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1. INTRODUCTION 

Investigation of plasma waves is of interest from the
viewpoint of fundamental problems in the physics of
conductors and the prospects of their technical appli�
cations. In recent years, considerable progress has
been achieved in the development of research in plas�
monic gratings [1–3], which are promising for the
design and fabrication of miniature optical signal con�
trol devices. In this regard, it is important to perform
the investigation of plasma waves in conductors and,
in particular, to elucidate the influence exerted by
inhomogeneities of the medium on plasma waves,
because real materials, including metal films, which
have been used in the fabrication of plasmonic grat�
ings, are not perfect. In films, a significant role is
played by random inhomogeneities arising during
preparation and treatment of samples (fluctuations of
the thickness and composition, surface roughness,
polycrystallinity, etc.); moreover, inhomogeneities can
also be created artificially. In plasmonic gratings, there
have been used surface plasma waves that are sensitive
to random roughnesses of the surface of conductors
(see, for example, [4, 5]). Surface plasma waves do not
interact with inhomogeneities in the bulk of conduc�
tors, but they are coupled with bulk plasma waves,
which are sensitive to such inhomogeneities. There�
fore, from the point of view of solving problems of sur�
face plasma waves, it is also of interest to investigate
bulk plasma excitations in a randomly inhomogeneous
conductor. 

Random inhomogeneities in a conductor lead to a
modification of the spectrum of bulk plasma waves and
contribute to the wave damping (see, for example, [6–
15]). In these works, it was shown, in particular, that
the most significant changes in the spectrum of bulk
plasma waves due to the occurrence of random inho�
mogeneities are observed in the long�wavelength
region. Therefore, the influence of random inhomo�
geneities on the plasma waves can be investigated using
the hydrodynamic approximation [16, 17]. In earlier
theoretical studies [11–14], the analysis of plasma
waves in randomly inhomogeneous conductors was
restricted to second�order perturbation theory; i.e.,
allowance was made for double scattering of plasma
waves by inhomogeneities. In this work, bulk plasma
waves in a randomly inhomogeneous gas of conduc�
tion electrons have been investigated within the frame�
work of the hydrodynamic approach taking into
account multiple scattering of plasma waves by elec�
tron density fluctuations. 

2. MODEL AND THE WAVE EQUATION 

Bulk plasma waves in a degenerate inhomogeneous
gas of conduction electrons are described in the
hydrodynamic approximation using the linearized
equation (see, for example, [17]) 
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where n1 ≡ n1(x, t) is the electron density determined
by the plasma waves; t is the time; x = {x, y, z} are the
spatial variables; and n0(x), vF(x), e, and m are the
density, the Fermi velocity, the charge, and the effec�
tive mass of conduction electrons, respectively
(n0(x) � |n1(x, t)|). In order to simplify the model, we
assume that, in the linearized equation (1), the elec�
tron Fermi velocity is a homogeneous parameter, and
the electron density undergoes spatial fluctuations: 

(2)

where ρ(x) is the centered (〈ρ(x)〉 = 0) and normalized
(〈ρ2(x)〉 = 1) functions of the coordinates; the angle
brackets here indicate the averaging over an ensemble
of realizations of the random function ρ(x), and γ is
the relative root�mean�square fluctuation of the elec�
tron density. 

After the Fourier transformation of the linearized
equation (1) with respect to the time, we obtain 

(3)

n0 x( ) n0 1 γρ x( )+[ ],=

∇2
n1 x ω,( ) ν ηρ x( )–[ ]n1 x ω,( )+ 0,=

where ν = 5(ω2 – )/ , ω is the frequency of the

wave,  = 4πe2n0/m is the plasma frequency, and

η = 5γ / . In these designations, from expres�
sion (3) for the spectrum of a plasma wave in a homo�
geneous electron gas (γ = 0), we obtain 

(4)

where k is the wave vector, k = |k|; n1 ∝ exp[i(kx – ωt)].
This dispersion relation in Fig. 1 is shown by the
straight line Q = 0. Expression (4) leads to the well�
known formula for the spectrum of plasma waves in
the long�wavelength approximation (k � ωp/vF): 

