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Abstract— Using the diagram technique for spin operators, the exact representations for quantum magnets are

obtained that express the Green’s functions via the components of mass operator Eaﬁ, end factors L and Q, and

the Larkin- and Dyson-irreducible part 7, . The elementary excitation spectrum and mean magnetization are

calculated accurate to the first-order contributions on the parameter ’"0_3 by the self-consistent field method.
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INTRODUCTION

The properties of quantum magnets with strong
fluctuations have been discussed in many scientific
works. The problem for discussion is the difficulty of
describing these systems by traditional methods. In
this work, we show that modifying the spin operator
diagram technique (SODT) [1] allows us to obtain a
regular procedure for calculating the spectral and
thermodynamic properties of anisotropic quantum
magnets.

EXPERIMENTAL
We describe the effective Hamiltonian for a quan-
tum magnet in the form
H=-3S5;
i ! (1
= {5 SiSn + Sy S + & (S7Sm + 5750 )},
fm

where we introduce the following notations:
_ 1yl L _Llea gt
]fm_2(1m+1fm)s afm_4(1m Ifm) (2)

If parameters [/ “m, 1 ;m, and &, are independent,
Eq. (1) corresponds to the XYZ model. Then, in the
momentum representation,

qué(i;wi;), ngi(i;—i;), I G

The use of the Hamiltonian in this form allow us to
describe not only anisotropic ferromagnetic systems,

but also the anisotropic two-sublattice antiferromag-
nets (AFMs) in a zero external magnetic field.

Unlike the isotropic Heisenberg model, there is in
this case an additional interaction related to parameter

€ sm- This makes us introduce Green’s matrix function

I%(ft; mt')z[K (fv mt), K™ (fzu mr')} @

K (fv mt), K (fr, mt)
K (frme) = (1.8 5 @). )

where (o, B =+ -).

In Equation (5), T, is the operator of the chrono-
logical ordering by time variable T (0 <t <93),6=1/T
(where T is the temperature) and the operators are
written in the so-called Heisenberg representation

o H —H
Sim=e" S;e . (6)
From the diagram representation of the Green’s
function, we obtain the exact representation for the

matrix components of the Fourier image of the
Green’s function:

(1-2¢,710 ) +26,0°0

K++ s l.(,\),, = s
(@ i) A, o)
K" (q, io,) =
(L+ + IqTi;;)z” + (im,, +e-0Q1, - Z*’)Q*
Ag, i®,) ’
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K™ (g, io,)
(LT ) 4 (e, +e-0,-2T)00 (D)
- A, io,) ’
K (g, io,)
= m{(z’wn +e— Z+7) (—iw,, +e— 27+)

(00 -7, 37 (2, + =)}
+ LY +LQ (—icon +e-3" )
+LQ" (ioa,, +e— Z%)}.
Here, the quantity A(g, i®,) is determined as
Alg, i) = (1-2,T;, ){(iw, —e+27")
x (i(n,,+8 - z+‘) + (2@1 + 2”)2“}
+[(L+ )1+ 22, L0 + T, |2
+ (485 -1, +22,27)0'0
+ (1, +2,L )(io+e-2")0"
+ (1, + 2, )(~iw,+e-27") Q"

For the sake of brevity, in (7) and (8) we omit argu-

ments ¢ and i®,, on which 7, £**, [, and Q*
depend, and introduce the notations

L' =L(q, io,); L =L(—g,

Q+ = L(q’ l('on)aQ_ = L(_q> —l(l)n)

The dispersion equation for the excitation spec-
trum is obtained by the analytical continuation to the
real axis with sequential putting the obtained expres-
sion to zero:

®)

-io,);

A(g, io, > o+id) = 0. 9)

A one-loop approximation was used in any specific
calculation. Associating the obtained analytical
expressions with the diagram series, we arrive at the
collective excitation spectrum

2 Z:(Ik — I )1, - Ticy) - 468, o
N (- T) (B -0) |

+ 2 g, (10— 1) - 4853 |0 +]%

en®P(q, k) + 4b,&iE, [H + by (10L - IkL—q)J(IO)

El =11+

2.

q ©og
1 2
x (l +n ) + 2_”<3Z®(q’k)q)(k’q) B, (00— ol
q A
2 N4 (1 —byl, /T) (B - o3,)
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where
D(g,k) = &0, (1, ~ Iicy) +4biEs,
g0, = H +by (1~ 1),

g0 = H+bly, o, =1et, —4biEL,
n, = [exp(wy,/T) 1]

With allowance for the quantum fluctuations, the
magnetization of the subsystem is defined as

(11)

1
1- b(')lol/T
1 Wog —€oq 1 €og
X {—— B — — ng 12
{ZNZq: ®y, Z(moq J (12)

+b_(')zlqsoq+4b0§f](l+n )+ by 3 1,
TN £ ®g, 2 )N~ LI /T

= [exp(e/T) 1]
According to (10), for an easy-plane ferromagnet

where n,

in the temperature range 0 > 7> T, when I, I kl , and

g, are interrelated (see [2]) as [, = I, — 2§,, in zero
magnetic field we have E, — 0 at k — 0. Using the
expression for the spectrum, it can easily be seen that
the gap in the collective excitation spectrum tends to
zero for an easy-plane AFM. It should be considered
that when the AFM is described via an anisotropic fer-
romagnet, allowance is made the Brillouin zone
extended relative to the antiferromagnetic case. For

example, in the zero approximation by r0_3, the AFM
spectrum is described by the formula

oy =bo(15 — 15+ 05 = J) (I~ 1 + 05 + 7). (13)

In the first order by rofs, the spectrum of this AFM is

specified by expression (10), if 7,1 ql, and , stand for
the following combinations of the initial exchange
integrals:

1 X X 1 x x
1, :§<I;+Iq +Ji=J7), Ag =1+
. (14)

£, =Z(1;—1q + 5+ T5).

For the easy-axis AFM, we obtain

oy =boy(15 — 15 +J5 = 1) (15 ~ I +J5 + ). (15)

The renormalized spectrum of the easy-axis AFM is
described by the same formula but with different

expressions for parameters / q,l ;> and éq :
x 1 k4
I,=1,, I; = +J EJq_ (16)
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CONCLUSIONS

A spin operator diagram technique has been devel-
oped that applies to systems with zero quantum fluctu-
ations.

Analysis of the diagram series structure allowed us
to obtain an explicit representation for Green’s spin
function using the components of the mass operator,

normal Q(g;iw,) and anomalous (L(g;i®,) end fac-
tors, and the irreducible Larkin and Dyson parts of

Green’s function 7}, (g;i,).

Using a self-consistent field in the first order by r0_3,
the renormalized collective excitation spectrum for a
quantum magnet with developed zero fluctuations was
calculated. The obtained expressions enable us to ana-
lyze the effect of frustrated couplings on the physical
characteristics of a quantum magnet with the strong
quantum fluctuations.

A correction for spontaneous magnetization
caused by quantum fluctuations has been obtained
that can be applied over a wide range of temperatures.
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