06,11,13

Динамика решетки, сегнетоэлектрическая и антиферродисторсионная неустойчивость в объемном кристалле и тонких пленках SrZrO₃

© В.С. Жандун, В.И. Зиненко

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: jvc@iph.krasn.ru

(Поступила в Редакцию 19 октября 2011 г.

В окончательной редакции 10 декабря 2011 г.)

В рамках неэмпирической модели ионного кристалла были рассчитаны динамика решетки и энергетика фаз, связанных с антиферродисторсионными и сегнетоэлектрическими искажениями объемных кристаллов и тонких пленок кристалла SrZrO₃. В случае объемного кристалла получены наиболее выгодные по энергии фазы, которые оказались связанными с антиферродисторсионными искажениями решетки. Сегнетоэлектричество в кристалле SrZrO₃ подавляется структурными искажениями решетки. В случае тонких пленок получено, что сегнетоэлектрическая нестабильность сохраняется после "поворота" кислородного октаэдра и пленка остается полярной как в случае свободной поверхности, так и при учете подложки SrTiO₃. Рассчитана величина спонтанной поляризации тонких пленок разной толщины в сегнетоэлектрической фазе.

Работа выполнена при поддержке грантов РФФИ № 09-02-00067 и "Ведущие научные школы" (НШ-4645.2010.2).

1. Введение

Кристалл SrZrO₃ принадлежит к обширному классу перовскитоподобных оксидов ABO_3 . Однако в отличие от большинства соединений с данной химической формулой, которые достаточно хорошо изучены, исследований, посвященных кристаллу SrZrO₃, сравнительно немного [1–3], хотя ряд свойств делает его подходящим для различных технологических приложений [4,5]. Также было получено, что при допировании акцепторами кристалл начинает проявлять фотонную проводимость при высоких температурах, что позволяет использовать цирконат стронция в высокотемпературных технологиях, таких как топливные ячейки, высокотемпературные сенсоры, и в процессах электролиза [5].

Как известно, соединения с перовскитоподобной структурой могут испытывать как сегнетоэлектрические фазовые переходы (типичный представитель BaTiO₃), так и переходы, связанные с поворотом октаэдра (типичный представитель SrTiO₃). Согласно экспериментальным данным [2], кристалл SrZrO₃ при высоких температурах имеет кубическую ячейку перовскита (симметрия Pm3m) с параметром ячейки a = 4.1 Å. При понижении температуры кристалл испытывает последовательность структурных фазовых переходов при 1170, 830 и 700 К в тетрагональную І4/тст, орторомбическую Стст и орторомбическую фазу Рпта соответственно, причем все переходы связаны с поворотами кислородного октаэдра ZrO₆. В работе [6] ab inito программ расчет в пакете abinito программ ABINIT показал, что в фононном спектре кубической фазы кристалла SrZrO₃ присутствует только антиферродисторсионная нестабильность и все переходы связаны с конденсацией мод в граничных точках зоны Бриллюэна R, M и совместным действием мод в точках R и M. Сегнетоэлектрическая неустойчивость по данным экспериментальных и теоретических исследований в указанном кристалле не наблюдалась. В то же время известно, что переход от объемного кристалла к тонким пленкам порой существенно меняет свойства соединения, в том числе приводит к возникновению сегнетоэлектрического состояния, как в случае, например, тонких пленок SrTiO₃, в которых экспериментальные данные указывают на появление сегнетоэлектрического фазового перехода при 304 K [7].

В связи с этим целью настоящей работы является расчет в рамках неэмпирической модели ионного кристалла высокочастотной диэлектрической проницаемости, эффективных зарядов Борна, упругих постоянных, динамики решетки и энергетики фаз, связанных с сегнетоэлектрическими и антиферродисторсионными искажениями объемного кристалла и тонких пленок соединения SrZrO₃.

