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Abstract—Implementation of an adiabatic quantum algorithm for factorization on two qudits with the
number of levels d; and d, is considered. A method is proposed for obtaining a time-dependent effective
Hamiltonian by means of a sequence of rotation operators that are selective with respect to the transitions
between neighboring levels of a qudit. A sequence of RF magnetic field pulses is obtained, and a factoriza-
tion of the numbers 35, 21, and 15 is numerically simulated on two quadrupole nuclei with spins 3/2 (d| = 4)

and 1 (d, = 3).
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1. INTRODUCTION

To implement the main ideas and advantages of
quantum computing, it suffices to consider operations
on two-level quantum systems—qubits [1]. In nature,
one more frequently encounters multilevel quantum
systems. The redundant levels can just be ignored;
however, they cause interference if they are closely
spaced on the energy scale, and one has to remove
such interference [2, 3]. It is more preferable to use
additional states corresponding to these levels directly
during computation. For example, in [4], the authors
proposed using a third level for implementing the Tof-
foli gate on qubits. The efficiency of such an approach
was demonstrated on photonic [5] and superconduct-
ing [6] systems. The implementation of quantum algo-
rithms directly on multilevel systems (on qudits, in the
presence of d levels) seems to be even more promising
[7, 8]. The conception of virtual qubits allows one to
perform quantum computations even on the level of a
single qudit: a quadrupole nucleus [9—14], a molecu-
lar magnetics [15], or a Rydberg atom [16]. However,
to implement all the advantages of quantum computa-
tions over classical ones, one should apply multiqudit
systems and multilevel logic [7, 8, 17—22].

One of advantages of multiqudit systems over mul-
tiqubit ones is that they can provide the same size of
the computational basis by a smaller number of physi-
cal elements. A decrease in the number of elements
should facilitate their control; however, the methods
of control of qudits have not yet been sufficiently
developed. For quadrupole nuclei (d =21+ 1, where 1
is the spin of a nucleus), on which a large number of
experiments have been carried out (see, for example,
[10—14, 23, 24]), a survey of control methods is given
in [25]. In [26], we considered the implementation of
a quantum order-finding algorithm on two qudits with

d, = 8 and d, = 4, instead of five qubits, which were
used in [27] for the experimental implementation of
such an algorithm for the permutation of four ele-
ments by an NMR method.

Quantum computing can be implemented not only
by circuits of gates [1], but also by an adiabatic varia-
tion of a Hamiltonian [28—31] from the initial Hamil-
tonian H(0) = H,, whose ground state |'¥'(0)) can be
easily prepared, to the final Hamiltonian H(7) = H,,

whose ground state |V (7)) encodes the solution of the
problem posed. When implementing quantum adia-
batic algorithms [28—31] or quantum annealing [30,
32], the system is in the ground state; this allows one to
hope that the system has high noise immunity. In this
way one can solve, for example, the ground state prob-
lem in the Ising model [32] or complex combinatorial
problems [28—31]. Recently, an adiabatic quantum
algorithm for factorization (decomposition of a num-
ber N = pq into its prime factors) has been proposed
[31] and implemented by an NMR method on three
qubits given by spins I = 1/2 [33]. The algorithm is
based on searching for the ground state of a system that
minimizes the weight function W = (N — pq)>. Note
that, in the case of a classical computer, the problem of
factoring a large number belongs to the class of expo-
nentially complex problems; however, when solving
this problem on a quantum computer by Shor’s well-
known algorithm, its complexity is changed to polyno-
mial complexity. The question of whether exponential
speedup can be achieved in adiabatic computation
remains disputable [34].

