05

Магнитные и электрические свойства кобальтита висмута Ві₂₄(CoBi)O₄₀ с зарядовым упорядочением

© С.С. Аплеснин^{1,2}, Л.В. Удод^{1,2}, М.Н. Ситников¹, Д.А. Великанов^{2,3}, М.В. Горев^{2,3}, М.С. Молокеев², А.И. Галяс⁴, К.И. Янушкевич⁴

¹ Сибирский государственный аэрокосмический университет им. акад. М.Ф. Решетнева,

Красноярск, Россия

² Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

³ Сибирский федеральный университет,

Красноярск, Россия

⁴ НПЦ НАН Белоруссии по материаловедению, Минск, Белоруссия

E-mail: apl@iph.krasn.ru

(Поступила в Редакцию 11 января 2012 г. В окончательной редакции 21 марта 2012 г.)

Методом твердофазной реакции синтезировано соединение $Bi_{24}(CoBi)O_{40}$. Выполнены исследования температурных и полевых зависимостей магнитного момента в интервале температур 4 < T < 300 К, ширины линии ЭПР и g-фактора при 80 < T < 300 К. Проведены измерения электросопротивления и термоэдс в области температур 100 < T < 1000 К. Определена энергия активации и обнаружен кроссовер температурного поведения термоэдс от фононного к электронному. Измерен коэффициент теплового расширения образцов в области 300 < T < 1000 К и найдено качественное согласие с температурным поведением электросопротивления. Электрические и структурные свойства объясняются в рамках модели электронно-структурного перехода с учетом обменного и кулоновского взаимодействия между электронами и электрон-фононного взаимодействия.

Работа выполнена при поддержке грантов РФФИ № 09-02-92001-ННС_а, 12-02-00125-а, 11-02-98004-р_сибирь_а.

1. Введение

Соединения со смешанной валентностью проявляют необычные магнитные и электрические свойства. Примером могут служить манганиты La_{1-x}A_xMnO₃ (A = Sr, Ca, Ba) [1,2], в которых наблюдается орбитальное, спиновое и зарядовое упорядочение. Для хорошо исследованных оксидов железа Fe₃O₄ [3,4] с зарядовым упорядочением в магнитоупорядоченной области характерна высокая проводимость, в частности обусловленная близкорасположенными двух- и трехвалентными ионами железа в октаэдрических позициях. Окислы Со₃О₄ [5] и Mn₃O₄ [6] обнаруживают низкую проводимость, это связывается с различием кристаллических структур, так как основной вклад в кинетические свойства обусловлен перескоками электронов между катионами в тетраэдрических и октаэдрических узлах. Магнитные и электрические свойства в этих соединениях с зарядовым упорядочением обусловлены электронами 3*d*-металлов. Зарядовое упорядочение может сформироваться в результате снятия орбитального вырождения электронов в 3*d*-состояниях за счет спин-орбитального взаимодействия и взаимодействия с фононными модами. Выделить основной механизм, который приводит к зарядовому упорядочению в этих системах, довольно сложно. Чтобы избавиться от сопутствующих взаимодействий и описывать зарядовое упорядочение как переход в электронной системе, рассмотрим электроны в *s*-состояниях в соединении $Bi_{24}(CoBi)O_{40}$, в котором существуют ионы висмута с заполненной $6s^2$ - либо пустой 6s-оболочкой. Разрушение зарядового упорядочения может привести к электронно-структурному переходу и изменениям кинетических свойств.

Цель настоящей работы заключается в установлении корреляции магнитных, электрических и структурных характеристик в полупроводнике с зарядовым упорядочением.

2. Синтез и кристаллическая структура

Поликристаллический кобальтит висмута был получен методом твердофазной реакции. Исходные компоненты — оксиды Bi₂O₃ и Co₃O₄ высокой степени чистоты (99.9%) — тщательно перетирались в агатовой ступке, из порошка готовились таблетки. Синтез проводился при максимальной температуре 1023 К в несколько этапов с промежуточными перетираниями.