2. Метод расчета

Расчет проводился методом функционала плотности в рамках модели ионного кристалла Гордона–Кима с поляризуемыми ионами. Детали модели описаны в обзоре [8]. Расчет объемного кристалла проводился только для кубической фазы данного соединения (структура перовскита). Тонкие пленки рассчитывались в периодической геометрии "сла́ба", при этом поверхности считаются свободными. В этой модели пленка представляет

$\omega(q=0),$ cm ⁻¹	$\omega(q=R),$ cm ⁻¹	$\omega(q = M),$ cm ⁻¹	З	$Z^*(\mathrm{Sr})$	$Z^*(\mathbf{Zr})$	$Z^*(O_\perp)$	$Z^*(\mathrm{O}_{\parallel})$	С ₁₁ , GPa	C ₁₂ , GPa	С ₄₄ , GPa
60 <i>i</i>	116 <i>i</i>	110 <i>i</i>	4.18	2.65	5.34	-4.4	-1.8	180	60	70

Таблица 1. Рассчитанные значения предельных частотных колебаний, высокочастотной диэлектрической проницаемости, динамических зарядов Борна и упругих модулей для кубической фазы объемного кристалла SrZrO₃

Рис. 1. Схематическое изображение периодической геометрии "сла́ба". *a* — для пленки SrZrO₃ со свободной поверхностью, *b* — для пленки SrZrO₃ на подложке SrTiO₃.

собой периодически чередующиеся слои SrO и ZrO₂, окруженные слоем вакуума для создания периодических граничных условий, как показано на рис. 1, *а*. Число слоев определяет толщину пленки. Толщина пленок варьировалась от 3 до 15 слоев ($\sim 4-30$ Å). Все расчеты проводились при экспериментальном параметре ячейки (a = 4.1 Å). Для учета подложки SrTiO₃ была также использована периодическая геометрия "сла́ба" с учетом вакуума, но часть слоев ZrO₂ была заменена на слои TiO₂, как показано на рис. 1, *b*, а параметр ячейки пленки выбирался равным параметру ячейки подложки.

Поскольку в пленке ионы, а особенно ионы, лежащие вблизи поверхности, релаксируют из своих положений равновесия в идеальной структуре перовскита, вследствие наличия поверхности, для определения равновесных положений ионов применялась процедура релаксации структуры методом итераций. Для этого на каждом ионе вычислялись силы

$$f_{j}^{\alpha} = \frac{\partial E^{\text{tot}}}{\partial r_{i}^{\alpha}},$$

где E^{tot} — полная энергия кристалла, представляющая собой сумму вкладов энергий кулоновского, короткодействующего и дипольного взаимодействий: $E^{\text{coul}} + E^{\text{short}} + E^{\text{dip}}$. Следует отметить, что все вклады в полную энергию кристалла в используемой нами модели имеют аналитические выражения (см.обзор [8]); таким образом, первая производная от энергии вычислялась не численным дифференцированием, для нее также записывались аналитические выражения, которые можно легко получить из выражения для полной энергии, приведенного в обзоре [8]. Далее каждый ион смещался по направлению действующей на него силы, после этого опять вычислялась до тех пор, пока силы на каждом ионе не превышали величину 2 meV/Å. После релаксации проводился расчет предельных частот колебаний релаксированной пленки.

3. Результаты и обсуждение

3.1. Объемный кристалл SrZrO₃. В описанной выше модели были рассчитаны частоты колебаний решетки, динамические заряды Борна, высокочастотная диэлектрическая проницаемость и модули упругости для объемного кристалла SrZrO₃ в кубической фазе. Рассчитанные значения приведены в табл. 1. Из рис. 2, где показан полный фононный спектр, видно, что в спектре колебаний решетки для данного соединения имеются сильные нестабильности в точках M и R зоны Бриллюэна, отвечающие за антиферродисторсионную неустойчивость кристалла. Следует отметить, что в нашем расчете, в спектре колебаний кристалла также имеется и сегнетоэлектрическая неустойчивость, но, как видно из табл. 1, абсолютная величина частоты неустой

Рис. 2. Полный фононный спектр кристалла SrZrO₃ в кубической фазе. Отрицательные значения частот соответствуют нестабильным модам колебаний.

