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1. INTRODUCTION

The family of perovskite�like cobaltites has a wide
set of properties inherent in other 3d metal oxides,
namely, superconductivity, metal–insulator transi�
tions, colossal magnetoresistance, and the interrela�
tion between the charge, spin, and orbit degrees of
freedom that is common for all strong electron corre�
lation (SEC) systems [1]. However, cobaltites have a
specific spin crossover property, i.e., the inversion of
the high� and low�spin terms of the Co3+ ion in the
ground state. Such crossovers are also known for
oxides with Fe3+ and Mn2+ ions at high pressures. The
energy of the low�spin (LS) term in the ground state of
LaCoO3 lies below the nearest excited level by spin gap
Δs–t ≈ 150 K [2]. When the temperature increases, a
diffuse phase transition from a diamagnetic to a para�
magnetic insulator takes place at temperature T ~ Δs–t.
The gap in rare�earth LnCoO3 cobaltites is larger due
to lanthanide compression. Neutron scattering data
[3, 4] showed the absence of spin transitions at tem�
peratures up to room temperature in cobaltites with
Ln = Pr, Nd, Sm, and Eu. The structural anomalies
that accompany the spin transition in LnCoO3 (Ln =
Y, Sm, Dy, Gd) compounds are observed at tempera�
tures much higher than room temperature [5]. There�
fore, the contribution of Co3+ ions to the magnetic
properties is absent in the standard temperature range
from room to lower temperatures. In the case of
GdCoO3, Gd3+ ions have S = 7/2 and provide para�

magnetic properties. At T < 3.3 K, antiferromagnetic
ordering of gadolinium spins was detected [6].

The purpose of this work is to study the magnetic
and electrical properties of GdCoO3 at high tempera�
tures. To this end, we measure the magnetization over
a wide temperature range. When subtracting the para�
magnetic contribution of gadolinium from these data,
we find the contribution of Co3+, which increases with
temperature. We then simulate this contribution using
the multielectron LDA + GTB method, which was
recently used to calculate the magnetic and electrical
properties of LaCoO3 [7], and find spin gap Δs–t for
GdCoO3. Using this gap, we calculate the electronic
structure and its temperature dependence, which is
caused by the population of high�spin states with
increasing temperature. As a result, the dielectric gap
decreases by an order of magnitude at T = 300 K as
compared to zero temperature.

The structure of this work is as follows. In Section 2,
we describe samples and measurement techniques. In
Section 3, we present magnetic data and separate the
contribution of cobalt. In Section 4, we calculate the
magnetic contribution of Co3+ ions with allowance for
low� and high�spin states and determine the spin gap.
In Section 5, the temperature�dependent band struc�
ture of the Hubbard fermions in GdCoO3 is calculated
by the LDA + GTB method, and the results are dis�
cussed in Section 6.
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2. EXPERIMENTAL

Polycrystalline GdCoO3 samples were prepared by
the solution sol gel method [8], in which stoichiomet�
ric amounts of cobalt and gadolinium nitrates were
dissolved in deionized water and then were dried at a
temperature of 90°C for 6 h. The powder thus pre�
pared was annealed at a temperature of 300°C in air,
pressed into pellets 12 mm in diameter, and subjected
to repeat annealing. We measured the temperature
dependences of static magnetization in the tempera�
ture range from 2 to 800 K in a magnetic field of 5 kOe.
The measurements were performed on an MPMS�XL
Quantum Design SQUID magnetometer. The relative
measurement error was Δχ/χ ≤ 0.01, so that the error
(Δχ ~ 10–6) for a measured magnetic susceptibility of
χ ~ 10–4 is smaller than the line width in the experi�
mental curves. The crystal structure of the samples was
studied in [9] using a DRON�4 diffractometer at room
temperature.