Порошковая рентгенограмма исследуемого соединения была отснята при комнатной температуре на порошковом дифрактометре D8 ADVANCE фирмы Bruker (Cu K_{α} -излучение, θ -2 θ -сканирование) с использованием линейного детектора VANTEC. Шаг сканирования по

Рис. 1. *а*) Кристаллическая структура Bi₂₄(CoBi)O₄₀. *b*) Порошковая рентгенограмма образца: *1* — экспериментальная кривая, *2* — теоретическая рентгенограмма, *3* — разность между экспериментальной и теоретической рентгенограммами, *4* — фаза Bi₂₄(CoBi)O₄₀, *5* — фаза Co₃O₄.

углу 2 θ равен 0.016°, экспозиция 0.6 s на шаг. Положение всех рефлексов определено при помощи программы EVA, включенной в пакет программ DIFFRAC-PLUS, поставляемых фирмой Bruker. Рентгенофазовый анализ полученной рентгенограммы показал, что синтезированное вещество состоит из двух фаз: Bi₂₄(CoBi)O₄₀ и Co₃O₄. Основная фаза Bi₂₄(CoBi)O₄₀ обладает кубической симметрией, соответствующей нецентросимметричной пространственной группе *I*23 [7]. Элементарная ячейка содержит одну формульную единицу. Кристаллическая

структура соединения $Bi_{24}(CoBi)O_{40}$ представлена на рис. 1, *а*. Два структурно-неэквивалентных атома висмута, Bi(1) и Bi(2), занимают следующие позиции: атом Bi(1) - 24f, Bi(2) - 2a. Атом кобальта заселяет ту же позицию 2a, что и атом Bi(2), с вероятностью 50%. Атомы кислорода O(1) и O(3) находятся в позиции 8c, а атом O(2) — в позиции 24f. Атомы висмута Bi(2)и кобальта находятся в тетраэдрическом окружении из атомов кислорода. Фаза примеси Co_3O_4 имеет структуру кубической нормальной шпинели с параметром решетки a = 8.09 Å [5,8]. Уточнение структур, параметров ячеек, профилей пиков и содержания фаз в образце проведено при помощи программы DDM [9]. Результат уточнения представлен на рис. 1, *b*. Профильный фактор недостоверности составил $R_{DDM} = 8.49\%$, интегральные факторы недостоверности равны $R_B = 5.54\%$ для фазы Bi₂₄(CoBi)O₄₀ и $R_B = 5.43\%$ для Co₃O₄. Параметры ячеек после уточнения составили a = 10.1917(1) Å для фазы Bi₂₄(CoBi)O₄₀ и a = 8.0842(1) Å для Co₃O₄. Содержание фаз в образце следующее: 77.0(5)% — Bi₂₄(CoBi)O₄₀, 23.0(5)% — Co₃O₄.

Синтез чистых образцов $Bi_{24}(CoBi)O_{40}$ — довольно трудная задача из-за сложности фазовой диаграммы системы Bi_2O_3 — Co_3O_4 (компоненты допускают формирование и других соединений) и летучести Bi_2O_3 выше точки его плавления. Те же проблемы наблюдаются при синтезе $BiFeO_3$ [10, 11]. В настоящей работе для сравнения приведены магнитные, электрические свойства образцов $0.77Bi_{24}(CoBi)O_{40} \cdot 0.23Co_3O_4$, Co_3O_4 и магнитные свойства $Bi_{24}(CoBi)O_{40}$.

Кривая дифференциального термического анализа не имеет аномалий вплоть до температур T = 1157 K, что указывает на отсутствие фазовых превращений в веществе.

3. Магнитные свойства

на Магнитные свойства исследованы установке Quantum Desing MPMS XL интервале В температур $4 < T < 300 \,\mathrm{K}$ co скоростью нагрева образцов 4 K/min. Температурные зависимости магнитной восприимчивости двухфазного соединения 0.77Ві₂₄(СоВі)О₄₀ · 0.23Со₃О₄ и оксида кобальта Со₃О₄, измеренные в магнитном поле H = 5 T, приведены

Рис. 2. Температурные зависимости магнитной восприимчивости 0.77Bi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ (1), Co₃O₄ (2) и обратной величины магнитной восприимчивости фазы Bi₂₄(CoBi)O₄₀ (3). H = 5 T.

Рис. 3. Полевая зависимость намагниченности 0.77Вi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ (*a*), Co₃O₄ (*b*) при T = 5 (*I*) и 300 K (*2*).