Таблица 2. Разность энергий между кубической и антиферродисторсионными фазами кристалла SrZrO₃ (Z — число молекул в элементарной ячейке)

Тип искажения	Группа симметрии	$E - E_{\rm cub}, {\rm eV}$		
φφψ φφφ φψψ Οφψ ψψψ	$Pnma (z = 2)$ $R\overline{3}c (z = 1)$ $Pmmm(z = 4)$ $Cmcm (z = 2)$ $Im3 (z = 4)$	$-0.05 \\ -0.048 \\ -0.047 \\ -0.045 \\ -0.044$		

чивой сегнетоэлектрической моды гораздо меньше величин частот неустойчивых антиферродисторсионных мод в точках R и M, которые практически равны между собой. Собственные векторы антиферродисторсионных и сегнетоэлектрической мод показаны на рис. 3, a–c. В собственном векторе сегнетоэлектрической моды основное смещение испытывают ионы Sr и O в направлении, перпендикулярном связи Zr–O ($\xi_{SR} = 0.81$, $\xi_{O\perp} = -0.42$, $\xi_{Zr} = 0.08$, $\xi_{O\parallel} = -0.07$). Собственные векторы мод в точках R и M отвечают поворотам кислородного октаэдра ZrO₆. Искажения, связанные с модами в точке R ($q = \pi/a(1, 1, 1)$) и M ($q = \pi/a(1, 1, 0)$), будем обозначать φ и ψ соответственно.

В табл. 2 приведены энергии фаз, связанных с искажениями кристалла по собственным векторам рассматрива-

Рис. 3. Смещения ионов по собственным векторам нестабильных мод: a — сегнетоэлектрической, b — моды R_{25} ($\varphi 00$)-искажение, c — моды M_3 (00ψ)-искажение. Обозначение атомов то же, что на рис. 1, b.

Рис. 4. *а*) Зависимость полной энергии кристалла от амплитуд смещения по собственному вектору сегнетоэлектрической моды. I-3 — направления [100], [110] и [111] соответственно. *b*) Зависимость энергий фазы $\varphi \varphi \psi$, связанной с поворотом октаэдра (*I*), сегнетоэлектрической фазы (*2*) и фазы, связанной с сегнетоэлектрическими искажениями в искаженной антиферродисторсионной фазе $\varphi \varphi \psi$ (*3*), от амплитуды смещения ионов по соответствующим собственным векторам.

емых антиферродисторсионных и сегнетоэлектрической мод. Наиболее выгодной оказывается фаза, связанная с комбинацией искажений $\phi \phi \psi$ (симметрия *Pnma*), а фазы с комбинациями искажений $\phi\psi\psi$ (симметрия *Pnma*), $\phi\phi\phi\phi$ (симметрия $R\bar{3}c$), $0\phi\psi$ (симметрия Cmcm) и $\psi\psi\psi$ (симметрия Im3) близки к ней по энергии, что согласуется с экспериментальными данными [2]. Как видно из рис. 4, а, сегнетоэлектрическая фаза также оказывается выгодной по энергии, но глубина энергетического минимума, обусловленного сегнетоэлектрическими искажениями, в 2 раза меньше, чем для фаз, связанных с поворотом кислородного октаэдра. На рис. 4, b приведена зависимость энергии кристалла SrZrO₃, от амплитуд смещения по собственному вектору сегнетоэлектрической моды в фазе, где кислородный октаэдр повернут на угол, соответствующий энергетическому минимуму. Видно, что антиферродисторсионные искажения полностью подавляют сегнетоэлектрическую нестабильность. Таким образом, можно заключить, что в данном соединении реализуются фазы, связанные с поворотом кислородного октаэдра; сегнетоэлектрическое же состояние не реализуется из-за подавления поворотом (кривая 3на рис. 4, b), что соответствует экспериментальной ситуации.

3.2. Тонкие пленки SrZrO₃. Для расчета тонких пленок SrZrO₃ была использована, описанная выше периодическая геометрия "сла́ба". Первоначально для пленок разной толщины была проведена процедура релаксации для нахождения равновесных положений ионов. В табл. 3 приведены относительные смещения ионов, полученные при релаксации на примере семислойной пленки в сравнении с расчетными данными работы [9]. Как и ожидалось, наибольшее смещение из идеальных позиций структуры перовскита испытывают ионы пленки, находящиеся вблизи поверхности.

