the equation for Tc can be
transformed as follows:

(24)

where  = ξq +  and  = ξq – . As can be
clearly seen, the only result of the inclusion of inter�
layer interactions into the initial model is the appear�
ance of a sum of two terms (corresponding to the pres�
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ence of bonding and antibonding bands) in the expres�
sion for the anomalous means.

Using Eq. (17) at a fixed temperature, it is also pos�
sible to determine Δ0. In the case under consideration,
this value is 0.0195 eV at T = 0 for the parameters of
Hamiltonian (1). For the given gap, the band structure
in accordance with dispersion law (16) comprises four
bands (Fig. 2).

4. INFLUENCE OF HOPPING INTEGRAL t⊥ 
AND INTERLAYER SPIN
CORRELATIONS ON Tc

4.1. Interlayer Hopping

Figures 3a and 3b show the concentration depen�
dences of Tc for different values of single�particle
interlayer hopping integral t⊥. For realistic values of
t⊥ = –0.02 eV and C⊥ = –0.1, the dependence of Tc on
x (Fig. 3a) is almost the same as that for single�layer
cuprates, the only difference being a small decrease in
Tc at all concentrations of doping carriers. The main
factor that prevents the increase in Tc with an increas�
ing number of layers is redistribution of the density of
states (DOS) of a single band (for single�layer
cuprates) between two bands in the case of bilayer
cuprates, which is manifested by the appearance of
coefficient 1/2 in Eq. (24), while there are no addi�
tional mechanisms of pairing in bilayer system as com�
pared to the single�layer case. Thus, in the framework
of the generalized mean field approximation, it is
impossible to speak of an increase in Tc due to the
interlayer one�particle hopping. An increase in the
hopping integral t⊥ is accompanied by an increase in
bilayer splitting between the bonding and antibonding
bands and, hence, in the distance between two peaks in
the DOS (Fig. 3c) [32]. Each peak corresponds to a
certain van Hove singularity. With a change in the level
of doping, the DOS peaks exhibit shifts and their
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Fig. 2. Dispersion of quasi�particle bands for a bilayer
cuprate with x = 0.16 in the superconducting phase.
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intensities vary, but the two�peak structure is retained.
Coincidence of the chemical potential with each of
the van Hove singularities corresponds to a maximum
in Tc. A rather large intracell interplanar hopping inte�
gral (t⊥ = 0.1 eV) leads to significant splitting of bands
and the resulting difference of maxima with respect to
the doping level (Fig. 3b). Indeed, the first maximum
corresponds to x = 0.137, while the second corre�
sponds to x = 0.166. No such two�peak structure in the
concentration dependence of Tc has been observed in

experiments. Therefore, it may be concluded that the
interlayer coupling never reaches this high a level in
real bilayer cuprates.

The absolute values of maxima in Tc also vary,
which might seem rather strange at first glance. How�
ever, there are two factors that can affect the absolute
value of Tc. First, the bilayer splitting not only influ�
ences the energy difference between the bonding and
antibonding bands (Fig. 4a), but also determines dif�
ferences in the sets of wave vectors that form the Fermi
contour for a certain band. This is well illustrated by
the difference between regions of the Brillouin zone,
in which a quantum phase transition takes place upon
closing of the hole pockets (Fig. 4b). In other words,
the energy splitting of the band takes place with a shift
in respect to the wave vectors. Therefore, the terms in
the sum over q in Eq. (24) for Tc, which give the max�
imum contribution to the formation of a single maxi�
mum, differ (primarily with respect to the set of q)
from the terms responsible for the second maximum.
It should be noted that the maximum contribution to
this sum is due to the points occurring close to the
chemical potential, which is determined by the ratio of
the hyperbolic tangent and deviation from the chemi�
cal potential, which enters E+(E–) in Eq. (24). Since
the sum contains a factor with the difference of
cosines, various sets of wave vectors make different
contributions.