на рис. 2. Кривая магнитной восприимчивости оксида кобальта имеет максимум в районе температуры $T_{\chi \max} = 39 \,\mathrm{K},$ а максимум производной $d\chi/dT$ наблюдается при T = 32 K. Магнитные свойства Со₃О₄ хорошо изучены. Некоторые авторы связывают температуру $T_{\chi \max}$ с температурой Нееля $T_{\rm N} \approx 40$ К [12], другие — с температурой максимума производной $d\chi/dT$ [11]. Магнитная восприимчивость χ_1 фазы Ві₂₄(СоВі)О₄₀ найдена путем вычитания величины магнитной восприимчивости оксида кобальта χ_2 с учетом весового соотношения из восприимчивости двухфазного образца: $\chi_1 = \chi - 0.23\chi_2$. На рис. 2 приведена также температурная зависимость обратной восприимчивости 1/ χ_1 для фазы Bi₂₄(CoBi)O₄₀ в интервале температур 4 < T < 300 K, которая хорошо описывается законом Кюри-Вейсса с отрицательной парамагнитной температурой Кюри $\Theta = -12.3 \, \text{K}$ и эффективным магнитным моментом $\mu = 5.08 \,\mu_{\rm B}$. На основании этих данных можно предположить, что магнитный момент фазы Bi₂₄(CoBi)O₄₀ обусловлен спинами трехвалентных ионов кобальта, находящихся в тетраэдрических позициях с S = 2. Отсутствие дальнего магнитного порядка для $Bi_{24}(CoBi)O_{40}$ при T > 4 K,

Рис. 4. *а*) Кривые намагничивания M(H) в Bi₂₄(CoBi)O₄₀ при T = 5 (1) и 300 K (2). *b*) Функция Бриллюэна $M/N\mu_{\rm B} = xgSB_S(gS\mu_{\rm B}H/k_{\rm B}T)$ для концентрации парамагнитных атомов x = 1 (1) и 0.78 (2) в зависимости от магнитного поля, нормированного на температуру T = 5 K, и экспериментальные данные для Bi₂₄(CoBi)O₄₀ (3).

возможно, связано со спин-фононным взаимодействием, которое уменьшает температуру Нееля, и при некотором критическом параметре взаимодействия дальний магнитный порядок исчезает. Сохраняется только ближний порядок, который также дает конечную величину парамагнитной температуры Нееля. Для влияния внешнего магнитного выяснения поля проведены измерения намагниченности в интервале полей -5 < H < 5 T при температурах T = 5 и 300 K. Ha рис. 3 приведены кривые зависимости намагниченности от магнитного поля для 0.77Ві₂₄(СоВі)О₄₀ · 0.23Со₃О₄ и оксида кобальта Со₃О₄. Зависимость M(H) для Co₃O₄ в магнитоупорядоченном состоянии при $T = 5 \,\mathrm{K}$ имеет вид, типичный для поликристаллического антиферромагнетика, а при комнатной температуре — для парамагнетика. Намагниченность фазы Ві₂₄(СоВі)О₄₀ определена путем вычитания: $M[\text{Bi}_{24}(\text{CoBi})\text{O}_{40}] = M[0.77\text{Bi}_{24}(\text{CoBi})\text{O}_{40} \cdot 0.23\text{Co}_3\text{O}_4]$ $-M[0.23Co_3O_4]$. На рис. 4, *а* изображены кривые полевых зависимостей намагниченности при температурах T = 5 и 300 К. При T = 5 К соединение Bi₂₄(CoBi)O₄₀ находится в парамагнитном состоянии в магнитостатическом магнитном поле, создаваемом ближайшими ферромагнитными плоскостями оксидов кобальта Со₃О₄. Поэтому часть спинов Bi₂₄(CoBi)O₄₀ находится в магнитоупорядоченном состоянии, а другая — в парамагнитном с весом x, и намагниченность описывается функцией Бриллюэна M/Nµ_B = $= xgSB_S(gS\mu_BH/k_BT)$, которая представлена на рис. 4, *b* для спина иона кобальта S = 2. Различие теоретических и экспериментальных результатов обусловлено магнитным взаимодействием спинов двух фаз оксида кобальта и Bi₂₄(CoBi)O₄₀. Доля парамагнитной фазы составляет x = 0.78; она определяется путем подгонки бриллюэновской функции к экспериментальным данным (рис. 4, b).

