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1 1. INTRODUCTION

The conformal symmetry as a basis of the construc�
tion of the General Relativity (GR) was independently
introduced by Deser and Dirac [1, 2]. In particular,
Dirac formulated the conformal�invariant approach
to the GR [2] as a new variational principle for the Hil�
bert action introducing a dilaton (scalar) field, in addi�
tion to the metric components gμν.

The conformal treatment of gravity is supported by
the Ogievetsky theorem [3] according to which the
GR�diffeomorphism group DiffR(1, 3) can be obtained
as the closure of two finite�dimensional groups: the
15�parameter conformal group and the 20�parameter
affine group having the Poincaré group as a common
subgroup. Further it was shown [4] that in the case of
the dynamical affine symmetries the method of non�
linear realization of symmetry groups [5] leads to the
Hilbert action of Einstein’s gravitational theory
expressed in terms of the Fock simplex components
[6]. Conformal invariance not only picks out the Ein�
stein GR among several appropriated invariants of
nonlinearly realized affine symmetry, but also it estab�
lishes the conformal units which have been introduced
before by several researches including Dirac [2].

In the present paper we discuss a set of observa�
tional data and facts that follow from the conformal
units [1, 2] in comparison with the Einstein ones. In

1 The article is published in the original.

our conformal version of the GR (CGR), the confor�
mal symmetry breaking happens due to the presence
of the Casimir vacuum energy [7] in a finite volume of
the Universe. In our approach the Casimir vacuum
energy substitutes the dark energy. It provides a good
description of SNe Ia data [8] within the conformal
cosmology [9, 10]. We found that the Universe horizon
and the Planck least action postulate lead to the
Planck scale hierarchy and the instance of the primor�
dial particle creation from vacuum, with the Casimir
vacuum energy being the source of the creation.

2. CONFORMAL GENERAL RELATIVITY

The Conformal General Relativity (CGR) is a
nonlinear realization of joint conformal and affine
A(4) symmetries in the factor space A(4)/L with the
Lorentz subgroup L of the stable vacuum (here we use
the concepts of the theory [5]). Recall that the affine
group A(4) is the group of all linear transformations of

the four�dimensional manifold xμ →  = xμ + yμ +
L[μν]x

ν + R{μν}x
ν, where yμ is a shift of coordinate and

L[μν] and R{μν} are antisymmetric and symmetric
matrices respectively. A nonlinear realization of A(4) is
based on finite transformations G = eiPxeiRh defined by
means of the shift operator P, proper affine transforma�
tion R and the following Goldstone modes: four coordi�
nates xμ and ten gravitational fields h Further it was
shown [4] that in the case of the dynamical affine sym�
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metries the method of nonlinear realization of symme�
try groups [5] leads to the Hilbert action of Einstein’s
gravitational theory expressed in terms of the Fock sim�

plex components as WE = – /16)∫d4x R(4),

where R(4) is the curvature. Taking into account the
hidden conformal symmetry associated with a dilaton
(scalar) field D and, consequently, transforming gμν [2]

(1)

we obtain the conformal�invariant action:

(2)

where the MC is a scale unit. It is defined in the Rie�
mannian space�time where the conformal interval

(3)

is identified with the measurable one, instead of the
Einstein interval

(4)

If D = 0, one obtains WC ≡ WE and dsC ≡ dsE. Thus,
the GR model based on the conformal and aine sym�
metry principles (described by the action (2)) differs
from the original Einstein–Hilbert action WE by the
following elements and treatments. Namely:

(1) Action (2) deals with the conformal geometrical

interval (3)  instead of the Einstein one (4) d  =

gμνdxμdxν < d

(2) The cosmological evolution in the CGR can be
provided by the mean field dynamics of the dilaton
zeroth mode instead of the homogeneous approxima�
tion [11] (see below).

(3) The CGR contains the Newton coupling con�

stant (GN = e2D =  as the present day value of
the dilaton field D. We recall that the standard GR
contains the effective Newtonian coupling constant as
the absolute fundamental parameter of the equations
of motion. In the CGR the relation of the coupling
constant to the Early Universe is clarified below.