Methods for implementing the above-mentioned
adiabatic factorization algorithm on qudits have not
been considered and are the subject of the present
study. We consider the implementation of this algo-
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rithm on two qudits ¢, and d,. Since there is at least
one pair of factors (N = 2p) for any even number, we
will consider only odd numbers. Thus, the maximum
size of a number to be factored is N = (2d, — 1)(2d, — 1).
It turned out that three spins used in the experiment
in [33] were sufficient for the adiabatic factorization of
the number 21. In our case, d; = 4 and d, = 2 suffice
for factoring the number 21, whereas d, =4 and d, =
allow one to factor the number 35. The implementa-
tion on qubits would require four spins / = 1/2, and
one would need a four-spin effective interaction (in
addition to the three-spin interaction, which was
needed to factor number 21 in [33]) to control these
qubits. For two spins, one does not need multiparticle
interaction. However, the control of qudits requires
operators that are selective with respect to the transi-
tions between levels instead of operators selective with
respect to the spins, which are used to control qubits.
In Section 2, we propose a method for constructing a
time-dependent effective Hamiltonian for multilevel
systems by means of rotation operators that are selec-
tive with respect to the transitions between levels. As
an example, in Section 3 we take two quadrupole
nuclei with spins I, = 3/2 (d,=4) and I, = 1 (d, = 3).
1= 3/2is, for example, the spin of the nucleus of 2Na
on which quantum algorithms were implemented
experimentally by the NMR method in [10—12]. /=1
is the spin of the nucleus of deuterium *H; an NMR
control of the state of this nucleus was implemented in
[23]. To control such systems, one applies RF mag-
netic field pulses that are selective with respect to the
transitions between neighboring levels [10, 11, 13, 23].
Quantum algorithms on the system of two quadrupole
nuclei coupled by spin—spin interaction have not yet
been implemented. We will find appropriate sequences
of RF pulses and carry out a computer simulation of a
quantum adiabatic algorithm for factorization.

2. DERIVATION OF AN EFFECTIVE
HAMILTONIAN BY ROTATION OPERATORS
THAT ARE SELECTIVE WITH RESPECT
TO TRANSITIONS

The Hamiltonian of two nuclei placed in an axially
symmetric crystal filed and a strong static magnetic
field can be represented as [35]

2 1]
Hy == 0= 0,65+, (1) =300+ 1) |

M
2 1
+0) () = 3L+ )| = I,

where ®; = By, is the Larmor frequency of spin j, ¢,
and g, are the corresponding quadrupole constants, J
is the spin—spin interaction constant, and Ijz is the
operator of projection of the spin of appropriate
nucleus onto the direction of the static magnetic field
(the z axis). The energy is measured in the units of fre-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

ZOBOV, ERMILOV

quency;i.e., we set fi = 1. As a computational basis, we
take the eigenfunctions |m,, m,) of the operators I

and [; with projections m, and m,, respectively. Let us
enumerate the functions by natural numbers starting
from the ground state level; for example, n =1, —m; + 1
for one spin.

The adiabatic algorithm is implemented by means
of a time-dependent Hamiltonian that continuously
varies, for example, by the linear law

H(1) = (1 - 1T)HC+ (ET)H,,

If the Hamiltonian varies sufficiently slowly, then the
quantum adiabatic theorem guarantees that the quan-
tum computer will be in the ground state with high
probability [28—34].

The weight function W= (N — pq)? corresponds to
the Hamiltonian

0<t<T. ()

2B)T, 3)

where d;= 21, + 1 and Q is a scaling factor that is nec-
essary to ensure commensurability with the Hamilto-
nian (1). If N= pq, then the ground state of the Hamil-

tonian H, with zero energy is attained for p = d;, — 2 [

= Q[N (d,-21})(d,~

andg=d,—2I,i.e., for
?zdl_P’ ]gzdz—q'
2 2

To obtain the answer, one should measure the projec-
tions of the spins.