Взаимодействие спиновой и упругой подсистем проявляется в исследованиях методом электронного парамагнитного резонанса (ЭПР). Магнитный ион кобальта в обоих соединениях находится в тетраэдрическом окружении. Температурные зависимости *g*-фактора и ширины линии ЭПР для фазы Bi₂₄(CoBi)O₄₀ и оксида кобальта приведены на рис. 5. Экспериментальные дан-

Рис. 5. Температурная зависимость *g*-фактора (*a*) и ширины линии ЭПР (*b*) для Bi_{24} (CoBi)O₄₀ (*1*) и Co₃O₄ (*2*) [13].

ные показывзают, что при нагревании резонансное поле уменьшается, а величина *g*-фактора растет от g = 2.22до 2.25. Рост g-фактора в оксиде кобальта на данный момент не имеет объяснения, а в Bi₂₄(CoBi)O₄₀, возможно, это связано с локальными структурными искажениями, индуцированными изменением валентности висмута, что приводит к понижению локальной симметрии. Ширина линии ЭПР в двух соединениях в пределах 16% совпадает. Она линейно растет с температурой, что указывает на взаимодействие спинов с фононами. Ширина линии ΔH для поликристаллического образца описывается уравнением $\Delta H = C/T\chi[K(T) + f(\tau)]$ [13], где C — константа Кюри, K(T) — параметр, возникающий в результате спин-фононного взаимодействия, а $f(\tau)$ — критический вклад вблизи температуры Нееля, связанный с образованием ближнего магнитного порядка, $\tau = (T - T_N)/T_N$. Для $T \gg \Theta$ температурные зависимости ΔH и K(T)совпадают. Форма линии ЭПР является немного асимметричной; так, полуширины линии $\Delta H_1/2$ и $\Delta H_2/2$ справа и слева от резонанса различаются на 10 Ое. Различие находится в пределах 1% от ширины линии и обусловлено близко лежащими резонансами от спинов кобальта в Со₃О₄ и Ві₂₄(СоВі)О₄₀, у которых g-факторы различаются также в пределах 1%. Релаксация спиновых моментов осуществляется через упругую систему. Трехвалентный ион кобальта относится к ян-теллеровским ионам, и орбитальное вырождение может быть снято вследствие динамического взаимодействия с модами колебаний тетраэдра или в результате орбитального упорядочения электронов. Каждый их этих факторов может привести к анизотропии спин-спиновых корреляционных функций, и отличие g-фактора от g = 2 пропорционально анизотропии обмена $\Delta g \sim \left((J^z - J^{\perp})/J^z \right)^2$.

4. Электрические свойства

Измерения электросопротивления были проведены компенсационным четырехзондовым методом на постоянном токе в интервале температур 77-1000 К для двух образцов 0.77Ві₂₄(СоВі)О₄₀ · 0.23Со₃О₄ и оксида кобальта Со₃О₄. Кривая температурной зависимости электросопротивления для 0.77Ві₂₄(СоВі)О₄₀ · 0.23Со₃О₄ существенно отличается от кривой для Со₃О₄ (рис. 6). Зависимость сопротивления Со₃О₄ в интервале температур 80 < T < 60 К имеет немонотонный характер (рис. 6, b), наблюдаются изломы при T = 250 и 170 K, при этих же температурах наблюдаются резкие изменения величины g-фактора. Аномалии можно связать либо с образованием структурных искажений в решетке, либо со снятием вырождения колебательных мод октаэдра в результате электрон-фононного взаимодействия. При $T = 600 \, \text{K}$, вероятно, происходит переход из низкоспинового в высокоспиновое состояние с возможными зарядовыми флуктуациями $2Co^{3+} = Co^{2+} + Co^{4+}$ [14], образующими электрон-дырочную пару, что приводит к изменению энергии активации $\Delta E = 0.31 \, \text{eV}$. В области темпера-

Рис. 6. Логарифм сопротивления $0.77 Bi_{24}(CoBi)O_{40} \cdot 0.23 Co_3O_4$ (*a*) и Co_3O_4 (*b*) в зависимости от обратной температуры. На вставке — $\ln \rho$ в области температур 500 < T < 1000 К: I — $0.77 Bi_{24}(CoBi)O_{40} \cdot 0.23 Co_3O_4$, $2 - Co_3O_4$.