3. EXPERIMENTAL RESULTS

Comprehensive investigations of the magnetic and
electrical properties of GdCoO3 in the temperature
range 4.2–300 K were considered in [9, 10]. It was
found that the behavior of GdCoO3 in this tempera�
ture range is close to the behavior of a set of free Gd3+

ions. At T < 4.2 K, GdCoO3 exhibits antiferromag�
netic properties and behaves as an antiferromagnet
with a Néel temperature TN = 3.3 K [6].

The solid line in Fig. 1 shows the temperature
dependence of the magnetic susceptibility χ(T) of
GdCoO3 in the temperature range 2–800 K and a
magnetic field H = 5 kOe. At low temperatures, the
magnetic susceptibility is seen to increase substan�
tially. At T > TN, the χ(T) dependence is monotonic

and has no specific features. The temperature depen�
dence of the reciprocal magnetic susceptibility is well
approximated by a straight line (Fig. 2), which can be
used to determine the asymptotic Curie temperature
(Θ = –5.3 K).

We compare the experimental magnetic suscepti�
bility curve χ(T) obtained for GdCoO3 with the graph�
ical χ(T) dependence obtained for free Gd3+ ions pre�
sented in Fig. 1 and calculated by the formula [11]

(1)

where N is the number of Gd3+ ions per unit volume,
μB is the Bohr magneton, kB is the Boltzmann con�
stant, J = S = 7/2, and gJ = 2, and revealed a difference
between the experimental and calculated results when
the temperature increases. Obviously, a contribution
from Co3+ ions appears in the magnetic susceptibility
of GdCoO3 when the temperature increases. When
subtracting the paramagnetic contribution of Gd3+

ions from the experimental data, we can determine the
contribution of Co3+ ions. The contribution of Co3+

ions to the magnetic susceptibility of GdCoO3 is seen
to increase with temperature (Fig. 1, inset).

4. MAGNETIC PROPERTIES OF Co3+ IONS
WITH ALLOWANCE

FOR LOW� AND HIGH�SPIN STATES

The total magnetization of GdCoO3 can be pre�
sented as the sum of two independent terms,  =

MGd + MCo, where MGd and MCo are the magnetiza�
tions of gadolinium and cobalt ions, respectively. To
describe the contribution of Co3+ ions to the total
magnetization of GdCoO3, we consider the energy
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Fig. 1. Temperature dependences of (solid curve) GdCoO3

and (dashed curve) Gd3+ in a field of 5 kOe. (inset) High�
temperature measurement range that shows an increase in
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levels of Co3+ ions in the crystal field allowing for the
spin–orbit interaction (Fig. 6b). The ground term is
represented by low�spin singlet 1A1 separated from

triplet sublevel  = 1 of high�spin state 5T2 by spin gap
Δs–t . At Δs–t = 150 K, the term positions correspond to
the data obtained for LaCoO3 in [2, 12, 13]. The sub�
stitution of a certain rare�earth ion with a smaller ionic
radius for lanthanum leads to the appearance of chem�
ical pressure, which is equivalent to an external pres�
sure. This pressure is caused by the record compress�
ibility of the Co–O bond in cobalt–oxide compounds
[16]. Therefore, this substitution results in additional
stabilization of a low�spin state, in other words, in an
increase in the spin gap. The value of Δs–t for GdCoO3

at low temperatures can be found from the following
considerations.

Spin gap Δs–t is determined as the difference
between the energies of high�spin (HS) and low�spin
states, which can be represented in terms of the
intraionic Racah (Coulomb interaction) parameters
and crystal field Δ = 10 Dq. The Racah parameters for
Co3+ in LaCoO3 and GdCoO3 are assumed to be the
same; then, the dependence of Δs–t on the interatomic
distance is 2Δ : Δs–t = Δat + 2Δ, where Δat is the gap
determined by the intraionic Coulomb interaction
energy. As a result of lanthanide compression, param�
eter Δ is different for LaCoO3 and GdCoO3; then, we
can write

(2)

Additional chemical pressure P induced by lan�
thanide compression can be determined from the