Second, the number of contributions to the sum
over q from different regions of the k�space varies
depending on the chemical potential. For example, at
a point of the quantum phase transition for x = 0.137,
the maximum contributions to the sum comes from
the wave vectors along the nodal direction (crossed by
the chemical potential) and directly from the saddle
point (i.e., the point where the antibonding band
touches the chemical potential) that occurs in the
(π, π)–(π, 0) direction. At the point of the second
quantum phase transition (x = 0.166), the chemical
potential once again crosses the band in the nodal
direction and touches the bonding band, but now it
also crosses the antibonding band, thus making more
significant contributions to the sum over q, so that the
critical temperature should decrease.

4.2. Interlayer Spin Correlations

In the phase diagram of cuprates, the region of low
doping corresponds to the antiferromagnetic phase.
The zero doping level corresponds to the situation
with a single hole with spin 1/2 per copper–oxygen
plane in separate unit cells and long�range antiferro�
magnetic order in the entire crystal. As additional
hole�type carriers are added, the long�range magnetic
order is broken and replaced by a short�range order.
The spin correlation functions that characterize the
magnetic order very strongly influence the electron
structure and spectrum of quasi�particle excitations
[52–55]. In particular, allowance for the hole scatter�
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Fig. 3. Plots of (a, b) Tc(x) versus x for t⊥ = 0.02 and 0.1 eV,
respectively, and (c) density of states for x = 0.137 and t⊥ =
0.1 eV. All calculations were performed for an interplanar
spin correlator C⊥ = –0.1.
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ing on spin fluctuations leads to suppression of the
spectral weight of the part of the pocket related to the
shadow zone and the formation of an arc that is
observed in ARPES [56]. Recent ARPES measure�
ments with improved energy resolution actually
revealed a pocket with sharply different spectral
weights at various points of the Brillouin zone [57].

Bilayer cuprates exhibit magnetic correlations in
the c axis. Ignoring the intercell spin correlations
because of large distances (0.8 nm) between neighbor�
ing bilayers along the c axis as compared to interlayer
intracell distance (0.3 nm), we retain only the intracell
interlayer spin correlator. The magnitude of this corr�
elator was determined by exact diagonalization of a
bilayer cluster. For this purpose, a cell of bilayer
cuprate consisting of two CuO5 pyramids was consid�
ered and all interactions were exactly described. Then,
the state with a minimum energy of the type

 was separated in the basis of

two�particle states. Since this state turned out to be
singlet, the ground state in the undoped composition
(with one hole per layer) must correspond to the anti�
ferromagnetic state of two layers. The antiferromag�
netic order of spins was experimentally confirmed by
neutron diffraction [58]. Our calculations for the
undoped composition at T = 0 showed that the char�

acteristic interlayer spin correlator was  =
⎯0.1. For comparison, it should be recalled that the
spin correlation function for the nearest neighbors
within the CuO2 layer is C01 ≈ –0.2 [19, 59, 60]. Spin
correlations are part of the energy of binding between
CuO2 layers (16) and, at first glance, it might seem that
their presence would increase this energy. However,
because of the negative sign of the correlator, this con�
tribution will decrease the binding energy so that, in
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+ afd↓
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fact, the antiferromagentic correlations suppress
bilayer splitting. Indeed, if the antiferromagentic
ordering of spins were present in the neighboring
CuO2 layers of the cell, this would imply that a one�
particle state with spin up is occupied in one layer and
a state with spin down is occupied in the other layer.
This, in turn, poses a limitation on the form of quasi�
particles and, hence, on the possibility of hopping
between layers: a quasi�particle with spin up cannot pass
to the neighboring plane because the one�particle state
with this spin is occupied, so that only in�plane transi�
tions of quasi�particles with opposite spins are possible.

Figure 5 shows how strongly the antiferromagnetic
correlations can decrease bilayer splitting. The band
structure of a system in which a weak coupling
between layers is provided only by the hopping of
quasi�particles is shown in Fig. 5a. In the other limit�
ing case of C⊥ = –0.22 (Fig. 5b), where the spin corr�
elator for the undoped composition is close to maxi�
mum possible (0.25), the splitting of bands may com�
pletely vanish.