тур 520 < T > 600 K для оксида кобальта наблюдается небольшое плато на температурной зависимости сопротивления, которое отсутствует в двухфазном соединении. Для соединения 0.77Bi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ сопротивление хорошо описывается экспоненциальной зависимостью в интервале температур 200 < T < 750 K с энергией активации $\Delta E = 0.23$ eV. При дальнейшем нагревании $\rho(T)$ резко уменьшается и в интервале температур 900 < T < $T^* = 950$ K хорошо описывается степенной функцией $\ln \rho = A(1 - T/T^*)^{0.23}$, а в оксиде кобальта наблюдается линейная зависимость $\ln \rho$ от обратной температуры. Электросопротивление в Co₃O₄ на два порядка меньше, чем в 0.77Bi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ при T < 1000 K (вставка на рис. 6, *b*).

На рис. 7, *а* изображена температурная зависимость коэффициента Зеебека для двух соединений. Зависимости $\alpha(T)$ качественно различаются в области высоких температур 300 < T < 1000 К. Так, величина термоэдс в Co₃O₄ растет при нагревании T > 350 К

Рис. 7. *а*) Температурная зависимость коэффициента термоэдс α . 0.77Вi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ (*1*) и Co₃O₄ (*2*). *b*) Аппроксимационная функция $\alpha = 162/T + 0.00027T$ (сплошная линия) зависимости термоэдс для 0.77Вi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ (точки).

и достигает максимума при $T = 610 \, \text{K}$, тогда как в двухфазном соединении термоэдс уменьшается до температуры T = 800 К. При T < 250 К температурные зависимости термоэдс 0.77Ві₂₄(СоВі)О₄₀ · 0.23Со₃О₄ и Со₃О₄ качественно подобны, и экспериментальные данные хорошо описываются экспоненциальной зависимостью $\alpha(T) = A \exp(\Theta_0/k_{\rm B}T)$, где Θ_0 — энергия оптической моды, которая для данных соединений обусловлена коллективными модами колебаний тетраэдров с $\Theta_0 = 0.092 \text{ eV}$ для $0.77 \text{Bi}_{24}(\text{CoBi}) O_{40} \cdot 0.23 \text{Co}_3 O_4$ и $\Theta_0 = 0.12 \, \text{eV}$ для Co₃O₄. Большие значения термоэдс при низких температурах связаны с эффектом увлечения электронов фононами. Для ионов кобальта характерны флуктуации заряда между орбиталями, что вызывает сильное взаимодействие с внутренним поляризационным полем, вызванным оптическими колебаниями, по сравнению с взаимодействием, связанным с деформационным потенциалом. Температурная зависимость $\alpha(T)$ определяется температурными зависимостями фононного и электронного (дырочного) времен релаксации. Взаимодействие дырок с длинноволновыми акустическими фононами приводит к степенной зависимости $\alpha(T) \sim T^{-3.5}$ [15], которая проявляется в полупроводниках в области низких температур (50-100 К). Взаимодействие дырок с оптическими фононами существенно при более высоких температурах, а при $k_{\rm B}T < \Theta_0/4$ число таких фононов в спектре колебаний экспоненциально падает $n_q \sim \exp(-\Theta_0/k_{\mathrm{B}}T)$. Время релаксации носителя заряда на оптической моде обратно пропорционально числу фононов $\tau \sim 1/n_a$, поэтому можно ожидать для термоэдс экспоненциальную зависимость $\alpha(T) = A \exp(\Theta_0 / k_{\rm B} T)$ [15]. При повышении температуры T > 250 К термоэдс обусловлена электронами и описывается зависимостью $\alpha(T) =$ $= k_{\rm B}/e(\Delta E/k_{\rm B}T + \gamma k_{\rm B}T)$ [16], где e — заряд электрона, k_в — постоянная Больцмана, $\gamma k_{\rm B}T$ — средняя энергия, переносимая дырками, ΔE — энергия активации при прыжковом типе проводимости. На рис. 7, в показана

Рис. 8. Температурная зависимость коэффициента теплового расширения β 0.77Bi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ (1) и Co₃O₄ (2) (*a*) и фазы Bi₂₄(COBi)O₄₀ (*b*).