As the initial state, take the equal superposition

state
n=d, k=d,
|‘P(0>>:|S>:( Z|>j [ Z|k>]
mm;,mz_z_,z'm"m”

For a system of spins / = 1/2, such a state is obtained
by Hadamard gates; as the initial Hamiltonian, one

usually takes H, = wZ Ijx . In the case of qudits (/ >

1/2), the state |.S) is not an eigenstate of such a Hamil-

tonian. The state |S) can be obtained from the ground
state of Hamiltonian (1) with maximum projections
|1,, 1,) of the two spins on the z axis by the quantum
Fourier transform (QFT) operator:

1) = £, 1),

where F= F, ® F,, F,= QFT, (j=1,2),
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1 1 1
| 1 o 2 c'!
QFT, = 721 1 02 4 GZ(d—l)
1 Gd_l GZ(d_l) G(d_l)
c = exp(z—m)
1)

Since |S) should be the ground state of the Hamilto-
nian H,, we take, as H,, the operator

H, = (F,® F,)H(F, ®F,) . (4)

Following [33], we represent the operator of adia-
batic evolution during time 7 = AfM with linear

Hamiltonian (2) as a product of evolution operators
on the sequence of M small time intervals Az

925

T

M
Uy = %exp{-i IH(t)dtj = T Un
0 m=0

where P is the time-ordering operator. On each such
interval, we neglect the variation of Hamiltonian (2)
and approximately represent the evolution operator as
a product of three noncommuting operators:

U, =exp [—i(l - ﬂ) At—H“J

(&)

M 2
AL (6)
x exp(—iAthAm) exp [—i(l - %{) %},

where m is discrete time (0 < m < M).
We well derive operators needed in (6) with the use

of rotation operators {0 }/;(7 " selective with respect to

the transitions between the levels of the spinj, where 6
is the angle of rotation about the axis a (oo = x, y, z) and
k and »n are the numbers of levels that vary from unity
to d;. In the matrix form,

E._, 0 0 0 0
0 cosQ 0 —sinQ 0
2 2
kon
{e}y,j = 0 O En—k—l O 0 )
0 sinQ 0 cos= 0
2
0 0 O 0 Ed/ n
_ _ 7)
E,._, 0 0 0 0
0 exp(—ig) 0 0 0
k<n
{6}, =1 0 0 E ., 0 0
0 0 0 exp(i‘?) 0
2
0 0 0 0 Edj "

Here E, is a unit matrix of dimension k. The matrix of
x rotation differs from the matrix of y rotation by coef-
ficients equal to —i in front of both sine functions.

To accomplish a selective rotation, we will switch
on a magnetic RF field of amplitude B,;and frequency
o for a finite period of time #, (#,> 1/w). In a reference
frame rotating with frequency o [35], the time-varia-
tion of the evolution operator is given by

U(r) = e

with the time-independent Hamiltonian H:

—iHt
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H=Hy+o(l;+5)-Q,(Icose + Ising)

—Q,(frcos + Lsing).

Here Q;=v,;B,. The phase ¢ of the RF field determines
the direction of the field in the rotating frame. When
¢ = 0, the rotation is about x axis (o = x, x rotation),
whereas, ¢ = 1/2, the rotation is about y axis (o0 =y,
y rotation). If we choose the frequency of the RF field
to be equal to the transition frequency between the
energy levels, ® = g, — g, then the states correspond-
ing to these levels will change first, and we obtain a
Vol. 114
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selective rotation {9}';;’" through an angle 6 =

1,1, where I, is the modulus of a matrix element

of the operator Ijx . The amplitude of the RF pulse
should satisfy the selectivity condition: J < ; < g;.

For rotations about the z axis, we will apply a compos-
ite RF pulse:

(01:9" = {-m/21 "0 (n/21 " (8)

Let us construct an evolution operator in (6)
with Hp:

H,/Q = C(N) + AN)E; + B(N) 5 + 4d5(I})’

+4d (5 + DIN)EL - 84d,(E)'E )
—8dy(F) L+ 16(1) (15)’,

where

C(N) = (N-d\d,)’, A(N) = 4d(N-d,d,),

B(N) = 4d\(N-d,d,), D(N) = —8(N-2d,d,).