(5)

In order to investigate plasma waves in a randomly
inhomogeneous electron gas (γ ≠ 0), we use the Kra�
ichnan approximation [18], which takes into account
multiple scattering of waves by inhomogeneities. This
approximation is also known as the self�consistent
approximation [19] or the coherent potential approx�
imation, which takes into account the correlations of
inhomogeneities [20]. According to the approach
described in the aforementioned papers, the Fourier
transform of the averaged Green’s function corre�
sponding to expression (3) has the form 

(6)

where the mass operator Σ(k, ν) obeys the integral
equation 

(7)

Here, S(k) is the spectral density related by the Fourier
transform to the correlation function of the inhomo�
geneities Kρ(r) = 〈ρ(x)ρ(x + r)〉; k1 = |k1|. By setting

the denominator of the function (k, ν) equal to zero,
we obtain the equation 

(8)

The solution to this equation determines ν(k), i.e., the
dispersion law of the averaged wave. 

The equations similar to expressions (3), (6), and
(7), but with other physical quantities as the unknowns
and parameters, describe the propagation of waves of
different nature in various randomly inhomogeneous
media. For example, in [20], the numerical solution to
the integral equation (7) was obtained for spin waves in
a ferromagnet with a random anisotropy parameter for
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Fig. 1. Spectrum ν' of plasma waves and the position νm of

the peak of the function (k, ν): Q = (νm – k2)/η (curves 3,

6) and Q = (ν' – k2)/η (curves 7–10). (3) The value of the
peak position νm is taken from in [20]; (6) νm is obtained
from formulas (6), (13), and (17); (7–9) ν' is determined
using formula (19); and (10) ν' is calculated according to
formula (10). Curve 7 is plotted for the parameter

kc/ = 0.1; curve 8 for the parameter kc/ = 0.3; and

curves 3, 6, 9, and 10 for the parameter kc/  = 0.5.
Numbering of the curves corresponds to that used in Fig. 2. 
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the exponential decay of the correlations of three�
dimensional random inhomogeneities: 

(9)

where kc is the correlation wave number of random
inhomogeneities; r = |r|. The function ρ(x) and the
decay of the correlations of three�dimensional ran�
dom inhomogeneities are assumed to be sufficiently
smooth (the correlation radius is rc = 1/kc � a0; a0 is
the interatomic distance). In [20], the authors deter�
mined the dependences of the position νm and width

Δν of the peak of the function (k, ν) = Im (k, ν)
on the wave vector k, which are shown respectively in
Fig. 1 (the sequence of points 3) and Fig. 2 (the
sequence of points 1–3); the width of the peak was cal�
culated at its half�height. It was found that the position

νm of the peak of the function (k, ν) is shifted
toward lower frequencies as compared to the peak
position obtained for the propagation of waves in a
homogeneous medium (νm – k2 < 0). In this case, the
quantities |νm – k2| and Δν are maximum for small val�
ues of the wave vector (k � η) and the correlation wave
number (kc � η). 

The dependences νm(k) and Δν(k), which appear
when the numerical solution of the integral equation
(7) is used in expression (6), cannot be unequivocally
identified with the spectrum ν' = Reν(k) and the
damping ν'' = –Imν(k) of the averaged plasma wave,
where ν(k) is determined by expression (8). Indeed, as
was noted in [20], the Green’s function calculated in
the self�consistent approximation, in addition to the
dissipative contribution introduced by the waves, has a
nondissipative component, which is determined by
the stochastic spread in the values of the randomly
inhomogeneous parameter and is known as the non�
uniform (fluctuation) broadening. In this connection,
the search for the dispersion relation of the waves is of
additional interest, because, with the knowledge of
this relation, it is possible to evaluate the contribution
from the nonuniform broadening to the position and
shape of the resonance lines. 