Рис. 5. Зависимость от толщины пленки *x*-компонент высокочастотной диэлектрической проницаемости (a) и *z*-компонент динамических зарядов Борна (Z_{din}) (в единицах заряда e) (b). 1 -динамический заряд поверхностного иона Sr, 2- иона Zr, 3 - поверхностного иона O, находящегося в плоскости SrO, 4 -иона O, находящегося в плоскости ZrO₂, 5 -"объемного" иона Sr, 6 -"объемного" иона O, находящегося в плоскости SrO.

Таблица 3. Относительные смещения ионов из положения равновесия δ при релаксации на примере семислойной пленки

	δ, %				
Атом	[9]	Настоящая работа			
Sr1	-7.63	-6.54			
Sr2	-1.53	-1.81			
Δr_1	0.86	-1.86 -4.70			
O1(Sr) O2(Sr)	-0.30 -0.45	-1.20			
O1(Zr)	-0.05	-1.70			

Таблица 4. Нестабильные частоты колебаний (cm⁻¹) антиферродисторсионных и сегнетоэлектрических мод для пленок со свободной поверхностью разной толщины

Мода	Число слоев							
	3	5	7	9	11	13	15	
00ψ 00φ СЭ	104.5 <i>i</i> 134 <i>i</i>	99.1 <i>i</i> 96.8 <i>i</i> 134.3 <i>i</i>	105.3 <i>i</i> 98.7 <i>i</i> 134.6 <i>i</i>	109.8 <i>i</i> 98.9 <i>i</i> 135 <i>i</i>	112.7 <i>i</i> 99 <i>i</i> 135.3 <i>i</i>	114 <i>i</i> 99.1 <i>i</i> 135.4 <i>i</i>	115 <i>i</i> 99.1 <i>i</i> 135.5 <i>i</i>	

 Π р и м
е чание. Здесь и далее в таблицах СЭ — сегнетоэлектрическая мода.

В релаксированной структуре были рассчитаны высокочастотная диэлектрическая проницаемость, динамические заряды Борна и частоты колебаний решетки в граничных точках Γ $(q = \pi/a(0, 0, 0))$ и M $(q = \pi/a(1, 1, 0))$ двумерной зоны Бриллюэна. На рис. 5, а и в приведены зависимости рассчитанных компонент высокочастотной диэлектрической проницаемости и динамических зарядов Борна, перпендикулярных плоскости пленки, в зависимости от ее толщины (параллельные компоненты практически не меняются в зависимости от толщины пленки). С увеличением толщины пленки эти величины стремятся к соответствующим значениям для объемного кристалла. Следует также отметить, что величины динамических зарядов на поверхности оказываются больше по величине, чем заряды ионов в "объеме" пленки. Это обстоятельство связано с тем, что короткодействующие взаимодействия диполь-заряд, которые обычно уменьшают величину динамического заряда в перовскитах, для поверхностных ионов оказываются меньше, чем для ионов, находящихся в "объеме" пленки.

Наиболее нестабильные частоты колебаний для пленок разной толщины приведены в таб. 4. Видно, что для пленок всех исследуемых толщин в спектре колебаний имеется сегнетоэлектрическая мода, являющаяся наиболее нестабильной, и две менее нестабильные моды, связанные с поворотом октаэдра.

Собственные векторы "поворотных" мод приведены на рис. 6, *а* и *b*. В собственном векторе наиболее

Рис. 6. Собственные векторы нестабильных мод для семислойной пленки, связанных с поворотами кислородных октаэдров 00ψ (*a*) и 00φ (*b*), а также с сегнетоэлектрическими искажениями (*c*). Относительные смещения ионов показаны величиной стрелок. Обозначение атомов то же, что на рис. 1, *b*.