The evolution operator with Hamiltonian (9) can be
expressed as a product of exponential operators corre-
sponding to the terms in (9). The constant C(N)
appearing in the Hamiltonian, even though depends
on N, gives only a common phase factor; therefore, it
can be omitted.

The operators with one-particle interactions can be
implemented by a sequence of operators of selective z
rotations in the following way:

exp(—i01%) = W.(DW-(I) (10)
for integer spins /, where

K

W.(K) = H{ze[m_’g(m_ 1)}}”19””1,

m=1 z

WI—(K) = ﬁ{ze(m[— rg(m - 1)) }d_de‘m+1’

m=1 z

and

exp(-i0) = W(1- 1) w'(1-1)

x{ze[l(1+§)_(1_5)J

for half-integer spins /. For the squares of one-particle
operators for integer spins /, we obtain

}1+1/2<—>1+3/2 (1)

z

exp {~ip[(FF)’ + E,Al} = W.(DW-(D),  (12)
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where
K n=m-1 me>m+1
W2 (K) = H{2q{ > (1_n)2+mAH ,
m=1 n=0 z
W (K) (13)
K n=m-1 d-med-m+1
= H{—Zq{ > (1_n)2+mAH ,
m=1 n=20 z
for half-integer spins /, we have
. 2
exp {—ip[(I") + E,A]}
Wt 9w(s-)
- w(i-gwi-3) (14)
2
4 = _I(I+1) _ d —1.
3 12
Operators with two-particle interactions,
. Py 14
U(}\‘ap]aPZ) = eXp[_l}\’(I;) (Izl) ]’ (15)

plapZ = 1725

are constructed by combining several intervals of free
evolution under Hamiltonian (1), whose lengths are
multiples of periods 2n/q,, 21/q,, 2n/®,, and 21/®,,
and the sets of operators of 180-degree y rotations. For
such lengths, only the contribution of the spin—spin
interaction remains in the evolution operator:

U(t) = exp(itH)) = U(tJ, 1, 1)
() 0 ( 16)
= exp(=itJ1I}).

Both operators (15) and (16) are represented by diag-
onal matrices with matrix elements in the form of
exponential functions exp(—i®,,), m = 1, 2, ..., d\d,,
with different phases. We will permute these phase fac-
tors by selective operators of rotation through 180°.

For example, in the operator {—7 }; ok Ui){n }; ok,
the functions exp(—i®,)) and exp(—i®,) change places.

Note that if we interchange the matrix elements of
the operator /, that are symmetric with respect to the

middle of the matrix, then the sign of the operator is
reversed:

I, = -1, (17
where
I, = {n},”n}, " (ryli @2
for integer spins and
My = (rp > m o (o

for half-integer spins and IT} is the Hermitian conju-
gate operator. Note that operators for forbidden tran-

Vol. 114 No. 6 2012
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sitions can be obtained through a chain of transitions
between adjacent levels:

kod+ -k
{m},

ke k+1 k+1ek+2 d-keod-k+1
= {n}, {n}, ATy

d—k-1od—k ko k+1
X{m}, < Amyy .

Using (17), we obtain
U(t)Hj1 Umnity, = U(t)l_[;2 Ui, = E,® E,. (18)
Here and below, £ is a unit matrix of dimension d;.

If we act on the second operator U(¢) in (18) by the
operators of selective rotation between the levels n and
n + 1 of the first spin, we obtain a matrix that formally
coincides with the matrix of selective rotation

{6,177 ' ® E,, but the angle of rotation depends on

the state of the second spin (with these reservations,
we keep the sign of the direct product):

Uty (-} " I UL, {m) "

nen+l
z 1

19)

= (2JE} ® E,.

nen+l

To obtain a rotation with opposite sign, {0}, ,

we should act by the same selective rotations on the
first operator U(¢) in (19). Thus, if we make up two
products of the form (13) from the transformed pairs
of evolution operators (19) with lengths varying from
factor to factor,

n=m-1
21,015 = 2(p{ > (Il—n)2+mA1},
n=0

where

n=m-1
0 =L [Z (ll—n)2+mA1}, (20)

T
n=0

then we obtain the operator
. 2
exp {—ip,[(I))" + E A1}

= exp{-iti[(F) + EA,]}.