The effect of magnetic correlations on the magni�
tude of bilayer splitting is naturally manifested in the
concentration dependence of Tc. An increase in the
level of magnetic correlations to C⊥ = –0.22 leads to
disappearance of the two�peak structure in Tc(x).
Thus, the antiferromagnetic exchange between CuO2
layers provides the other mechanism (together with
the small value of the interlayer hopping integral) that
retains the shape of the Tc(x) dependence with a single
maximum. It should be emphasized that the suppres�
sion of bilayer splitting by spin correlations was
obtained in the static mean field approximation.
Allowance for the dynamic processes related, e.g., to
the interaction with spin fluctuations can lead to a
positive contribution to the interlayer coupling. For
example, it was pointed out [61] that the interlayer

Fig. 4. (a) Bilayer splitting in the band structure of quasi�particle excitations in the normal state (x = 0.125); (b) Fermi surface at
the points of quantum phase transitions (x = 0.137 and 0.166); Δky is the difference of wave vectors ky for the two quantum phase
transitions, which shows the shift of bands along wave vectors in the case of bilayer splitting.
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spin–fluctuation interaction influenced the electron
structure the most strongly and caused the appearance
of kinks long the nodal direction. Thorough derivation
of the exchange and spin–fluctuation mechanisms of
superconductivity for a CuO2 layer within the p–d
Hubbard model in the approximation of noncrossing
diagrams [62] shows that (i) the spin–fluctuation
mechanism of pairing becomes active in the case of
allowance for the dynamic processes related to high�
energy interband transitions and (ii) the mechanism
of pairing due to scattering on spin fluctuations
increases Tc.

5. INFLUENCE OF BILAYER SPLITTING
ON THE ISOTOPE EFFECT EXPONENT

WITH RESPECT TO THE TEMPERATURE

In addition to the concentration dependence of the
critical temperature, another important characteristic
of superconductivity is the isotope effect with respect
to the temperature. In the results obtained above, it
was assumed that a transition to the superconducting

state was caused by the magnetic mechanism of Coo�
per pairing. In order to describe the isotope effect
observed in cuprates, it is necessary to take into
account the phonon mechanism as well. In a BCS�
type theory, this leads to renormalization of the cou�
pling constant in the equation for Tc, which will be the
sum of the exchange and phonon contributions:

Here, as usual, the θ function restricts the phonon
contribution to energies on the order of ωD near the
Fermi surface, while the parameter λph, proportional
to the matrix elements of electron–phonon interac�
tion, is assumed to be free. It should be noted that the
structure of this parameter in the used model is analo�
gous to that in single�layer cuprates [63] because the
final equation for the gap does not contain the inter�
layer component Δ⊥k. The difference appears in the
expression for the isotope effect exponent. The deter�
mination of this parameter as αo = ⎯d ln(Tc)/d ln(Mo)
leads to the following formula:

(25)

Evidently, the sums in square brackets correspond to
the two van Hove singularities in the DOS. Since this
parameter is inversely proportional to the DOS, each
of these singularities is manifested by a minimum on
the concentration dependence of αo(x) at a sufficiently
large value of the interband splitting (Fig. 6, solid
curve). Experiments show a single minimum for both
single�layer and bilayer cuprates [64]. In the model of
interacting CuO2 layers, this situation is achieved for
t⊥ ≤ 0.035 eV, which corresponds well to the hoping

integral in real systems (  = 0.0285 eV [40]; note
that this value t⊥ is not renormalized to the spin corre�

lator; i.e.,  coincides with the value used in our cal�

culations at C⊥ = 0, see Eq. (15) for ). For these t⊥

values, the minimum in αo (in contrast to that for sin�
gle�layer systems with t⊥ = 0) becomes wider and is
located higher (Fig. 6). Thus, it can be seen that, in the
mean field approximation, the interlayer splitting does
not significantly affect the absolute values of Tc and αo,
although it can be among the possible reasons [65] for
the broadening of the Tc(x) and αo(x) dependences.
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Fig. 5. Band structure for t⊥ = 0.1 eV and interlayer anti�
ferromagnetic correlations C⊥ = –0.01 (a) and –0.22 (b).
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In contrast to the results reported in [64], more
recent investigation [66] revealed a strong dependence
of αo on the number of CuO2 layers in a homologous
series of bismuth cuprates. At the point of optimum
doping, αo decreases from 0.25 for n = 1 to 0.02 for n =
3. Note that, according to Eq. (25), this behavior can�
not only be the trivial consequence of a decrease in the
phonon contribution to Cooper pairing, but can also
be related to an increase in the magnetic contribution
on the transition from single�layer to bilayer systems.

