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INTRODUCTION

In recent years, rare�earth intermetallides in which
a series of phase transitions can be induced by applying
an external pressure in zero magnetic field at low tem�
peratures have been intensively studied. For example,
the CeRhIn5 compound at ambient pressure is an anti�
ferromagnet with the Neel temperature TN = 3.8 K
[1]. As the pressure is increased slightly, the Neel tem�
perature changes negligibly. In the vicinity of the crit�
ical pressure Pс = 1.75 GPa, however, the long�range
antiferromagnetic order rapidly breaks down [2]. Data
from nuclear quadrupole resonance [3] and neutron
diffraction [4] show that at pressures below critical, a
microscopically homogeneous phase emerges in
which superconductivity (SC) coexists with antiferro�
magnetism (AFM).

Taking these experimental data into account, it
seems reasonable to analyze the variation of the
ground state of heavy�fermion (HF) systems under the
action of an external pressure within the frequently
used periodic Anderson model (PAM). This problem
is solved in the context of an extended PAM that con�
siders superexchange interaction in a subsystem of
localized electrons. This approach is used because
4f Ce electrons participate in the formation of both the
superconducting and antiferromagnetic orderings [3].
Note that the mixed phase in which SC is developed
against the AFM background was observed earlier in
an ensemble of itinerant electrons coupled by
exchange interaction [5].

ANDERSON MODEL 
WITH SUPEREXCHANGE INTERACTION

We study the conditions for the emergence of the
phase of coexisting SC and AFM in the HF intermet�
allides on the basis of the Hamiltonian

(1)

The first and second terms of the Hamiltonian describe
a subsystem of itinerant electrons with on�site energy 
and matrix element tml of electron hoppings from site l
to site m in the Wannier representation. The third term
reflects the presence of localized states of 4f electrons
with energy E0 in the system. Hybridization processes
with amplitude Vml between two subsystems are
described by the fourth term of the Hamiltonian. The
last term takes into account the superexchange interac�
tion; Jml is the parameter of the exchange coupling
between localized Hubbard fermions. This type of the
superexchange interaction was established within the
perturbation theory for the PAM with a large yet finite
Coulomb repulsion parameter [6]. The scalar product
of quasi�spin vector operators Sm and Sl is expressed via
the Hubbard operators as
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The operator of the number of electrons localized on

site m is Nm =  +  The Hilbert subspace for the
Hubbard operators of localized electrons is built on
one state |0〉 without localized electrons on the site and
two states |σ〉 with one localized electron with the spin
moment projection σ = ↑, ↓; μ is the chemical poten�
tial of the system. The effect of the external pressure
manifests itself through variations in energy E0. This
value grows with pressure, since cerium enters the
CeRhIn5 compound as a Ce3+ ion with a large result�
ing positive charge. Under the action of the pressure,
the energy of the localized 4f Ce electron increases due
to the Coulomb interaction with the effectively nega�
tive environment.

The problem is solved within the method of irre�
ducible two�dimensional retarded Green’s functions
using the Zwanzig–Mori projection on an operator

basis {        } (  = –σ).
The basis was selected with allowance for the existence
of two antiferromagnetic sublattices. The normaliza�
tion factors of the projection are =
(η

σ
 = ±1 at σ = ±1/2, respectively), where the concen�

tration of localized quasi�particles nL and magnetiza�
tion of the antiferromagnetic sublattice R are deter�
mined as

(2)

The explicit structure of the numerators of normal

 and anomalous  Green’s

functions is important in deriving the self�consistent
equations. In the mean�field approximation for such
functions taken with the opposite sign, we obtain
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For the localized level energy renormalized by means of
the existence of the exchange field of localized electrons
and counted from the chemical potential, we introduce
the denotation E

σ
 = E0 – μ – 2J(nL/2 + η

σ
R). Symbols

Γp and Wp denote the Fourier transforms of the inte�
grals of hopping and hybridization between the sublat�
tices, respectively. To characterize the intrasublattice
hoppings and hybridization in the quasi�momentum
space, we choose the denotations tp and Vp, respec�
tively. Fourier transform tp now enters the definition
ξp = ε0 + tp – μ.

The quasi�average  is determined from the
equation (f(x) = 1/(ex + 1))

(5)

The concentration of itinerant quasi�particles is
expressed as

(6)

where the quasi�average  is

(7)

In the last expression, we used the denotation
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The superconducting order parameter (SOP) Δp is
defined as

(8)

The use of (8) after substitution of the explicit
expressions for the anomalous averages yields the inte�
gral equation for the SOP. Since the d�wave SC occurs

in CeRhIn5, the equation for the SOP amplitude 
can be written as

(9)

where Qk(ω) =  and Rk(ω) = 

RESULTS AND DISCUSSION

To study the effect of energy E0 on the order
parameters of the system (magnetization R and SOP
Δp), it is sufficient to consider the low�temperature
limit. Figure 1 shows the results from numerical cal�
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culations of self�consistent equations (2), (5), (7), and
(9) for when the total electron concentration in the
system ne = nL + nc = 1. In this case, J = 0.2 and V0 =
0.6. In the calculations, only hoppings between near�
est neighbors with amplitude t1 and on�site hybridiza�
tion were taken into account. All of the energy quanti�
ties were normalized to the parameter |t1|. It can be
seen in Fig. 1 that magnetization R (solid line)
decreases with increasing energy E0, which can be
attributed to the pressure growth. In the region where
magnetization changes sharply, a superconducting gap

with amplitude  (dash�dotted line) starts to form
and a rather wide range of the energies occurs at which
both the long�range antiferromagnetic order and
superconducting pairing exist. Note that the forma�
tion of the antiferromagnetic order in the system led to

a reduction in amplitude  This is clearly demon�
strated by the dotted curve that determines the depen�

dence of  on energy E0 at R = 0. At relatively low val�
ues of the total electron concentration, magnetization
declines smoothly as E0 rises. If the electron concen�
tration is increased to ne = 1.2, the dependence of
magnetization on E0 (pressure) becomes sharp. Such
behavior (Fig. 2) corresponds to the experimental data
for the CeRhIn5 compound [3]. It can be seen that
after attaining the critical energy value, magnetization
drops sharply to zero. It is important that this happens

near the maximum SOP amplitude point  This
indicates the competition between SC and AFM. It
should be emphasized, however, that such a situation
is not always observed. For example, at concentration
ne = 1.5, the occurrence of the antiferromagnetic
order conversely induces Cooper instability (Fig. 3).
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Fig. 1. Dependences of magnetization R (solid line) and

amplitudes  of the superconducting order parameter
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CONCLUSIONS

The Anderson model, extended with allowance for
the superexchange interaction in the subsystem of
localized electrons describes the sharp suppression of
the antiferromagnetic phase with increasing pressure
and the formation of the phase in which antiferromag�
netism and superconductivity coexist at the micron
level. The phase diagram obtained by numerically
solving self�consistent equations is in satisfactory

agreement with the phase diagram based on the exper�
imental data for CeRhIn5.
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