J̃

Δs–t Gd( ) Δs–t La( ) 2 Δ Gd( ) Δ La( )–( ).+=

Birch–Murnaghan equation [14, 15]

(3)

where B0 and  are the empirical parameters having
the meaning of the isothermal modulus of dilatation
and its first pressure derivative (for LaCoO3, B0 =

150 GPa,  = 4 [16]), respectively; V0 is the unit cell
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LnCoO3 V(Ln) vs. the rare�earth ion substituting for lan�
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gap Δs–t .
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volume of LaCoO3; and V is the unit cell volume for
lanthanide Ln. For LaCoO3, we have V0 = 222.83 Å3;
for GdCoO3, V = 210.2 Å3; therefore, P = 9.81 GPa.
Lattice compression increases the crystal field, which
can be represented as

(4)

Baric derivative αΔ can be considered as an empir�
ical parameter. This parameter has recently been
determined by studying the spin crossover (transition
from a high�spin into a low�spin state) in magnesio�
wustite Mg0.75Fe0.25O, which has a similar type of
chemical bond and a similar electronic structure for�
mation mechanism [17]. For estimation, we assume
that αΔ for GdCoO3 is the same, i.e., αΔ =
0.0078 eV/GPa. Then, the spin gap in GdCoO3 is
Δs⎯t ≈ 2000 K. The spin gap can also be estimated for
other lanthanides from their unit cell volumes (Fig. 3).

At low temperatures, the cobalt ions in GdCoO3
exist in nonmagnetic LS state 1A1. When the tempera�
ture increases, an HS state with a nonzero magnetic
moment is thermally excited and the magnetization
increases. The statistical sum of Co3+ ions of one mole
of GdCoO3 takes the form

(5)

Δ P( ) Δ 0( ) αΔP.+=

Z 1 e
βΔs–t–

e
βΔs–t–

2 gμBB̃β( )cosh×+ +[=

+ e
β Δs–t 2λ̃+( )–

e
β Δs–t 2λ̃+( )–

2 g'μBB̃β( )cosh×+

+ e
β Δs–t 2λ̃+( )–

2 g ''μBB̃β( )cosh× ]
NA

,

where  is the effective spin–orbit interaction con�

stant, NA is Avogadro’s number,  is the applied mag�
netic field, kB is the Boltzmann constant, β = 1/kBT,
and μB is the Bohr magneton. The Lande factors are

g = 3.4 for triplet  = 1 and g' = 3.1 and g'' = 1.8 for

quintet  = 2. Knowing the statistical sum, we can find
the free energy F = –kBT lnZ and the magnetization

M = –∂F/∂  = kBT ⋅ 1/Z ⋅ ∂Z/∂  in a standard man�
ner. For not very low temperatures and not very high

magnetic fields at gμB β � 1, the expression χCo =

∂M/∂  for the molar magnetic susceptibility of Co3+

ions takes the form

(6)

The solid line in Fig. 4 shows the results of calculat�

ing χCo at  = 185 K [12] and Δs–t = 2000 K.

The solid line in Fig. 5 shows the experimental
behavior of the temperature dependence of the recip�
rocal magnetic susceptibility of GdCoO3, 1/ .

For comparison, the dotted line shows the behavior of
the reciprocal magnetic susceptibility of gadolinium,
1/χGd (see Eq. (1)), and the dashed line illustrates the
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calculation results for the total reciprocal magnetic
susceptibility of gadolinium and cobalt, 1/(χGd + χCo).
The calculated curve is seen to describe the general
dependence and the deviation of the experimental
data from the paramagnetic susceptibility of gadolin�
ium, which is related to the additional contribution of
cobalt ions to the magnetization of GdCoO3.