6. DISCUSSION OF RESULTS

The region of superconductivity in the phase dia�
grams of a large class of cuprates is inverse parabola
with a maximum at the optimum doping level. Repre�
sentatives of one family differ in the absolute values of
Tc for a particular doping level, while the shape of the
Tc(x) curve remains qualitatively the same. Based on
the results of calculations performed in the mean field
approximation, we can conclude that the interlayer
hopping does not increase the maximum Tc value as
compared to that for single�layer compounds and, at a
sufficiently large hopping integral, can change the
Tc(x) shape to a curve with two peaks. A two�peak con�
centration dependence was obtained earlier in [34],
where the concentration dependence of the critical
temperature of high�temperature bilayer cuprate
superconductors was studied in the t–J  model,
assuming that t⊥ was nonzero only for the interlayer
hopping inside the unit cell, i.e., that the hopping inte�
gral was independent of the 2D wave vector. The two�
peak concentration dependence of Tc disappears for
t⊥/t01 ≈ 0.03, replaced by a usual parabolic single�peak
curve.

The absence of an increase in the maximum of Tc
in the case of interlayer hopping suggests that the hop�
ping of quasi�particles between CuO2 layers cannot
play a significant role in the formation of a high�tem�
perature superconducting state. This agrees with the
results of experiments on uniaxial pressure [67–70],
which showed that a decrease in the spacing of CuO2
layers under uniaxial pressure along the c axis influ�
ences Tc only via an increase in the concentration of
carriers in the CuO2 layers. In other words, an increase
in the interlayer coupling weakly influences Tc(max);
i.e., dTc/dPc is decreased by an order of magnitude
lower than the rate of change in Tc(max) for compres�
sion in the plane: dTc/dPa ≈ –1.9 K GPa–1 and
dTc/dPb ≈ +2.2 K GPa–1. This is additional evidence
for the decisive role of the CuO2 layer in the formation
of superconductivity. Pressure along the a and b axes
leads to a decrease in the lattice parameters, which
enhances coupling between the orbitals of copper and
oxygen atoms and, hence, increases the hopping inte�
gral and exchange interactions. The exchange interac�
tions between nearest neighbors in the plane, accord�
ing to Eq. (23), directly influence Tc. It should be
noted that the values of derivatives with respect to

pressure reflect the so�called “internal” properties of
cuprates, i.e., changes in the atomic and electron
structures without affecting the doping level in the
CuO2 plane. Schilling [71] used the terms of “healthy”
and “pathological” cuprates, the latter being repre�
sented by the LaSrCuO and YBaCuO systems, in
which the doping changes not only the hole concen�
tration, but the structure as well. In contrast, the struc�
tures of healthy cuprates based on Tl and Hg are stable
and doping only influences the concentration of holes.
Experiments with pressure are performed in the latter
families of cuprates—i.e., on compounds with the
most planar and least curved CuO2 planes. This choice
is related to the absence of effects related to pressure�
induced structural phase transitions. In addition, these
compounds are characterized by the maximum Tc val�
ues among all cuprates. These facts suggest that defects
such as the curves CuO2 planes are not favorable for
superconductivity. From the standpoint of micro�
scopic theory, this can be explained by decreasing
overlap (and, hence, interaction constants) for orbitals
in this plane in the case of its deformation. However,
this by no means implies that all other possible inho�
mogeneities are also unfavorable. It is quite possible
that inhomogeneities and disorder in fact cause an
increase in Tc upon the addition of CuO2 layers to the
unit cell with rearrangement of the atomic and elec�
tron structure of the reservoir of charge carriers and
the introduction of new atoms. Indeed, an additional
atom (e.g., Ca or Y) appears between copper–oxygen
planes in bilayer cuprates in comparison to single�
layer ones. A disorder that arises when divalent Ca2+

cation is replaced by trivalent Y3+ stabilizes the general
cell structure due to the presence of an additional pos�
itive charge. Moreover, this substitution affects the
electron structure of CuO2 layers much more weakly as
compared to the influence of disorder which takes