In order to establish a relation between physical
scales relevant for the Early Universe, we assume that
there is a common source of the conformal symmetry
breaking. We suppose that the Casimir vacuum energy
of the Empty Universe could be naturally associated
with this source (see below).

Hereafter, we use the natural units:

(5)
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Taking into account Eqs.(3), (4), the simplex com�
ponents  can be written as

(6)

(7)

where N(b) = Njej(b) are the shift vector components,
and N(x0, xj) is the lapse function. Here  are the lin�
ear forms defined via the triads e(b)i with a unit spatial

metric determinant  = 1 known as the Lichner�
owicz gauge [12]. This gauge fixes the scalar dilaton
field D as the logarithm of the conformal factor:

(8)

3. THE DILATON SCALAR FIELD

The group of invariance of the GR for the Dirac�
ADM foliation is known as the kinemetric subgroup of
the general coordinate transformation [13]:

(9)

(10)

This group admits the decomposition of the dilaton
into the sum of the zeroth and nonzeroth harmonics:

(11)

The introduction of the zeroth mode 〈D〉(x0) is
consistent with the Einstein cosmological principle of
averaging of all scalar fields of the theory over a finite

volume V0 =  [14] so that

(12)

Note that the zeroth dilaton harmonics coincides by
construction with the cosmological scale factor loga�
rithm [11]

(13)

Thus in the finite volume V0 (taking into account
Eqs.(11), (13)), we have the following action:
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where

(18)

(19)

are the velocities of the metric components and fields,

Δ =  is the Beltrami–Laplace operator, and
R(3)(e) is the three�dimensional spatial curvature
expressed in terms of triads e(a)i. Here, we have intro�
duced in action (15) the additional term ρCas(〈D〉). The

introduction of the finite volume  cre�

ates a dimensional parameter, and therefore, it breaks
the conformal symmetry. According to the general
wisdom [5], this breaking leads to appearance of a
Goldstone mode [15, 16]. It is just the zeroth har�
monic 〈D〉 that can notL be defined in the infinite vol�
ume. Note however that the Hamiltonian dynamics
governed by the equations of motion must obey the
conformal symmetry (see below). We will show that
this source could be associated with the Casimir
energy of the Universe giving a non�zero density con�
tribution ρCas(〈D〉) ≠ 0.

The choice of the zeroth dilaton mode 〈D〉 as an
evolution parameter has two consequences in the
Hamiltonian approach. First, the zeroth dilaton mode
canonical momentum density

(20)

can be treated as a generator of the Hamiltonian evolu�
tion in the field space of events [17, 18]. We stress that
the scale�invariance (D → D + Ω) admits only a con�
stant P〈D〉. In virtue of Eqs. (11), (12), the Dirac Hamil�
tonian theory provides the orthogonality condition

(21)

This condition enables us to consider the zeroth and
nonzeroth components as independent ones.

The second consequence of the orthogonality condi�

tion (21) is that the nonzeroth harmonics (x0, x1, x2, x3)
do not depend on the evolution parameter. Therefore,
one can consider these components as gravitational
Newton�type potentials due to the condition for the
canonical momentum of dilaton nonzeroth modes

(22)

This result fixes the longitudinal shift vector compo�
nent.
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As a result, we have

(23)

that follows from of Eqs.(11), (12), and (21). The
orthogonality conditions (21) and (23) preserve the
definite metrics in the Hilbert space of states [16].

4. CONFORMAL CASIMIR ENERGY 
AND UNIVERSE HORIZON

Let us consider the Early Universe. We assume that
at the instance of creation the world was empty and
finite in size. Therefore its energy can be associated
only with the quantum Casimir energy of all physical
fields in the given space. We will treat all those field as

massless since m(a)  0 in the Early Universe
epoch.

The Casimir energy of a massless field f

(24)

depends on the geometry, size dCas, topology, boundary
conditions, and spin (in particular, for a sphere of
diameter dCas the number of  ~ 0.1–0.03) [16]. For
simplicity we assume that the Universe has a spherical
volume limited by the horizon.