3. SPECTRUM OF PLASMA WAVES
AND THEIR DAMPING 

In order to determine the spectrum and damping of
bulk plasma waves, we find an approximate solution to
the integral equation (7) in the analytical form. For
this purpose, it is common practice to use simplifying
assumptions for the calculation of the integral on the
right�hand side of this equation. The criterion for the
admissibility of this simplification should be a corre�
spondence between the numerical and analytical
results. In [20], it was proposed to use an approximate
method for solving the integral equation (7), which
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consists in replacing the mass operator Σ(k1, ν) with
the mass operator Σ(k, ν) in the integrand. There is
also the widely known Bourret approximation [21],
which follows from the integral equation (7) provided
that, on the right�hand side in the integrand, we set
Σ(k1, ν) = 0. Both of these approximations at k � η
and kc � η give the displacement of the position νm of

the peak of the function (k, ν) toward higher fre�
quencies, which contradicts the numerical calcula�
tions performed in [20] (Fig. 1, the sequence of points
3). However, if in the integral equation (7), in addition
to the requirement Σ(k1, ν) = 0 (Bourret approxima�
tion), we use the equality ν = k2, then, for the mass
operator after calculating the integral, we come to an
expression that is independent of ν. After substituting
this expression into equation (8), we obtain the disper�
sion relation of the averaged plasma waves in the form 

(10)

It should be noted that, although dispersion relation
(10) differs from the dispersion relation of the plasma
waves, which was obtained previously [12] on the basis
of the kinetic equation, in the limiting cases k � kc and
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Fig. 2. Damping ν'' of plasma waves and the width Δν of

the peak of the function (k, ν): R = Δν/η (curves 1–6)
and R = 2ν''/η (curves 7–10). (1–3) The value of Δν is
taken from [20]; (4–6) Δν is obtained from formulas (6),
(13), and (17); (7–9) ν'' is determined using formula (19);
and (10) ν'' is calculated according to formula (10). Curves

1, 4, and 7 are plotted for the parameter kc/  = 0.1;
curves 2, 5, and 8 for the parameter kc/η = 0.3; and curves

3, 6, 9, and 10 for the parameter kc/  = 0.5. 
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k � kc these expressions coincide to within a constant
factor. A formula similar to the dispersion relation (10)
was obtained in [22] in the second�order perturbation
theory for the spectrum and damping of spin waves in
a ferromagnet with a random anisotropy parameter.
The modification of the spectrum of the plasma waves,
which follows from formula (10), agrees qualitatively

with the position νm of the peak of the function (k,
ν), which was obtained from expressions (6) and (7)
(ν' – k2 < 0 and νm – k2 < 0); however, when k � kc <

/2, it turns out that |ν' – k2| � |νm – k2|. A more
obvious manifestation of the limitation of expression
(10) for the description of the dispersion relation of the

plasma waves is that, when k ≈ kc < /2, the double
wave damping obeys the inequality 2ν'' � Δν. At the
same time, the quantity Δν, which is determined by
both the dissipative contribution and the nonuniform
(nondissipative) broadening, should not at least be less
than 2ν''. 

Let us now obtain the approximate analytical solu�
tion to the integral equation (7). For this purpose, we
will use the approach proposed earlier [23] in the study
of electromagnetic waves in a randomly inhomoge�
neous Josephson junction with one�dimensional ran�
dom inhomogeneities. This approach lies in the fact
that the angular dependence of Σ(k1, ν) is ignored and
the denominator of the integrand on the right�hand
side of the integral equation (7) in the vicinity of the
point k1 = k is expanded into the power series 

(11)

where g = ν – k2 – Σ(k, ν). In the cases where the
spectral density S(k – k1) and the other factors in the
numerator of the integrand of the integral equation (7)
form a function of the integration variable k1, which,
in the vicinity of the point k1 = k, has a well�defined
maximum, we can restrict ourselves in the denomina�
tor of the integrand to the first two or three terms of
expansion (11). By using expression (9) for the spec�
tral density on the right�hand side of the integral equa�
tion (7) and integrating over the angular variables of
the spherical coordinate system with the polar axis
along the wave vector k, we obtain 
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where the second cofactor in the integrand has a max�

imum at k1 = k1n ≡ ; whence, for k > kc, it fol�
lows that k1n ≈ k. Then, we substitute expansion (11)
into expression (12), restrict ourselves to the first two
terms of the expansion, and integrate using the
method of residues. As a result, we obtain 
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and the following dimensionless quantities are intro�
duced: 
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expression (12): 
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where  ≡ (k, ν), 