0.20

0.20

α0

x
0.05 0.10 0.15

0.15

0.10

0.25

0.30

0.35
t⊥ = 0.1 eV
t⊥ = 0
t⊥ = 0.03

Fig. 6. Plot of the isotopic effect parameter αo versus dop�
ing hole concentration for bilayer cuprates with various
values of the interlayer hopping integral t⊥.
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place with atomic substitutions near the apical oxygen
[72]. In single�layer cuprates, the local substitutions of
atoms located near the apical oxygen may displace this
oxygen and deform the CuO6 octahedron, since the
opposite apical oxygen in this octahedron is fixed.
Naturally, this deformation would modify the wave�
function and energy of the entire octahedron and,
hence, affect the superconductivity. It was shown [72]
for the family of bismuth cuprates that the partial
replacement of Bi3+ by various lanthanide atoms
(Ln⎯La, Pr, Sm, Eu. Gd) of the same valence signifi�
cantly influenced Tc and greater the ion radius of sub�
stituted atoms corresponds the higher critical temper�
ature. Reasons for the observed increase in Tc under
these conditions are not completely clear, but it is evi�
dent that the presence of impurities and inhomogene�
ities in the atomic surrounding of CuO2 layers influ�
ences the superconducting state either directly or indi�
rectly (via apical oxygen). In multilayer cuprates, the
influence of such inhomogeneities has an apparently
softer character. In bilayer cuprates, there are two
CuO5 pyramids spaced by a relative large distance
(0.3 nm) instead of one CuO6 octahedron in single�
layer compounds. The space between layers serves a
kind of buffer that smoothens possible distortions in
one of the two pyramids—probably, including the
aforementioned curvature of CuO2 planes—thus
ensuring a more stable superconducting state and
higher Tc values.

7. CONCLUSIONS

The existence of an experimentally observed
dependence of the critical temperature of high�tem�
perature cuprate superconductors depending on the
number of CuO2 layers per unit cell unambiguously
indicates the presence of a relationship between the
mechanism of superconductivity and effects related to
the addition of CuO2 layers. One of these effects is the
appearance of possible intracell hopping between the
copper–oxygen layers and other interlayer interac�
tions. The present theoretical investigation showed in
the framework of the generalized mean field approxi�
mation that allowance for the interlayer hopping
treated as small perturbation leads to a decrease in the
maximum Tc in bilayer cuprates. Therefore, it can be
ascertained that the main effect of inclusion of the
interlayer hopping—the band splitting and the result�
ing redistribution of the DOS—is not a factor that
accounts for the increase in Tc in multilayer cuprate
structures. Another consequence of the coupling
between CuO2 layers—the two�peak structure of the
concentration dependence of Tc—is not achieved in
bilayer cuprates because of small values of the inter�
layer hopping integral (t⊥ ≈ 0.027 eV). Possible factors
accounting for this smallness of t⊥ are the weak overlap
between the orbitals of adjacent CuO2 planes and the
presence of intracell interlayer antiferromagnetic cor�
relations. Thus, the most probable reason for the

increase in Tc with the number of CuO2 layers is the
influence of various inhomogeneities. In comparison
to single�layer cuprates, the bilayer ones exhibit
changes in the curvature of CuO2 planes, composition
and structure of their atomic environment, way of
doping, distribution of doping charge carriers,
arrangement of defects and impurities, etc. We can
naturally suggest that an increase in Tc in the case of
bilayer compounds can be due to several of these fac�
tors.
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