нестабильной из антиферродисторсионных мод октаэдры в соседних слоях поворачиваются в разные стороны (рис. 6, а), при этом величина смещений ионов максимальна в центре пленки и уменьшается к поверхности. Такой тип искажений по аналогии с объемным кристаллом (рис. 3, b) будем называть ψ -искажениями. Во второй моде (рис. 6, b) кислородные октаэдры в соседних слоях поворачиваются в одну сторону, величина смещений ионов уменьшается от максимального значения на поверхности пленки к минимальному значению в центральном слое. Такой тип искажений по аналогии с объемным кристаллом (рис. 3, а) будем называть ф-искажениями. Также в случае, когда слой, содержащий кислородный октаэдр, оказывается плоскостью симметрии пленки, в спектре колебаний присутствует "поворотная" мода, в которой ионы центрального слоя остаются неподвижными, а противоположные от центра пленки слои поворачиваются в разные стороны.

Энергия пленок разной толщины, искаженных по собственным векторам указанных антиферродисторсионных мод типа φ и ψ , описанных выше, показана на рис. 7. Видно, что наиболее выгодным оказывается поворот кислородного октаэдра вокруг оси, перпендикулярной

Рис. 7. Зависимости энергии пленок разной толщины от амплитуды смещения ионов по собственным векторам антиферродисторсионной моды типа 00φ для трех- (1) и пятислойной (2) пленки (a) антиферродисторсионных мод типа 00ψ (1) и 00φ (2) для семи- (b), девяти- (c) и одиннадцатислойной пленки (d).

Таблица 5. Углы поворота (в deg) кислородного октаэдра для пленок различной толщины

Мото	Число слоев						
тиода	3	5	7	9	11		
$\begin{array}{c} 00 arphi \ 00 \psi \end{array}$	5.1	6.8 6.8	6.9 1.4	6.9 1.1	6.9 1.0		

плоскости пленки (смещения типа 00φ), при этом глубина энергетического минимума резко уменьшается с толщиной пленки. В табл. 5 приведены углы поворота кислородного октаэдра, соответствующие минимуму энергии для 00φ - и 00ψ -искажений.

В собственном векторе сегнетоэлектрической моды наибольшее смещение испытывают, как и в случае объемного кристалла, ионы Sr и O. Следует также отметить, что наибольшую величину смещения имеют поверхностные ионы, и она резко убывает к центру пленки, как это показано на рис. 6, с. Зависимость энергии пленок

Рис. 8. Зависимость полной энергии пленок разной толщины от амплитуды смещений ионов при сегнетоэлектрических искажениях (a) и при сегнетоэлектрических искажениях в структуре с повернутым кислородным октаэдром (b). Число слоев: 1 - 3, 2 - 5, 3 - 7, 4 - 9, 5 - 11, 6 - 13.

Рис. 9. Зависимость величины спонтанной поляризации от толщины пленки. *а* — в сегнетоэлектрической фазе, *b* — в фазе, искаженной по собственному вектору антиферродисторсионной моды, *с* — профиль поляризации для девятислойной пленки.

разной толщины от амплитуды смещения по собственному вектору сегнетоэлектрической моды приведена на рис. 8, *а*. Глубина энергетического минимума также уменьшается с увеличением толщины пленки, но при этом сегнетоэлектрическая фаза оказывается гораздо выгоднее фазы, связанной с поворотом кислородного **Таблица 6.** Нестабильные частоты колебаний (cm^{-1}) антиферродисторсионных и сегнетоэлектрических мод для пленок на подложке SrTiO₃ разной толщины

Мола	Число слоев					
МОда	3	5	7	9		
$\begin{array}{c} C \mathfrak{S} \\ 0 0 \psi \\ 0 0 \varphi \end{array}$	104 <i>i</i> 182 <i>i</i>	103 <i>i</i> 186 <i>i</i> 170 <i>i</i>	102 <i>i</i> 187 <i>i</i> 174 <i>i</i>	101 <i>i</i> 188 <i>i</i> 177 <i>i</i>		

октаэдра. На рис. 8, *b* показана зависимость энергии пленок, искаженных по собственному вектору сегнетоэлектрической моды в фазе, соответствующей повороту октаэдра на определенный угол (табл. 5). В результате расчета было получено, что антиферродисторсионные искажения в случае тонких пленок не подавляют сегнетоэлектричество, как в случае объемных кристаллов, и выгодность сегнетоэлектрической фазы сохраняется даже после поворота кислородного октаэдра.

