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Abstract—The fractal dimension of the boundaries of clusters formed by pores and granules in polycrystalline
materials is shown to be determined by the sample density and crystallite sizes. The dependence of the fractal
dimension on the density has a maximum. It is shown that the maximum diamagnetic response can be
obtained in a porous high-temperature superconductor with a porosity of 50—60% and small crystallite sizes.
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1. INTRODUCTION

The presence of various defects (cracks, pores,
vacancies, and caverns) influences the transport char-
acteristics of polycrystalline materials. In terms of the
percolation model [1—5], this influence in porous
structures and composite materials was studied in
many works [6—11]. The percolation theory holds that
the transport properties of a material are influenced by
the particle shape and size along with the physical
density [12]. A series of experiments [6—11] were per-
formed to construct the dependences of the transport
parameters on the density that can be easily con-
trolled. There are also works in which structures with
both the random Gaussian and fractal distributions of
material particles over the sizes were studied by com-
puter simulation [13]. Based on satisfactory correla-
tion with the experiments, the authors of [13] showed
that the computer simulation can be an effective tool
for predicting the transport properties of various mate-
rials. In all the aforementioned works, an analysis was
made of model isotropic materials consisting of parti-
cles with a simple configuration (ball and cube) and a
certain particle size.

The specific features of the structure of many dis-
ordered natural materials force to use the fractal
geometry for their description [14]. The geometry was
designed by Mandelbrot to describe complex natural
objects, and its peculiarity is the topological dimen-
sion that differs from the dimension in Euclidean
geometry in that it can be a fractional number. In two-
dimensional systems, the relationship between the
area and perimeter .S oc PP is valid [14]. The fractal
dimension D is a numerical parameter characterizing
the degree of boundary kinking. Kuzmin [15, 16]
described the pinning on fractal boundaries of the nor-
mal phase clusters in two-dimensional superconduct-
ing films. In polycrystalline superconductors, both the

current percolation over superconducting clusters and
percolation of the Abrikosov vortices over non-super-
conducting phase clusters (normal inclusions, pores,
etc.) take place. In real samples, a spatially compli-
cated arrangement of normal and superconducting
clusters can form. However, the percolation over such
chaotic systems is adequately described in the simple
two-dimensional model of percolation over parallel
chains [17]. Thus, the Kuzmin model is applicable to
bulk samples as well. The transport properties of high-
temperature superconductors (HTSCs) with a porous
structure are adequately described in the framework of
the model of pinning on normal phase clusters with
fractal boundaries [18]. The current—voltage charac-
teristics of the materials under consideration are found
to be dependent on the fractal dimension of projec-
tions of intergranular boundaries.

The transport parameters of a superconductor are
dependent on the internal structure of a real sample,
and the parameters of a foamed state are substantially
different from those of densely compacted HTSCs
[19]. It is evident that the effective cross section of a
sample with a porous structure is less than the cross-
section area of a dense sample, and the trajectory of
passing the electric current is, conversely, larger, since
the trajectory is not a straight line in the Euclidean
space [17].

In this work, we simulate the dependence of the
fractal dimension on the structure of porous materials
with variable density and average size of plane rectan-
gular-shaped crystallites (which qualitatively corre-
sponds to real microcrystals). This allows us to study
the influence of the internal geometric parameters on
the transport properties of porous polycrystals.
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Fig. 1. Micrograph of the structure of the porous HTSC
Bi2223 with the density accounting for 22% of the theoret-
ical density. The inset shows the area distribution of crys-
tallites of the porous HTSC Bi2223.

2. ANALYSIS OF THE DIMENSION
OF THE BOUNDARIES OF A POROUS HTSC

Figure 1 shows the electron microscopy image of
the porous Bi,Sr,Ca,Cu;0, (Bi2223) HTSC sample
with plate-like particles and a density of 22%.

It is seen from the figure that the structure of the
porous HTSC is a set of randomly oriented microcrys-
tals contacting each other. All the microcrystals have
the thickness of almost 2 pm, and their extent can vary
over rather wide limits. Intergranular boundaries are
identified as zones of a high contrast as the micrograph
contrast is varied (Fig. 1). We choose the contrast at
which the summary area of crystallites mapped after
using threshold filtrations was maximal. It, in turn,
allows the identification of microcrystals themselves
and determination of their size distribution function.

The inset to Fig. 1 shows the area distribution of the
porous HTSC crystallites. The size distribution of
crystallites is described by a lognormal law (solid line
in the inset), and the average crystallite size is 25 pm.
Using the micrographs, we determine the fractal
dimension of the intergranular boundary projections
from the known relationship between the area and
perimeter of a figure with an irregular contour S oc PP,
The micrographs were covered by a network of
squares; in this case, we computed the number of
squares having the boundaries in the interior. The frac-
tal size is equal to the slope of the dependence of the
number of intersections on the square size in the dou-
ble logarithmic coordinates [14]. As a result, the
dimension of the intergranular boundary projections
was obtained to be D = 1.67.
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Fig. 2. Simulated structure imitating the cross section of
the polycrystal with the filling density corresponding to the
physical density of 22%.