Acting analogously on the states of the second spin, we
can obtain the operator

exp {—it[[(15) + EyA,]}, (22)

if we first act on one spin and then on the other, we
obtain

exp {~it[(F) + E AL + EAlY.  (23)

Following these rules, we determine the final prod-
uct of operators, which yields the evolution operator
exp(—iAtH,m/M). Multiplying, according to (6) and
(4), this product by the operators

exp(—itH,) = Fexp(—itH,)F"'

(1)

(24)
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and substituting the result into (5), we obtain the
sought evolution operator, in the form of a product,
which corresponds to such a time variation of effective
Hamiltonian (2) that is needed to implement an algo-
rithm.

3. IMPLEMENTATION OF ALGORITHM
ON THE SYSTEM
OF TWO QUADRUPOLE NUCLEI

Let us simulate the operation of the algorithm. As
an example, we take two quadrupole nuclei with spins
1, =3/2(d,=4) and I, = 1 (d, = 3). In this specific
case, we can simplify the general formulas of the pre-
vious section, using the property

2 2
() = 2|F|-3E/4, (B = | (25)

where || is the matrix of the moduli of spin projec-

tions on the diagonals. Hamiltonian (3) is reduced to
the form

H,/Q = C(N) + A(N)T; + B(N) I + 72| I}| + 52|

26)
+ D(N)E L — 64 F || - 96| F| 15 + 32| F||

where
A(N) = 12(N-12), B(N) = 4(4N-139),
D(N) = -8(N-24).

For every N, the ground state of H, gives the sought
factors:

(1) N = 35: \¥(T)) = |-3/2,—1) with [ = —3/2
(p=T7)and I; = —1 (g = 95);

(2) N =21: |¥(T)) = |-3/2,0) with I = =3/2
(@p=T)and 5 =0 (g =3);

(3) N = 15: the twofold degenerate state |V (7)) =
-1/2,0) /2 + [1/2,-1)/J2 with I} =—1/2 (p=5)
and ; =0(¢g=3)and I; =1/2(p=3)and I5; = —1
(g=75).

Operators with one-particle interactions can be
implemented by means of a sequence of operators of
selective z rotations as follows:

exp(—i017) = {30},77{40}.7 {30177,
exp(~i015) = {20}.57{20}.5", o7
exp(-i30| L) = (201157 {-20}15  exp(-i20 E,),
exp(~ip|Fi)) = {0}1 7 {~0}1 7 ‘exp(~ipE,).
Vol. 114
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To obtain operators with two-particle interactions, we
include the intervals of free evolution and the opera-
tors of 180-degree y rotations:

exp(—itdJ | I|)
= exp(—it/ G4E){-n}, "
x {=n}, 7 {=n}, T exp (it T
34 162 . 12
X {Tc}y,? {_n}y,(l—) eXp(_l’JI;]?){Tc}y,?
263 34
x{nh T H{m L
exp(—if3JE|I) = exp(—itJ [2E,)
x {—n}2 9 Yexp (=it GI)
x {—1}, S exp(—itJ GT)
162 263
x{m},5 H{mh5
The final product of operators determined by these
rules, which yields the evolution operator
exp(AitH,m/M), is given in the Appendix. According
to (6), we should multiply this product by the opera-
tors exp(—itH,). It turned out that, when deriving H,
(4), we could apply a simpler transformation, omitting

phase shifts and a part of operators of y rotations in the
decompositions for the operators of QFT [26, 36]:

UF:{%E} {2arccos(%)} K

» 1 »1

) 12 263 1 12
T T
X {-3—} {5} {2arccos(—ﬁ)} , (29)

» 1 »2 7,2

(28)

exp(—itH,) = Upexp(—itH,) Uy .
Substituting the products obtained into (5), we find an
evolution operator that implements the factorization

algorithm. In the computations, we will use the fol-
lowing property of neighboring factors in (5):

Urexp{—i[1 - (m+ 1)/M]AtH,} U; U,
x exp{—i[1—m/M]AtH,} U}
= Upexp(iAtH,/ M) U, .