подгоночная функция $\alpha(T) = A/T + BT$ с A = 162 V, $B \approx 0.0003 \, \text{V/K}$, на основании которой найдены энергия активации $\Delta E = 0.16 \pm 0.015 \, \text{eV}$ и средняя кинетическая энергия носителей тока (дырок) порядка 10⁻³ eV. В интервале температур 250 < T < 800 К величина термоэдс монотонно уменьшается, достигая минимума при $T = 800 \,\mathrm{K}$ для 0.77 $\mathrm{Bi}_{24}(\mathrm{CoBi})\mathrm{O}_{40} \cdot 0.23\mathrm{Co}_3\mathrm{O}_4$. Согласно теоретическим результатам, термоэдс имеет минимум при $T_{\min} = \Delta E \sqrt{3(\pi-2)/2\pi^2}$ для прыжковой проводимости по ближайшим соседям при условии $k_{\rm B}T\ll\mu_0$ (µ₀ — химический потенциал) [17]. Энергия активации, найденная из температуры минимума, составляет $\Delta E = 0.17 \, \text{eV}$. Аналогичное температурное поведение термоэдс наблюдалось в образцах Fe₃O_{4-x}F_x с прыжковым типом проводимости[18], где энергия активации, определенная по минимуму $\alpha(T)$, равна $\Delta E = 0.04 \, \text{eV}$ и имеет меньшее значение по сравнению с величиной $\Delta E = 0.076 \,\mathrm{eV}$, найденной из температурного хода проводимости. Таким образом, в области температур $T \sim 250 \,\mathrm{K}$ происходит кроссовер в термоэдс от фононного механизма к электронному.

Корреляцию структурных характеристик с кинетическими коэффициентами можно проследить на основе коэффициента теплового расширения образцов. На рис. 8 изображены температурные зависимости коэффициента объемного теплового расширения β для двух соединений. Хорошо видно, что величина объемного коэффициента теплового расширения для Со₃O₄ [14] в 2 раза меньше, чем для Bi₂₄(CoBi)O₄₀, при комнатных температурах. Нагревание индуцирует монотонный рост параметров решетки в Co₃O₄ с резким возрастанием при T > 700 K [14]. Этот эффект также объясняется спиновым внутриатомным переходом на ионе кобальта внутри октаэдра из низкоспинового (LS) основного

состояния электронной конфигурации в высокоспиновое (HS) состояние, связанным с изменением ионного радиуса кобальта от $R_{\rm LS} = 0.053$ нм до $R_{\rm HS} = 0.061$ нм [19]. В Bi₂₄(CoBi)O₄₀ решетка расширяется до T = 630 K, коэффициент объемного расширения β имеет локальный минимум при T = 700 K. Рост коэффициента теплового расширения в Bi₂₄(CoBi)O₄₀, возможно, вызван увеличением радиуса иона кобальта в тетраэдре в результате перераспределения электронной плотности между t_{2g} - и e_g -состояниями. Изменение зарядового состояния ионов висмута вызывает уменьшение ионного радиуса Bi⁴⁺ и соответственно приводит к уменьшению линейного размера решетки.

5. Модель

Рассмотрим схему расположения ионов висмута, ответственных за формирование электронно-структурного фазового перехода, в одной из плоскостей (рис. 9). Пятивалентный ион висмута окружен восьмью трехвалентными ионами висмута. Переход электрона с Bi³⁺ на ион Bi⁵⁺ можно интерпретировать как образование локализованного экситона в узле кубической решетки. Для перехода электрона между узлами необходимо изменение зарядового состояния от Bi⁴⁺ к Bi³⁺. Используем простую модель с двумя узлами: на одном узле находится ион Bi³⁺ с заполненной, а на другом — Bi⁵⁺ с пустой 6*s*-оболочкой, в среднем один электрон на узел с концентрацией носителей заряда n_l. При перераспределении зарядов $Bi^{3+} + Bi^{5+} = Bi^{4+} + Bi^{4+}$ между соседними узлами два электрона переходят в зону проводимости, в которой концентрация электронов равна n_s . В рамках этих процессов выполняется закон сохранения заряда $n_l + n_s = 1$. Между электронами учтем

Рис. 9. Схема расположения ионов висмута и кобальта в решетке Bi₂₄(CoBi)O₄₀.