5. TEMPERATURE DEPENDENCE
OF THE ELECTRONIC

STRUCTURE OF GdCoO3

One of the interesting specific features of perovs�
kite�like rare�earth LnCoO3 cobaltites (where Ln
stands for La or lanthanide Pr, Nd, Sm, Eu, Gd, Tb,
Ho) is a smooth insulator–metal transition occurring
when the temperature increases. The electron phase
diagram of LnCoO3 with a rare�earth ion ranging from
La to Lu has the following three characteristic regions:
nonmagnetic insulator, paramagnetic insulator, and
paramagnetic metal [18]. The transitions between
them are smooth and diffuse: these are crossovers
rather than classic phase transitions. The characteris�
tic temperature of transition into a metallic state TIMT
shifts toward high temperatures when La is replaced by
a rare�earth ion with a smaller ionic radius. For exam�
ple, we have TIMT ≈ 550 K for LaCoO3 and TIMT is
more than 1000 K for GdCoO3. As noted above, the
introduction of an element with a different ionic
radius in a crystal lattice causes chemical pressure,
which acts similarly to an external pressure. There�
fore, if the ionic radius of this element is smaller than
that of the rare�earth ion of the initial compound, such
a replacement causes additional stabilization of a low�
spin state, i.e., increases Δs–t. This is also true of partial
substitution. For example, the dielectric properties of
compound La1 – xEuxCoO3 are more pronounced and
retained for a longer time as the temperature increases
when La is replaced by the Eu ion with a smaller ionic
radius and concentration x increases [19].

The nature of the dielectric state in rare�earth
cobaltites is clear. As in all oxides of transition metals,
the presence of a dielectric gap is caused by strong
electron–electron interactions of the 3d ion of a tran�
sition metal. However, the substantial difference
between spin gap Δs–t and activation energy Ea of elec�
trical conductivity at low temperatures implies that
LnCoO3 compounds are not simple band insulators
[20]. For example, the basic representative of this row
(LaCoO3) is characterized by Δs–t ≈ 150 K and Ea ≈
0.1 eV. Moreover, a considerable difference between
charge gap 2Ea and insulator–metal transition tem�
perature TIMT indicates that the latter can hardly be
explained by the model of a narrow�gap semiconduc�
tor [21]. For example, for LaCoO3 we have 2Ea ≈
2300 K and TIMT ≈ 550 K.

As noted above, GdCoO3 (as most oxides of transi�
tion metals) is a system with strong electron correla�
tions, which create difficulties for their theoretical

description and play an important role in the forma�
tion of various properties of these materials. The tradi�
tional one�electron approaches cannot describe many
of them; in addition, it becomes apparent that the
description of these properties should take into
account the intimate relationship between the charge,
orbit, spin, and lattice degrees of freedom. Therefore,
adequate methods should be used to describe the elec�
tronic structures of such compounds. One of these
methods is represented by the generalized tight bind�
ing (GTB) method [22], which is the implementation
of Hubbard’s ideas for multielectron and multiorbital
systems, and its ab initio version LDA + GTB [23].
The LDA + GTB method combines LDA band calcu�
lations, which are used to calculate the Wannier func�
tions, the tight binding Hamiltonian parameters, and
the parameters of the Coulomb U and Hund exchange
J interactions, with the GTB scheme. The GTB
method is a version of the cluster perturbation theory
and uses an exact diagonalization of a multielectron
Hamiltonian inside a unit cell and the theory of per�
turbation with respect to the parameter of effective
hopping between unit cells.

We write the Hamiltonian of a multiband p–d
model in the form

(7)

Here, the first two terms are responsible for the local
one�electron energies of cation electrons in the crystal
field and anion p electrons, and the third term is p–d

hopping (hybridization) Hamiltonian tpd. Term  is

related to oxygen–oxygen hopping tpp, and  is the
energy of the electrostatic interaction of the electrons of
a transition�metal ion. To take into account p–d
hybridization and strong electron correlations, we
divide a lattice into nonintersecting clusters (cells). The
Hamiltonian of a multiband p–d model is written as

(8)

where Hc( f) is the intracellular part of Hamiltonian H
and Hcc( f, g) describes the hopping and interaction
between the fth and gth cells. Using a numerical diag�
onalization of intracellular part Hc( f), we find multi�
electron eigenstates  ≡  for various subspaces
of the Hilbert space labeled by number N of electrons
in a cell.