It is natural to suggest that the energy of a massless
field is proportional to the inverse visual size of the
Universe dCas(a). Assuming the same dependence for
all fields, we define the total Casimir energy density of
the Universe summing over all fields

(25)

The key assumption of our model is that the Casimir
dimension dCas(a) is equal to the Universe visual size
(its horizon)

(26)

Eq. (26) has the solution

(27)

Comparing Eq. (27) with the horizon

(28)

one obtains

(29)

Thus, in our approach, parameter C0 is equal to the
Hubble parameter H0 which can be determined from
observations.
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5. HIERARCHY OF COSMOLOGICAL SCALES

Let us consider the Early Universe at the rigid state
horizon (28). A hypothetical observer measures the
conformal horizon dhor = 2rhor(z) as the distance that a
photon covers within its light cone. The latter is deter�
mined by the zero interval equation dη2 – dr2 = 0 dur�
ing the photon lifetime in the homogeneous Universe,
which is the subject of the condition ηhor = rhor(z) =
1/[2H0(1 + z)2], in accordance with Eq. (27). This
means that the four�dimensional space�time volume
restricted by the horizon is equal to

(30)

It is natural to assume that at the instance of the Uni�
verse origin the world was essentially quantum. There�
fore, we claim that action (15) is the subjected of the
Planck’s least action postulate so that

(31)

Using the present day (τ = τ0) observational data for
the Planck mass and the Hubble parameter at h � 0.7

(32)

we obtain from (31) the primordial redshift value

(33)

In other words, the Plank mass and the present day
Hubble parameter value (the main cosmological scales)
are related to each other by the age of the Universe
expressed in terms of the cosmological scale factor.

In field theories, characteristic scales associated
with physical states are classified according to the
Poincaré group representation [19]. In our approach
the Poincaré classification of energies arises from the
decomposition of the mean particle energy

 conjugated to the dilaton time
interval. We express this decomposition in the form

(34)

based on the primordial redshift value (33). This equa�
tion enables one to introduce the conformal weights
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n = 0, 2, 3, 4 which correspond to: the dilaton velocity

vD = H0, the massless energy , the massive one
M0a

3, and the Newtonian coupling constant MP1a
4

(31), respectively. One can also include in these classi�
fication the scale of the nonrelativistic particle

 cm–1 with the unit conformal weight

of its energy . As a result, the redshift
leads to a hierarchy law of the present day (a = 1) cos�
mological scales

(35)

shown in table.

Table 1 contains the scales corresponding to the
Hubble parameter (n = 0), the Celestial System size
(n = 1), the Cosmic Microwave Background mean
wave�momentum (n = 2), the electroweak scale of the
SM (n = 3), and the Planck mass (n = 4). We conclude
that the observational data testify that the cosmic evo�
lution (34) of all these mean energies with conformal
weights (n = 0, 1, 2, 3, 4) have a common origin which
could be assosiated with the Casimir vacuum energy,
see [22].

6. SNE IA DATA AS THE EVIDENCES 
OF LONG CONFORMAL UNITS

A particular conformal cosmological model, based
on the ideas discussed above, has been developed in
papers [9, 10, 20, 21]. It was shown that the model
leads to a viable cosmology being in agreement with
observations. For example, a good description of the
modern supernovae type Ia (SNe Ia) data was con�
structed [9, 10]. In the present paper we show that the
Casimir vacuum effect in a finite�size Universe could
provide both the scale invariance breaking and the
rigid state dominance, required in our model to
describe the SNe Ia data.