кулоновское взаимодействие в виде $Gn_ln_s = G(1 - n_s)n_s$, тогда энергию системы представим в зависимости от числа зонных электронов $n_s = 1 - n_l$. Вклад в энергию от кинетической энергии *s*-электронов, заполняющих нижние состояния *s*-зоны, представим в виде $Wn^{5/3}$ [20], обменную энергию — как $Jn^{4/3}$. Энергию электронной системы можно представить в следующем виде [21]:

$$F_e = E_g n - Jn^{4/3} + Wn^{5/3} - Gn^2 - T(n \ln n - (1-n) \ln(1-n)),$$

где $E_g = E_0 - G$, E_0 — энергия электронов в ионах висмута, отсчитываемая от дна зоны проводимости; W — кинетическая энергия; последний член соответствует энтропийному вкладу в свободную энергию.

При абсолютном нуле температуры рост концентрации носителей тока в зоне проводимости может привести к фазовому переходу первого рода. Экспериментальные данные указывают на сильную корреляцию электронных и структурных характеристик. Поэтому в модели кроме электрон-электронного взаимодействия необходимо учесть электрон-решеточное взаимодействие [22]. Это связано с тем, что ионы разной валентности, между которыми происходит переход, имеют сильно различающиеся (на 15–20%) ионные радиусы. Соответственно электронный фазовый переход обычно сопровождается заметным изменением параметров решетки. Электрон-решеточное взаимодействие состоит из взаимодействия электронов с однородной

Рис. 10. Логарифм сопротивления, нормированного на величину сопротивления при T = 200 К, как функция обратной температуры. I — эксперимент, 2 — теоретический расчет. На вставке — концентрация электронов в зоне проводимости в зависимости от обратной температуры, вычисленная путем минимизации свободной энергии для E/J = 2.5, W/J = 3, G/J = 0.6, $\lambda/J = 0.5$, k/J = 6.

Рис. 11. Температурная зависимость относительного смещения ионов $u = b/2k^2 - \lambda n_s/k$. На вставке — производная смещения ионов по температуре du/dT, вычисленная с учетом зависимости концентрации электронов в зоне проводимости от температуры для E/J = 2.5, W/J = 3, G/J = 0.6, $\lambda/J = 0.5$, k/J = 6, b/J = 1.

деформацией и с фононами при заданной деформации. В приближении самосогласованного поля учтем взаимодействие электронов с однородной деформацией в линейном приближении по смещению иона. Полное выражение для свободной энергии имеет следующий вид: $F = F_e - \lambda n_s u + 1/2ku^2$, где λ описывает электронрешеточное взаимодействие, k — упругая константа решетки.

Зависимость относительного смещения иона и концентрации электронов в зоне проводимости от температуры определим путем минимизации свободной энергии по двум параметрам: dF/du = 0, dF/dn = 0. В результате получим трансцендентное уравнение, решение которого для концентраций n_s хорошо описывается экспоненциальной зависимостью от обратной температуры (вставка к рис. 10). Для величины обменного взаимодействия $J = 900 \,\mathrm{K}$ вычисленная энергия активации $\Delta E = 0.21 \,\mathrm{eV}$ удовлетворительно согласуется с экспериментальными данными $\Delta E = 0.23 \, \text{eV}$, найденными из проводимости для Bi₂₄(CoBi)O₄₀ · 0.23Co₃O₄ (рис. 6). Изменение параметров решетки в зависимости от температуры определяется двумя конкурирующими факторами: ангармонизмом колебаний ионов в решетке, обусловливающим ее расширение $u_a = b/2k^2$ (b — упругая константа при кубическом члене по величине смещения иона), и сжатием решетки в результате электрон-решеточного взаимодействия $u_c = \lambda n_s / k$. Результирующая величина смещения ионов $u = b/2k^2 - \lambda n_s/k$ приведена на рис. 11. Коэффициент теплового расширения был вычислен на основе производной смещения ионов по температуре du/dT, изображенной на вставке к рис. 11. Вычисленная температурная зависимость du/dT(T) качественно согласуется с экспериментальными данными.