The X operator at site f is defined as

(9)

We assume that eigenstates  of neighboring cells are
orthogonal. Otherwise (as in the case of cobaltites,
where two neighboring CoO6 clusters contain a com�
mon oxygen atom), an orthogonalization procedure
should be used; that is, we have to construct a Wannier
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function in an explicit form instead of group oxygen
orbitals. Such a procedure was first proposed for a
three�band p–d model [24] and was then generalized
to a multiband model [25].

In the standard notation of X operators, we are
dealing with cumbersome and awkward notation for
the initial and final states. To simplify this notation, we
will employ Zaitsev’s idea [26] and introduce so�
called root vector (p, q)  α(p, q) ≡ α instead of a
pair of indices (p, q). Moreover, since the set of such
vectors is countable, we will label each of these vectors
as α  αn and will only indicate root vector number n

(10)

We define vectors α so that they correspond to elec�
tron annihilation (i.e., Nq – Np = +1). Then the anni�
hilation (production) operators for an electron in state

 can be exactly written in the X representation in
the form

(11)

Subscript λ runs through the entire set of the electron
orbitals (p, d), and subscript σ runs two spin projec�
tions.

In the X operator representation, the total Hamil�
tonian takes the form

(12)

where  = (n) (n') and  are the

effective intercellular hopping parameters (i.e., the
hopping matrix elements of the initial Hamiltonian
renormalized upon orthogonalizaiton).

The obvious similarity between Eq. (12) and the
Hubbard model Hamiltonian allows us to use many
methods of the perturbation theory in parameter

/Ueff that are known for the Hubbard model (Ueff =
E(dn + 1) + E(dn – 1) – 2E(dn) is the effective Hubbard
energy).

In the X operator diagram technique [27, 28], per�
turbation theory series are constructed not for the
electron Green’s function

but for matrix Green’s function

these two functions are connected by the equality
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due to Eq. (11).
Since Hamiltonian Hc in the Hubbard operator

representation has a diagonal form, local Green’s
function can be calculated directly by the expression

(14)

where Ωn = Em'(N + 1) – Em(N) and the filling factor

is F(n) =  + .

Obviously, Green’s function (14) implements the
Lehman representation in a unit cell. All quantities
appearing in Eq. (14) are calculated in terms of the
local characteristics of terms and multielectron states

. In our case for GdCoO3, low terms with N =
5, 6, and 7, which correspond to electron configura�
tions d5, d6, and d7, respectively, of the cobalt ion in the
crystal field, are important. Here, index n denotes
quasiparticles with charge e, a spin of 1/2, energy Ωn,

and spectral weight Aλσ(n) = F(n). At the
same time, the total spectral weight is preserved in the
same way as for free electrons due to the completeness
of the basis of multielectron states .

The spectral density of one�particle excitations can
be expressed in terms of Fermi one�particle Green’s
function

(15)

and the density of one�particle states for a given spin
projection (Nk is the normalization factor)

(16)

For Green’s function , we can write the general�
ized Dyson equation [27]

(17)

Here, (ω) and (ω) are the mass and force opera�
tors, respectively. The presence of the force operator,
which is called the end factor in the X operator dia�
gram technique [26], is associated with a spectral
weight redistribution and is a fundamental SEC effect.