С помощью полученного собственного вектора сегнетоэлектрической моды были рассчитаны спонтанная поляризация пленок и ее зависимость от толщины. Рассчитанные зависимости величины спонтанной поляризации в сегнетоэлектрической фазе до и после поворота кислородного октаэдра приведены на рис. 9, а и b. Спонтанная поляризация, во-первых, максимальна для минимальной толщины пленки и уменьшается с увеличением толщины, а во-вторых, гораздо больше рассчитанного значения спонтанной поляризации в сегнетоэлектрической фазе для объемного кристалла, которая составляет $P_S = 16.8 \,\mu\text{C/cm}^2$. Можно также видеть, что поляризация хоть и уменьшается в результате антиферродисторсионного искажения структуры пленки, но при этом сохраняется; ее величина составляет для трехслойной пленки $P_S \approx 45 \,\mu\text{C/cm}^2$. На рис. 9, *с* приведен рассчитанный профиль поляризации для девятислойной пленки SrZrO₃. Пленка оказывается поляризованной в основном на поверхности, а в глубь пленки поляризация резко спадает. Такое поведение поляризации по большей части возникает из-за схожего характера собственного

вектора сегнетоэлектрической моды, так как динамические заряды незначительно меняются от слоя к слою.

3.3. Учет подложки. Учет подложки может внести существенные изменения в динамику и сегнетоэлектрические свойства тонких пленок по сравнению с пленкой со свободными поверхностями. Это связано как с возникающими напряжениями в пленке из-за несоответствия параметров пленки и подложки, так и с другими факторами (например, изменением короткодействующих взаимодействий при замене иона Zr на ион Ti). В связи с этим мы провели расчет динамики решетки и энергетики тонких пленок SrZrO₃ на подложке SrTiO₃. Для такого расчета была также использована периодическая геометрия "слаба" с учетом вакуума, как показано на рис. 1, b. Выбиралась подложка толщиной в 19 монослоев, что позволяет рассматривать ее как континуум, а толщина пленки варьировалась от 3 до 9 монослоев. Параметр пленки выбирался равным параметру подложки (a = 3.9 Å). Таким образом, в пленке возникают напряжения сжатия из-за несоответствия параметров решетки пленки и подложки, которое составляет ~ 5%. В такой модели были рассчитаны предельные частоты колебаний решетки в центре и граничной точке М двумерной зоны Бриллюэна, наиболее нестабильные частоты приведены в табл. 6. Следует отметить, что приведенные частоты колебаний решетки связаны именно с движением ионов пленки, ионы же подложки, как это видно из собственного вектора данных мод, остаются неподвижными.

Как видно из сравнения табл. 4 и 6, в рассматриваемых пленках для всех толщин сохраняется сегнетоэлектрическая нестабильность, которая, однако, становится меньше по абсолютному значению частоты, а антиферродисторсионные нестабильные моды, наоборот, значительно смягчаются. В табл. 7 приведены энергии сегнетоэлектрической и антиферродисторсионных фаз, рассчитанные для пленки SrZrO₃ с учетом подложки, в сравнении с энергиями этих же фаз, полученными для пленки со свободными поверхностями. Из сравнения энергий видно, что влияние напряжений, возникающих в пленке, уменьшает выгодность сегнетоэлектрической фазы и увеличивают выгодность фазы, связанной с антиферродисторсионными искажениями 00φ . Следует отметить, что при повороте кислородного октаэдра се-

Таблица 7. Энергии структур (eV), связанных с искажениями пленки по собственным векторам сегнетоэлектрической и "поворотных" мод

Мода	Пленка SrZrO ₃				Пленка SrZrO ₃ на подложке SrTiO ₃			
	3 слоя	5 слоев	7 слоев	9 слоев	3 слоя	5 слоев	7 слоев	9 слоев
$\begin{array}{c} C \varTheta \\ 00 \varphi \\ 00 \psi \end{array}$	$-0.15 \\ -0.35$	-0.10 -0.27 -0.27	$-0.06 \\ -0.2 \\ -0.11$	$-0.05 \\ -0.15 \\ -0.08$	$-0.11 \\ -0.45$	-0.07 -0.31 -0.31	$-0.04 \\ -0.27 \\ -0.2$	-0.03 -0.22 -0.15
АФД + СЭ	-0.05	-0.02	-0.015	-0.012	-0.03	-0.01	-0.004	+0.006

Примечание. АФД+СЭ — совокупное искажение структуры по двум модам: антиферродисторсионной и сегнетоэлектрической.