(18)

Expressions (13) and (17) form a system of two tran�

scendental equations in the unknowns  and Y. After
substituting the values of the mass operator Σ(k, ν),
which were obtained by the numerical solution of this
system of equations (Ima > 0), into expression (6), we
determine the position νm and width Δν of the peak of

the function (k, ν), which are shown, respectively,
in Fig. 1 by curve 6 and in Fig. 2 by curves 4–6. It can
be seen that these curves with the sequences of points

1–3 are in qualitative agreement and, in some cases,
coincide with each other. The closeness of the numer�
ical results obtained for the Green’s function in the
framework of the approach developed in this work and
in [20] makes the use of expressions (13) and (17) jus�
tified for the determination of the spectrum of the
averaged plasma waves and their damping, as well as
indicates that, using expansion (11) in the integral
equation (7), we are left in the main within the scope
of the self�consistent approximation and take into
account the multiple scattering of plasma waves by the
inhomogeneities. 

In the case when equality (8) is satisfied, the system
of equations, which is formed by expressions (13) and
(17), is simplified (a = 0). As a result, we can obtain
the solution of this system of equations in the analyti�
cal form. Thus, for the dispersion relation of the aver�
aged plasma waves, we have 
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where X = [ν(k) – k2]/η, 
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The spectrum ν' and the double damping 2ν'' of the
averaged plasma wave, which follow from these
expressions, are shown in Figs. 1 and 2 by lines 7–9,
respectively. Thus, it has been found that the fre�
quency of the averaged plasma waves in a randomly
inhomogeneous electron gas decreases in comparison
with the frequency of these waves in a homogeneous
medium. This correlates with the shift of the position

νm of the peak of the function (k, ν) toward lower
frequencies, which was determined in [20] (the
sequence of points 3 in Fig. 1) and calculated accord�
ing to formulas (6), (13), and (17) (curve 6 in Fig. 1). 

Figure 2 demonstrates that, in the case when k <
k
ω
, where k

ω
 is the solution of the equation ImX = 0

(when k = k
ω
, curves 7–9 intersect the horizontal

axis), expression (19) does not describe the averaged
plasma wave. In order to obtain an analytical estimate
of the quantity k

ω
, we consider the limiting cases. First

and foremost, we note that, when γ  0, the right�
hand side of expression (19) vanishes; as a result, we
arrived to formulas (4) and (5) for the spectrum of

plasma waves in a homogeneous medium. For γ ≠ 0,
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By using expression (19) for K � 1 and definitions
(15) and changing over to the dimensional quantities,
we have 

(24)

It can be seen that, in this limit, the damping of plasma
waves is inversely proportional to the wave vector k and
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coincides with the asymptotics of the imaginary part of
expression (10) for k � kc. Thus, according to expres�
sion (19), the dependence of the damping of plasma
waves on the wave vector k changes with an increase in
the value of k from linear to inversely proportional and
passes through a maximum at the point k ≈ η/kc. This
pattern of the change in the double wave damping 2ν''
with an increase in the wave vector k is displayed in
Fig. 2 (curves 8 and 9). From this figure, it also follows
that the parameters Δν and 2ν'' have different depen�
dences on the wave vector k. This behavior is associ�
ated with the fact that the quantity Δν calculated in the
self�consistent approximation, as was noted above, is
determined not only by the damping of plasma waves
but also by the nonuniform broadening. The
sequences of points 1–3 and curves 4–6 in Fig. 2
reflect the combined influence of these two mecha�
nisms on the width Δν of the peak of the function

(k, ν). In order to estimate the contribution from
each of these mechanisms, we use the obtained damp�
ing of the averaged plasma wave, which follows from
expression (19). From a comparison of the quantity Δν
with the double wave damping 2ν'' (Fig. 2), we can
conclude that, for small values of kc, the width Δν of

the peak of the function (k, ν) in the range k � 
is predominantly determined by the nonuniform

broadening, and in the range k � , the contribu�
tion from the damping of the plasma wave becomes
dominant. 