6. Заключение

В соединении Bi₂₄(CoBi)O₄₀, содержащем ионы висмута Bi⁵⁺ и Bi³⁺ с заполненной и пустой 6*s*-оболочкой, магнитные свойства обусловлены ионами кобальта со слабым антиферромагнитным взаимодействием. В парамагнитном состоянии обнаружено сильное спинфононное взаимодействие, которое приводит к росту ширины линии ЭПР. Установлен активационный тип проводимости с положительно заряженными носителями тока (дырками). Обнаружена область кроссовера термоэдс от фононного режима к электронному при нагревании образцов, а также монотонный рост термоэдс при T > 800 К. Найдено резкое уменьшение коэффициента теплового расширения кобальтита висмута при T > 800 К и установлена корреляция электрических и структурных свойств в твердом растворе в области температур T = 800-1000 К. Предложена модель перераспределения зарядов между ионами висмута с изменением радиусов ионов и параметра решетки без изменения симметрии решетки. В модели взаимодействующих электронов с решеткой в самосогласованном приближении молекулярного поля вычислены концентрации электронов в зоне проводимости и величины смещения ионов, температурная зависимость которых качественно согласуется с коэффициентом теплового расширения решетки.

Авторы искренне признательны Г.С. Патрину за содействие в проведении магнитных измерений, А.В. Воротынову за проведение резонансных измерений методом ЭПР и плодотворное обсуждение экспериментальных результатов.

Список литературы

- [1] A. Sadoc, B. Mercey. Phys. Rev. Lett. 104, 046 804 (2010).
- [2] F. Massee, S. de Jong, Y. Huang, W.K. Siu, I. Santoso, A. Mans, A.T. Boothroyd, D. Prabhakaran, R. Follath, A. Varykhalov, L. Patthey, M. Shi, J.B. Goedkoop, M.S. Golden. Nature Phys. 7, 978 (2011).
- [3] K. Yamauchi. Phys. Rev. B 79, 212404 (2009).
- [4] A.A. Fursina, R.G.S. Sofin, I.V. Shvets, D. Natelson. Phys. Rev. B 81, 045 123 (2010).
- [5] C.-S. Cheng, M. Serizawa, H. Sakata, T. Hirayama. Mater. Chem. Phys. 53, 225 (1998).
- [6] R. Metselaar, R.E. J. van Tol, P. Piercy. J. Solid State Chem. 38, 335 (1981).
- [7] N. Rangavital, T.N. Guru Row, C.N.R. Rao. J. Solid State Inorg. Chem. 31, 409 (1994).
- [8] Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J.H. Brewer, E.J. Ansaldo, G.D. Morris, D. Andreica, A. Amato. Phys. Rev. B 75, 054 424 (2007).
- [9] L.A. Solovyov. J. Appl. Cryst. 37, 743 (2004).
- [10] Г.А. Командин, В.И. Торгашев, А.А. Волков, О.Е. Породинков, И.Е. Спектор, А.А. Буш. ФТТ 52, 684 (2010).
- [11] A. Maitre, M. Francois, J.C. Gashon. J. Phase Equilibria Diffusion 25, 59 (2004).

- [12] S. Angelov, E. Zhecheva, R. Stoyanova, M. Atanasov. J. Phys. Chem. Solids 51, 1157 (1990).
- [13] P. Dutta, M.S. Seehra, S. Thota, J. Kumar. J. Phys.: Cond. Matter 20, 015 218 (2008).
- [14] D. Broemme. Doctor thesis. "Physico-chemical investigations on Co-Mn-oxide spinels". Technische Universität Eindhoven, Germany (1990). 140 p.
- [15] F.J. Blatt. Physics of electronic conduction in solid. McGraw-Hill Book Company (1968). 472 p.
- [16] В.Л. Бонч-Бруевич, И.П. Звягин, Р. Кайпер, А.Г. Миронов, Р. Эндерлайн, Б. Эсер. Электронная теория неупорядоченных полупроводников. Наука, М. (1981).
- [17] О.Е. Парфенов, Ф.А. Шклярук. ФТП 41, 1041 (2007).
- [18] H. Graener, M. Rosenberg, T.E. Whall, M.R. Jones. Phil. Mag. 40, 389 (1979).
- [19] V.A.M. Brabers, A.D.D. Broemme. J. Magn. Magn. Mater. 104–107, 405 (1992).
- [20] L.M. Khriplovich, E.V. Kholopov, I.E. Paukov. J. Chem. Thermodyn. 14, 207 (1982).
- [21] E. Bucher, R.G. Maines. Solid State Commun. 11, 1441 (1972).
- [22] Д.И. Хомский. УФН 129, 443 (1979).