Рис. 10. Зависимость величины спонтанной поляризации от толщины пленки в сегнетоэлектрической фазе (1) и в фазе, искаженной по собственному вектору антиферродисторсионной моды (2) для тонкой пленки на подложке SrTiO₃.

гнетоэлектрическое состояние сохраняется только для пленок толщиной от 3 до 7 монослоев, а для более толстых пленок пропадает.

В сегнетоэлектрической фазе до и после поворота кислородного октаэдра была рассчитана величина спонтанной поляризации, полученные зависимости от толщины пленки приведены на рис. 10. После антиферродисторсионного искажения структуры поляризация уменьшается примерно в 2 раза и составляет для трехслойной пленки $\sim 26 \,\mu\text{C/cm}^2$, что указывает на возможное существование сегнетоэлектрического состояния в тонких пленках SrZrO₃ в отличие от объемного кристалла, где оно подавляется антиферродисторсионными искажениями.

4. Заключение

Перечислим основные результаты работы.

В рамках неэмпирической модели ионного кристалла вычислены частоты колебаний решетки, диэлектрическая проницаемость, упругие модули и динамические заряды Борна объемного кристалла и тонких пленок SrZrO3 разной толщины. В обоих случаях в спектре колебания имеются два типа нестабильности: антиферродисторсионная и сегнетоэлектрическая. В случае объемного кристалла антиферродисторсионные искажения подавляют сегнетоэлектрическую неустойчивость, и сегнетоэлектрическая фаза не реализуется, что согласуется с экспериментально наблюдаемой ситуацией. В случае тонких пленок антиферродисторсионные искажения лишь ослабляют сегнетоэлектрическую неустойчивость, но не подавляют ее полностью, и пленка остается полярной вплоть до толщины в одну элементарную ячейку (величина спонтанной поляризации составляет при этом $\sim 45 \,\mu \text{C/cm}^2$). Влияние напряжений сжатия, связанных с подложкой, приводит к уменьшению поляризации, возникающей в пленке, по сравнению с пленкой со свободной поверхностью и ее исчезновению при толщине пленки в 9 монослоев в структуре с повернутым октаэдром. Расчет профиля поляризации показал, что наиболее поляризованными оказываются поверхностные слои пленки, тогда как поляризация внутренних слоев практически равна нулю.

Список литературы

- E. Mete, R. Shaltaf, S. Ellialtiouglu. Phys. Rev. B 68, 035119 (2003)
- [2] D. DeLigny, P. Richet. Phys. Rev. B 53, 3013 (1996).
- [3] C.J. Howard, K.S. Knight, B.J. Kennedy, E.H. Kisi. J. Phys.: Cond. Matter, 12, 677 (2000).
- [4] C. Chen, W. Zhu, T. Yu, X. Chen, X. Yao. Appl. Surf. Sci. 211, 244 (2003).
- [5] T. Higuchi, T. Tsukamoto, S. Yamaguchi, N. Sata, K. Hiramoto, M. Ishigame, S. Shin. Jpn. J. Appl. Phys. 41, 6440 (2002).
- [6] R. Vali. J. Phys. Chem. Solids 69, 876 (2008).
- S. Davitadze, I. Shnaidshtein, F. Fadeev, B. Strukov, S. Shulman, B. Noheda, A.H.G. Vlooswijk. Ferroelectrics **397**, 102 (2010).
- [8] Е.Г. Максимов, В.И. Зиненко, Н.Г. Замкова. УФН 174, 1145 (2004).
- [9] R.I. Eglitis, M. Rohlfing. J. Phys.: Cond. Matter 22, 415 901 (2010).