Since the end of the last century distant supernovae
data is a widespread test for all theoretical cosmologi�
cal models in spite of the fact the correctness of the
hypothesis about SNe Ia as the perfect standard can�
dles is still not proven [23]. Conformal cosmological
models [24–26], where all observables are identified
with the scale�invariant quantities of GR introduced
yet by Lichnerowicz [12], are also discussed among
other possibilities [27].
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Assuming that supernovae type Ia are standard
candles one could use them to test cosmological theo�
ries. The Hubble Space Telescope team analyzed 186
SNe Ia [28] to test the Standard Cosmological model
(SC) associated with expanded lengths in the Universe
and evaluate its parameters. We use the same sample to
determine parameters of Conformal Cosmological
model (CC) with relative reference units of intervals,
so that conformal quantities of General Relativity are
interpreted as observables. We concluded, that really
the test is extremely useful and allows to evaluate
parameters of the model. From a formal statistical
point of view the best fit of the CC model is almost the
same quality approximation as the best fit of SC model
with ΩΛ = 0.72, Ωm = 0.28. As it was noted earlier, for
CC models, a rigid matter component could substitute
the Λ�term (or quintessence) existing in the SC
model. We note that a free massless scalar field can
generate such a rigid matter. We describe results of our
analysis for more recent “gold” data (for 192 SNe Ia).

7. SUMMARY

Any science is based on information. The units of
information is a bit (1,0), The units of the quantum
information is the 2�dimensional twistor (cosθ, sinθeiδ)
as fundamental representation of the conformal (C)
group in the Penrose twistor program [29]. In accord�
ing with this twistor program the four parametric matrix

of the space�time coordinates  = x0  + xj  is

constructed from the 2�dimensional twistor funda�
mental representations like mesons (as a joint repre�

x̂
AA·

ÎAA· σ
AA·
j

sentation of SU(2)) are constructed from the two
dimensional quark fundamental representation of
SU(2).

The next step in this analogy with the hadron phys�
ics (that is beyond of the Penrose twistor program) is a
nonlinear realization of the affine and conformal sym�
metries A(4) ⊗ C in the factor�space K = A(4)/L in
conformal units. This step is just like nonlinear real�
izations of the finite�parameter SU(2) × SU(2) group
over the vacuum stability subgroup SU(2). Recall that
this step leads to the effective chiral hadron
Lagrangians constructed via the Maurer–Cartan lin�
ear forms without any reference to the underlying
QCD theory. In this analogy the Plank mass MP1 plays
the role of the weak decay constant parameter Fπ �
93 MeV as a specific scale of hadron low energy phys�
ics. One can see that the twistor dissociation (like
QCD parton�type deep�inelastic scattering processes)
can happen in the Quantum Theory of Space�Time
when energy is greater than the Plank mass MP1. The
question is what is the QCD analogy of such a twistor
dissociation?

This hadron�like chain of the Quantum Theory of
Space�Time is evidence that the supersymmetric uni�
fication can be based on the finite�parameter geometri�
zation of all interactions via nonlinear realization of this
super�affine group A[(2b + 2f)x(2b + 2f)] = A[8b + 8f],
where the role of twistors as fundamental representa�
tion of the conformal group can be played by the
supertwistors proposed in paper [30] together with the
commutation�relation algebra of operators “super�
space” conformal transformations associated with

45

50

40

35

30
1.5 2.01.00.50

z

m – M

CC optimal
SC optimal

CC rigid
CC matter

CC lambda
CC rad

μ(z)—dependence for cosmological models in SC and CC. The data points include 186 SN Ia (the “gold” and “silver” sample)
used by the cosmological supernova HST team. For a reference we use the best fit for the flat standard cosmology model with Ωm= 0.27,
ΩΛ = 0.73 (the thick dashed line), the best fit for CC is shown with the thick solid line. For this CC model we do not put any
constraints on Ωm.



PHYSICS OF PARTICLES AND NUCLEI  Vol. 43  No. 5  2012

THE GENERAL RELATIVITY WITH CONFORMAL UNITS 687

these supertwistors. This algebra forms super�affine
group and its non�linear realization as the 8b + 8f

space�time. Following to the hadron analogy one can
obtain the nonlinear realization, where super�curva�

ture  is basis of a unified supersymmetric theory.
These programs are supported by last results in paper
[31] where the gravi�electroweak and strong interac�
tions was obtained by the unification of an 8�dimen�
sional theory by compactification of four extra space
dimensions in the theory with the curvature R(8).
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