In the Hubbard I approximation, the structure of
exact Green’s function (17) is preserved, but the mass

Gkσ
λλ ' ω( ) γλσ n( )γλ 'σ* n '( )Dk

nn ' ω( )
n n ',

∑=

G 0( )σ

λλ ' ω( ) γλσ n( ) 2δλλ '
F n( )

ω Ωn– iδ+
�����������������������,

n

∑=

Xf
pp〈 〉 Xf

qq〈 〉

m N,| 〉

γλσ n( ) 2

p| 〉

Aσ k ω,( ) 1
π
�� γλσ n( )γλσ* n '( )
λ n n ', ,

∑–=

× ImDk
nn ' ω iδ+( )

=  1
π
�� ImGkσ

λλ ω iδ+( )
λ

∑–

Nσ ω( ) 1
Nk

����� Aσ k ω,( ).
k

∑=

D̂

D̂k ω( ) ω Ωn–( )δnn '{=

– P̂k ω( ) t̃
ˆ

k( ) Σ̂k ω( ) } 1– P̂k ω( ).–

Σ̂k P̂k
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operator is set at zero and the force operator is

|(ω)  δnn'F(n), where F(n) ≡ F(p, q) =  +

 is the filling factor.

As a result, we obtain the following dispersion
equation from the dispersion law for quasiparticles:

(18)

This equation resembles in its form the dispersion
equation in the tight binding method in the one�elec�
tron band theory and differs from it in the following
aspects: subscripts m and n number one�particle exci�
tations (quasiparticles) in a multielectron system;
local energies Ωn now contain intracellular Coulomb
interactions rather than one�electron energies; the
band structure of quasiparticles depends on the elec�
tron concentration (chemical composition), tempera�
ture, and external fields via filling factors F(n); and a
one�electron model cannot exist for the hard band of
quasiparticles.

To determine filling factors F(n) and the position of
chemical potential μ, we have to find the self�consis�
tent solution to Eqs. (19) and (20) for the average
number of particles in the system Ne and the average
values of X,

(19)

(20)

Pk
nn ' Xf

pp〈 〉

Xf
qq〈 〉

det δnn ' ω Ωn–( )/F n( ) t̃ nn ' k( )– 0.=

Ne fF ω( )Aσ k ω,( ) ω,d∫
k

∑
σ

∑=

Xf
pp〈 〉 Xf

pqXf
qp〈 〉=

=  1
π
�� fF ω( ) Xf

pq Xf
pq( )

†
〈 | 〉〈 〉 ,∫–

where fF(ω) is the Fermi–Dirac function.

Thus, the LDA + GTB method considers an elec�
tron in a strongly correlated system as a linear combi�
nation of Hubbard fermions, namely, quasiparticle
excitations between various localized multielectron
states dn – 1, dn, dn + 1 of the electron configurations of a
transition�metal ion in the crystal field (Fig. 6). The
spectral weight of quasiparticle excitations is deter�
mined by the population of multielectron states. With
this description, we were able to calculate and analyze
the behavior of the band structure of GdCoO3 at a
finite temperature. Below, we present the calculation
results and the parameters used for the calculations.

At temperature T = 0, only the ground term (low�
spin singlet 1A1) is populated in Co3+ ions in a GdCoO3

crystal. The band structure formed by the transitions
(quasiparticle excitations in a multielectron system)

d6 1A1  d5 2T2  = 1/2,  = 3/2 with energies ΩV1 =

E(d6, 1A1) – E(d5, 2T2,  = 1/2) and ΩV2 = E(d6, 1A1) –

E(d5, 2T2,  = 3/2) for the valence band and d6 1A1 
d7 2E for the conduction band with energies ΩC =
E(d7, 2E) – E(d6, 1A1) (Fig. 6, solid lines) has a dielec�
tric gap (Fig. 7a). The transition energies determine
the positions of the centers of bands. Obviously, bands
ΩV and ΩC are analogs of the lower and upper Hubbard
subbands in the Hubbard model.