4. COMPUTATION AND DISCUSSION

In the previous section, we obtained a sequence of
selective RF pulses separated by intervals of free evo-
lution. In order to prevent phase distortions, we should
make the lengths of RF pulses to be multiples of 21t/q,.
Therefore, for a given amplitude O, of the RF field, we
defined the length of pulses up to the integer part of the
period 21t/q,. Using the operator sequences obtained,
we simulated the implementation of a factorization
algorithm for the numbers N = 15, 21, and 35 for dif-
ferent values of parameters. We compared the final
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states |¥) = U;|¥(0)) of the system with theoretically
expected values |WV).o = |Y(7T)). The implementa-
tion error is determined by the formula

A=1- |<lP|lPtheor>|' (30)

The results of simulation are depicted as diagrams ver-
sus 0, (Q; = Qyy,/v, = 0.6Q),) and M. The values of
other parameters, Af and Q, which also strongly affect
the results, were chosen so that to minimize the error.

The error as a function of the RF pulse amplitude,
plotted by broken lines in Fig. 1, shows strong oscilla-
tions due to phase distortions. To eliminate these dis-
tortions, we make changes in the computation of the
amplitudes of RF pulses. First, we take the amplitude

Q, = q,/2k 2 of the RF field to implement a /2
pulse on spin 2 in time #, = 2rk/q,. For this amplitude,
we determine the lengths of other pulses to within the
integer part of the period 2n/q,. After that, we slightly
change, if necessary, the amplitude of the RF field of
each pulse to obtain the precise value of the required
angle of rotation. The computed dependence is shown
by symbols in Fig. 1. The remaining error is associated
with two main sources. First, in addition to the selec-
tive rotation on the chosen transition, an RF pulse acts
on other nonresonant transitions. This error grows as
the RF pulse amplitude increases. Second, the spin—
spin interaction changes the state of the system during
the RF pulse action. This error grows as the RF pulse
amplitude decreases. As a result of the joint effect of
these two sources, we obtain functions with minima at
which the error increases with J (monotonically for
N =35and N =15 and nonmonotonically for N=21).

The implementation error as a function of the
duration 7= AtM of adiabatic evolution is shown in
Fig. 2. As M and, hence, T increases, the error
decreases, which indicates that the sequence of selec-
tive RF pulses is correct and that the adiabaticity con-
dition is satisfied. In the case of N = 21, one needs
larger value of T to achieve the same accuracy as for
other N. This is associated with the fact that the gap Ay
between the ground and the first excited states of
Hamiltonian (3) depends on N:

A2l = 16Q, A]S = 36Q, A35 = IOOQ,
and for N = 21 this gap is minimal.

The error can be reduced by decreasing the total
number of RF pulses. To this end, one should perform
selective rotations about z axis using another known
method—by shifting the phases of subsequent selec-
tive RF pulses acting on this transition—rather than
using a composite RF pulse (8). Next, to reduce the
error, one can apply Gaussian selective RF pulses [10,
11, 13, 23] instead of simple rectangular RF pulses.
The angle of rotation is determined by the area of such
a Gaussian pulse. The error due to the deviation of this
quantity from the required one has been considered
above by an example of rectangular pulses. The devia-
tion of the time dependence of the pulse amplitude
Vol. 114
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Fig. 1. Implementation error A = 1 — ‘<\P|‘{Itheor>‘ of an adiabatic algorithm for factoring three numbers; (a) N = 35 with Q =
q,/8.08, (b) N=21withQ=¢q,/3.6,and (c) N = 15 with O = ¢q;/2.8, as a function of the amplitude Q,/g, of the RF field for three

values of spin—spin interaction: J/q; = 106 (open circles and broken line), J/g; = 1073 (closed circles), and J/g; = 5 x 107>
(crosses). The values of the other parameters are as follows: M = 20, o; = 30g;, ©, = 50q,, g, = 24,, and Atq; = ©/100.