With an increase in kc, the spectral density in the
integral equation (7) becomes a more smooth function
of k1; consequently, there is a need to use in this equa�
tion three terms of expansion (11). However, when

kc � , the inequalities |d2Σ(k, ν)/dk2| � 2 and
|dΣ(k, ν)/dk| � 2k are satisfied (Figs. 3a and 3b),
which allows us to disregard the derivatives of Σ(k, ν)
in expansion (11). As a result, this expansion takes the
form 

(25)

The use of this formula in the denominator of the inte�
grand in expression (7) leads to the approximation
proposed in [20]. Taking into account expression (25)
and performing the integration on the right�hand side
of the integral equation (7), we obtain the following
equation: 

(26)

which leads to the algebraic equation of the fourth
degree investigated in [20]. By substituting the value of
the mass operator Σ(k, ν) obtained by the numerical
solution of equation (26) into expression (6), we deter�
mine the position νm and width Δν of the peak of the
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Fig. 3. Normalized derivatives of the mass operator: (a)
D = |dΣ(k, ν)/dk|/2k and (b) J = |d2Σ(k, ν)/dk2|/2. The

curves are plotted for the parameters kc/  = (1) 0.1, (2)
0.5, and (3) 2.0. 
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function (k, ν), which are shown respectively in
Figs. 4a and 4b (curves 3 and sequences of points 4). It
can be seen that they almost completely coincide with
the sequences of points 1 and 2 obtained using the
numerical solution of the integral equation (7) in
expression (6). 

In order to determine the dispersion relation of the
plasma waves, we will use equality (8), according to
which g = 0. Then, formula (10) for the spectrum and
damping of the excitations follows from expression

(26). This means that, when kc ≥ , the double
scattering of plasma waves by inhomogeneities
becomes dominant, and the right�hand side of expres�
sion (10) well approximates the modification of the
dispersion relation of the plasma waves, which was cal�
culated in the self�consistent approximation. The
spectrum and damping of the plasma waves, which
follow from expression (10), are shown respectively in
Figs. 4a and 4b (curves 5 and 6), i.e., ν' ≈ νm and 2ν'' ≈
Δν. In this case, the mass operator is weakly dependent
on ν, and for the spectrum and damping of the plasma
waves in accordance with expression (8), we have ν' –
k2 ≈ Σ'(k) and ν'' ≈ –Σ''(k). In particular, the right�
hand side of expression (10), in addition to the modi�
fication of the spectrum and damping of the waves,
describes the mass operator. 

It should be noted that the derivatives of Σ(ν, k) in
the second and third terms of expansion (11) can be

disregarded for any values of kc when k �  (see, for
example, Figs. 3a and 3b). Therefore, in this limit,
equation (26) for Σ(ν, k) holds true, and the spectrum
of plasma waves is determined by expression (10). This
makes it possible to understand the coincidence
between the characteristics of plasma waves calculated
in the self�consistent approximation and those
obtained in terms of the perturbation theory. 

4. CONCLUSIONS 

The dispersion relation of the bulk plasma waves
has been investigated in a simple model of a degener�
ate randomly inhomogeneous gas of conduction elec�
trons in the hydrodynamic approximation using the
averaged Green’s function method. Equation (3),
which describes bulk plasma waves in a randomly
inhomogeneous medium, has been analyzed using the
self�consistent approximation that takes into account
multiple scattering of plasma waves by inhomogene�
ities and according to which the Fourier transform (6)
of the averaged Green’s function is expressed in terms
of the mass operator that obeys the integral equation
(7). The solution of this equation describes the contri�
bution made to the Green’s function by both the
plasma waves and the stochastic spread in the values of
the randomly inhomogeneous parameter n0(r). This
spread leads to an increase in the width Δν of the peak