When the temperature increases, the quasiparticle
spectrum undergoes substantial changes: the thermal

population of sublevels  = 1 and  = 2 of the 5T2 term
increases, which results in contributions from possible

J̃ J̃

J̃

J̃

J̃ J̃

G M R MX X R

2.0

1.5

1.0

0.5

E, eV

X G

0

−0.5

−1.0

(a)

G M R MX X R

2.0

1.5

1.0

0.5

E, eV

X G

0

−0.5

−1.0

(b)

Fig. 7. Quasiparticle spectrum for T = (a) 0 and (b) 300 K. G(0, 0, 0), M(π, π, 0), X(π, 0, 0)/(0, π, 0), and R(π, π, π) are symmetric
points in the Brillouin zone. At finite temperatures, new bands appear both inside the gap and the valence and conduction bands,
and these bands decrease the dielectric gap energy from E = 1.7 eV at T = 0 K to E = 0.4 eV at T = 300 K.
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transitions not forbidden by the selection rules for spin
and spin projection (ΔS = ±1/2, ΔSZ = ±1/2). The d6

5T2  = 1,  = 2  d5 6A1 transitions shown as the

dashed lines in Fig. 6 with energies  = E(d6, 5T2g,

 = 1) – E(d5, 6A1) and  = E(d6, 5T2g,  = 2) –

E(d5, 6A1) are responsible for the appearance of

intragap states (excitations  and  are higher
than ΩV1 and ΩV2 but lower than ΩC) and for the
decrease in the dielectric gap. The results of the self�
consistent calculation of the band structure and the
position of chemical potential μ(dashed line) for tem�
perature T = 300 K are shown in Fig. 7b. The spectral
weight and the intragap band width are proportional to

the population of sublevels  = 1 and 2 of a high�spin
state. An increase in the temperature to T = 300 K
leads to the fact that the bands formed by the transi�

tions d6 5T2  = 1,  = 2  d5 6A1 and d6 5T2  = 1,

 = 2  d7 4T1  = 1/2,  = 3/2,  = 5/2 begin to
increase and the dielectric gap decreases. The quasi�
particle spectrum and dielectric gap width Eg are seen
to be determined by the thermal population of sublev�

els  = 1 and 2 of the 5T2 term in the HS state of the d6

electron configuration of the Co3+ ion in the crystal
field and, hence, by spin gap Δs–t . Because of the large
spin gap (Δs–t = 2000 K) in GdCoO3, dielectric gap Eg

vanishes as the temperature increases at TIMT ≈
3000 K, which is beyond the experimental possibilities
and the sample region. In the temperature range 100–
600 K, gap Eg is almost temperature independent,
Eg(300) ≈ 0.3 eV.

Below, we present the multielectron Hamiltonian
parameters used for the calculations. The hopping

integrals for the σ and π bonds were  = 1.57 eV,

= 0.84 eV, and tpp = 0.5 eV; the spin–orbit interac�

tion constants were λ(d5 2T2) = 160 K, λ(d5 4T1) =
160 K, λ(d6 5T2) = –185 K, and λ(d7 4T1) = –250 K;
the Racah parameters were A = 1.5 eV, B = 0.13 eV,
and C = 0.55 eV; and the charge transfer energy was
Δtr = 4 eV.

6. CONCLUSIONS

We determined the temperature dependence of the
susceptibility of Co3+ ions by performing high�tem�
perature measurements of the magnetic susceptibility
of GdCoO3 and subtracting the paramagnetic contri�
bution of Gd3+ ions. We also calculated this depen�
dence with allowance for the thermal population of
high�spin states at the same spin gap.

With the LDA + GTD method, we calculated the
band structure of GdCoO3. The energy spectrum of
GdCoO3 was found to have intragap states caused by

J̃ J̃

ΩV1*

J̃ ΩV2* J̃

ΩV1* ΩV2*

J̃

J̃ J̃ J̃

J̃ J̃ J̃ J̃

J̃

tpq
σ

tpq
π

the transitions from the excited high�spin 5T2 state of
electron configuration d6 to the high�spin 6A1 ground
state of electron configuration d5 of the Co3+ ion in the
crystal field, and these states were shown to decrease
the dielectric gap width with increasing temperature.
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