from a simple functional form (a constant or a Gauss- authors found such a pulse shape for the QFT of a
ian function) does not necessarily increase the error.  four-level quadrupole nucleus of Na, while, in [38], a
Conversely, one can substantially reduce the error by complex optimized RF pulse was applied to imple-
passing to RF pulses whose shape is determined by ment an evolution operator on a small time interval for
optimization methods [37]. For example, in [12], the a system of three nuclear spins 1/2. This evolution

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Mol. 114  No. 6 2012



930 ZOBOV, ERMILOV
A
0.8 T T T T
.
0.6 .
oA
‘A
VYN A _
041%  wa. N2 ]
) Maadit 0L s a
(] AAA A‘AA AA A a s AA A A R
C{b A 4 AAAAA“‘AAA N NN = T
02+F 8;):% N— 15 AA A A R AA o
2
N5 %‘3&&' Qﬁf"oﬂf’ %
0 20 60 100
M

Fig. 2. Implementation errorA=1—
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denton N: Q/q,
for N=15.

30g;, 0y =50gy, 4y =2qy,J/q, =
= 0.005and Q = g,/8.08 for N =35, Qy/q,

operator plays the same role as our operator U, (6). A
generalization of the optimization procedure to a sys-
tem of quadrupole nuclei was considered in [25].

Thus, we have obtained a sequence of RF pulses
that has allowed us to simulate an implementation of a
quantum factorization algorithm by an NMR method.
The length of the pulse sequence in real time is several
times greater than the initial time 7', because the evo-
lution operator (6) on the time interval At = T/M is
obtained from operators of free evolution (Table 1)
with large duration. It is important that we have dem-
onstrated the controllability of the system, and the
implementation time can be significantly reduced by
the methods described in the previous paragraph.

Finally, note that the demonstration of the opera-
tion of quantum algorithms by NMR methods gives
rise to a signal from a large ensemble of quantum sys-
tems; therefore, the quantum yield probabilities are
observed as the intensity of lines in the NMR spectrum
in case of spectral detection, or as the elements of the
density matrix in case of tomographic detection:

- }

where [ is the amplitude of a pseudopure state, pro-
portional to inverse temperature. The obtaining of a
pseudopure state of the system of two quadrupole
nuclei was discussed in [26].

=LE © £, + o)y

5. CONCLUSIONS

We have shown that an adiabatic algorithm for fac-
torization can be implemented on two qudits instead
of a large number of qubits. In this case, one does not

JOURNAL OF EXPERIMENTAL

=0.005and Q = ¢,/3.6 for N=21, and Q3/q,

|(\P|‘}’theor>| of an adiabatic algorithm for factoring three numbers as a function of the evo-

10_6, Atg = 1/100, and the following values of parameters depen-
=0.0016and Q=¢,/2.8

need three- and four-spin interactions. We have dem-
onstrated that a time-dependent effective Hamilto-
nian can be obtained by means of a sequence of oper-
ators that are selective with respect to transitions. For
a system of quadrupole nuclei chosen as qudits, the
initial superposition state and the time-dependent
effective Hamiltonian can be obtained by a sequence
of RF pulses that are selective with respect to transi-
tions. However, since the spin of the most common
nuclei is limited by the number 9/2, to factor large
numbers, one should extend the theoretical results
obtained to other multilevel systems, for example, to
molecular magnets, whose spin can be as large as 10
and even more [15, 39]. The method proposed here
will also be useful for the control of multilevel states of
superconducting systems [6, 8, 40] or atoms [16, 17,
19] by selective microwave or laser pulses, respectively.