3. DESCRIPTION OF THE MODEL

The process of simulating consists of a random
arrangement in a two-dimensional discrete finite
space of squares imitating crystallites of a material
with given sizes. The arrangement was performed by a
uniform white noise (Fig. 2), assuming the isotropy of
the density in the material cross section, which reflects
the absence of the gradient of the material concentra-
tion in the real sample.

The figure obtained is a rectangular field contain-
ing 1000 x 1000 points that is filled with squares of
given sizes imitating crystallites with increasing den-
sity. The fractal dimension of the boundaries in the
structure prepared was analyzed by the method of cov-
ering with squares of various scales described in Sec-
tion 2. Since the boundary between individual non-
complanar two-dimensional crystallites is one-dimen-
sional (D = 1), the fractal dimension of the whole
boundary increases with an increase in the disorder
and reaches the value D = 2 in the limiting case.

Varying the crystallite density and size, we calcu-
lated the fractal dimension of the boundaries of the
simulated porous structure of a discrete space of the
array (Fig. 2). The relative size of the squares is related
to the real crystallite size through the scale of SEM
micrographs of the real structure of the sample. The
dependences obtained are depicted in Fig. 3 as the
D(p, L/L*) diagram. The fractal dimension D = 1 at
p = 0or 100%. The densities p close to zero are phys-
ically abstract, and they are presented for complete-
ness of the picture.

We call attention to the extreme behavior of the
dependence of the fractal dimension on the density at
almost any values of the relative crystallite sizes. It was
shown experimentally [20] that the dependence of the
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Fig. 3. Model dependence of the fractal dimension D on
the density p and average crystallite size L.

fractal dimension also has a maximum over wide range
of porosities of the ceramics, and this fact confirms the
model proposed.

In Fig. 3, the size is normalized to L* that is the
effective scale of the microstructure at which the frac-
tality effects begin to appear. It reflects the fact that all
natural porous structures exhibit the self-similarity
properties in a limited range of scales of observations,
unlike the mathematical fractal. At L > L*, the bound-
ary dimension D is unity independently of the param-
eters. Figure 4 shows the results of determination of
the cluster dimension from the micrograph (Fig. 1)
using the method described in Section 2. Figure 4
allows us to determine the range of observation scales
in which the structure self-similarity law is valid and to
understand the physical sense of the parameter L*.

As the mesh size is small, the crystallites are large
with respect to the square size, and a larger part of the
image is occupied by the surface of the crystallites
themselves. We do not observe any kinks of the bound-
ary projections. On the other hand, as the observation
scale is larger than L*, the mesh size significantly
exceeds the crystallite size, the boundaries are
smeared, and an excess noise appears in the depen-
dence of d(InN)/d(In M) on In(M) that determines the
fractal region boundary.

4. DISCUSSION OF THE RESULTS

Based on the model proposed, the polycrystal
structure was simulated with the parameters similar to
those of the real porous HTSC considered in Section 2.
The density of 22% and average crystallite size of
25 um correspond to the fractal dimension of the
boundaries D = 1.65 that is close to the value obtained
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Fig. 4. (1) Dependence of the number of intersections of
the boundary projections and squares plotted in the double
logarithmic  coordinates and (2) its derivative
d(In N)/d(In M) that allows the determination of the region
in which the self-similarity takes place. The self-similarity
region is between the regions of large scales and small
scales in which the dependence of In N on In M ceases to be
linear.

from an analysis of the micrographs of the porous
HTSC. Possible discrepancies can be due to the
absence of the contribution from the change in the
actual size of granules under simulation during the
arrangement when fine particles are “sintered” into
coarse conglomerates with increasing sample density.

The intergranular boundary dimension influences
the transport properties of a superconducting material
with fractal boundaries of normal clusters. According
the Kuzmin theory, the current—voltage characteris-
tics of superconducting films are determined by values
of the flow resistance Ry, critical current /., and fractal
dimension D [3].

Figure 5 shows the complete diagram calculated by
the Kuzmin model that demonstrates the influence of
the fractal dimension on the transport properties of
HTSC.

It is seen from Fig. 5 that, as the fractal dimension
increases, the voltage drop decreases with increasing
transport current; i.e., the stronger the intergranular
boundary is developed, the stronger the pinning and
the higher the current-carrying ability of a material,
which coincides with the theory statements [16].
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Fig. 5. D(R/Ry, i) diagram. Designations: Ry is the flow
resistance [15, 16]; R is the resistance; i = I/, is the trans-

port current normalized to the critical current; and D is the
fractal dimension.

Thus, prescribing the porosity of materials and the
average crystallite size, we can obtain the fractal
dimension of the intergranular boundary that immedi-
ately influences the transport properties of a supercon-
ductor. According to the diagram (Fig. 3) the maxi-
mum fractal dimension is observed at the minimal
crystallite size in the density range 20—80%. The den-
sity range with high fractal dimensions (D > 1.8) is
sharply narrowed to 50—60% with increasing the crys-
tallite size.

5. CONCLUSIONS

The fractal dimension of the cluster boundaries
that determines the development of the intergranular
boundaries is dependent on the physical density and
granule sizes in polycrystalline materials. The depen-
dence of the fractal dimension on the physical density
of a material has a maximum at any values of the aver-
age crystallite size. To obtain the maximum critical
current in a porous HTSC, it is necessary that its
porosity would be 50—60%, and the crystallite sizes
would be minimal.
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