of the function (k, ν), which is known as the non�
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damping ν'' of plasma waves and the width Δν of the peak

of the function (k, ν): R = Δν/η (curves 1–4) and R =
2ν''/η (curves 5 and 6). (1, 2) The values of νm and Δν are
obtained from formulas (6) and (7); (3, 4) νm and Δν are
determined using formulas (6) and (26); and (5, 6) ν' and
ν'' are calculated according to formula (10). Curves 1, 3,

and 5 are plotted for the parameter kc/  = 2, and curves

2, 4, and 6 for the parameter kc/  = 3. 
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uniform (fluctuation, nondissipative) broadening. The
dispersion relation for the averaged plasma waves has
been obtained using the simplification of the integral
equation (7), which provides a small violation of self�
consistency. The criterion for the admissibility of this
violation is the correspondence of the position νm of

the peak of the function (k, ν) and its width Δν,
which were obtained numerically from expressions (6)
and (7) and determined using the simplifying assump�
tions in the integral equation (7). The use of the first
two terms in the expansion of the denominator of the
integrand of this equation into the power series (11) in
the vicinity of the point k1 = k made it possible to
achieve a qualitative agreement between the depen�

dences νm(k) and Δν(k) for kc ≤ /2 and k > kc,
which were determined in [20] and obtained from
expressions (6), (13), and (17). These correspon�
dences, together with expressions (13) and (17), made
it possible to determine the spectrum ν' and the damp�
ing ν'' of the averaged plasma waves (see formula (19)).
We can note a qualitative agreement between the
dependences ν'(k) and νm(k) obtained from expression
(19) and formulas (6), (13), (17), respectively (curves 9
and 6 in Fig. 1), and also their coincidence when k �

. At the same time, the dependences ν''(k) and
Δν(k) obtained from expression (19) and formulas (6),
(13), (17), respectively, as well as those determined in
[20], are significantly different at k < η/kc. In this
range of variations in values k, the width of the peak Δν
remains finite (curves 4–6 in Fig. 2), whereas the wave
damping ν'' is equal to zero at k = k

ω
, increases linearly

with an increase in the value of k, and passes through
a maximum at k ≈ η/kc (curves 8 and 9 in Fig. 2). The
same expression for the position of the maximum of
the wave damping was obtained in [23]. 

Expression (19) allows one to estimate the contri�
bution to the width of the peak Δν from the damping
of the averaged wave. From a comparison of the quan�
tities Δν (sequences of points 1–3 in Fig. 2) and 2ν''
(curves 7–9 in Fig. 2), it can be concluded that the

width of the peak Δν for kc ≤ /2 in the range k
ω
 <

k � η/kc is determined by the nonuniform broaden�
ing. At k � η/kc, the contribution from the wave
damping to the width of the peak Δν becomes domi�
nant. 

With an increase in the correlation wave number kc,
the spectral density (9) is smoothed, and there is a
need to use three terms of expansion (11) in the inte�

gral equation (7). Furthermore, when kc � , the
derivatives in expression (11) become negligible (see
Figs. 3a and 3b); as a result, we obtain the approximate
equation for the mass operator, which was proposed
in [20]. 

It should be noted that the results obtained in the
present work are more applicable to “bad” conductors

G ''

η

η

η

η

(degenerate semiconductors, amorphous metals,
etc.); however, apparently, they give a qualitatively
correct picture for the spectrum and damping of
plasma waves in randomly inhomogeneous materials,
such as microcrystalline metals and amorphous semi�
conductors. 

Equation (3) is isomorphic to the equations
describing spin waves in ferromagnets with a random
anisotropy parameter, elastic and electromagnetic
waves in the scalar approximation with density fluctu�
ations of the medium and its dielectric constant,
respectively, as well as electromagnetic waves in ran�
domly inhomogeneous Josephson junctions, etc.
Therefore, the results obtained can be useful in inves�
tigating other excitations in a number of materials with
three�dimensional random inhomogeneities. 
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