APPENDIX

Tables 1—6 show the values of parameters in the

rotation operators {e}ﬁj” (7) whose product, com-
bined with the operators of free evolution (which are
also presented Table 1 as exp(—is,.D.H,), r =1, 2, 3,
and 4), forms the evolution operator exp(—iAtH,m/M)
with Hamiltonian (26). The operators V, are added to
eliminate one-spin contributions for arbitrary lengths
of free evolution intervals, which are not necessarily
multiples of the period 2n/q,. Evolution with negative
time in the operators V,exp(—is,D,H,), as well as in the
operators Vexp(—is;D,H,) for N=21 and N = 15, is
obtained in two steps. We implement positive-time
evolution, taking positive values of the constants —D,
AND THEORETICAL PHYSICS Vol. 114
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Table 1. Operator exp(—iAtH,m/M)

Table 2. Product of operators V,

J k—n o 0 J k—n o 0
1 3—4 y T 2 1-2 z SD4(0)2 — (12/3)
1 2-3 y T 2 2-3 z sDy(0, + q5/3)
1 1-2 y Y 1 1-2 z sD,(3w,/2 — q,)
2 2-3 y T 1 2-3 z 2sD,m
2 1-2 y T 1 3—4 z sD4(3w,/2 + qy)
exp(—isD4Hy/2)
Va Table 3. Product of operators V3
2 1-2 y —T
J k—n a 0
exp(—isD,Hy/2)
v, 2 1-2 z sD;(30y — q)
1 3_4 y o 2 2-3 z sD3(3m, + ¢,)
1 1-2 y —T 1 1-2 Z sD3(90,/2 — 3q,)
2 1=2 y 7 1 2-3 z 6sD;m,
exp(—isD,H,/2) 1 34 z sD;(9w,/2 + 3qy)
Va
2 1-2 y —T Table 4. Product of operators V,
exp(—isDyH,/2) j k—n a 0
Va
2 2-3 y . 2 1-2 z | sDy(40; —4g5/3)
1 1-2 y . 2 2-3 z sD,(40, + 4g,/3)
1 34 » r 1 1-2 z sDy(6w, — 4qy)
exp(—3isD;Hy/2) ! 2-3 z | 8Dy
V3 1 3—4 Z 502(60)1 + 4ql)
1 3—4 y e
1 1—2 y n Table 5. Product of operators V;
exp(—3isD3H,/2) J| kn | a 0
V3 2| 1-2 | z |4sD;(3w,—qp)
1 3—4 y - 2| 2-3 | z |4sD,(30, + ¢»)
! 2=3 ¥ —T 1| 1=2 | z |6sD,30; —2g))
1 34 y T 1| 2-3 | z |24sDjo,
2 2-3 ¥ m 1| 3-4 | z |6sD,(30, +2q))
2 1-2 y i
exp(—=2isDyHo) Table 6. Product of operators V;
¥
) ‘ 12 | » _n J k—n a 0
exp(_zisDzHO) 2 1-2 Z 4SJ(b — 3D3 — D4 + 52)
V, 2| 2-3 z |4sJ(b—3D;+ D, — 52)
2 ‘ 2-3 | y - 1 1- z |2sJ(3a— 6Dy — 2D, + 3a + 216)
exp(—6isD, H) 1 — z | 8sJ(a—2D,)
Vv, 1 — z |2sJ(3a— 6D, + 2D, + 3a—216)
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and —D, in these operators, and apply rule (17) to
change the sign.

D1:

For short, we introduce the following notation:

m Q
= XAt = 34(N), b = 3B(N),
S = ey a (N) (N)
-D(N), D, =64, D, =96, D, =-32.
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