# Калорические характеристики PbTiO<sub>3</sub> в области сегнетоэлектрического фазового перехода

© Е.А. Михалёва<sup>1,2</sup>, И.Н. Флёров<sup>1,2</sup>, М.В. Горев<sup>1,2</sup>, М.С. Молокеев<sup>2</sup>, А.В. Черепахин<sup>2</sup>, А.В. Карташев<sup>2</sup>, Н.В. Михашенок<sup>2</sup>, К.А. Саблина<sup>2</sup>

<sup>1</sup> Институт инженерной физики и радиоэлектроники Сибирского федерального университета, Красноярск, Россия, <sup>2</sup> Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

06

E-mail: katerina@iph.krasn.ru, flerov@iph.krasn.ru

(Поступила в Редакцию 13 марта 2012 г.)

Выполнены измерения теплоемкости и теплового расширения керамического образца PbTiO<sub>3</sub> в интервале температур 80–970 К. На основе анализа экспериментальных данных в рамках термодинамической теории фазовых переходов, электрического уравнения состояния P(T, E), уравнения Пиппарда и диаграммы S(T, p) исследованы электрокалорическая и барокалорическая эффективность титаната свинца в области сегнетоэлектрического фазового перехода.

Работа выполнена при финансовой поддержке РФФИ (проект № 12-08-00079) и гранта Президента РФ для поддержки ведущих научных школ РФ (НШ-4828.2012.2.).

#### 1. Введение

Титанат свинца относится к ряду давно известных, но до сих пор активно изучаемых сегнетоэлектриков [1,2]. Фазовый переход между параэлектрической и сегнетоэлектрической фазами в PbTiO<sub>3</sub>, характеризуемый как структурное превращение первого рода, близкое к трикритической точке, имеет место при температуре  $T_0 = 763 \,\text{K}$  и связан с изменением симметрии *Рт*−3*т* → *Р*4*тт*. Обилие разнообразной информации о физических и структурных свойствах, казалось бы, с полным основанием позволяет рассматривать титанат свинца в качестве модельного сегнетоэлектрика. Однако ряд причин затрудняет формирование единой точки зрения относительно деталей механизма фазового перехода. Так, например, с одной стороны, получение хорошо спеченных поликристаллических образцов затруднено вследствие летучести окиси свинца при высоких температурах, вызывающей нарушение стехиометрии соотношения окислов [2]. С другой стороны, выращенные различными методами кристаллы даже при комнатной обладают значительной проводимостью  $10^{-8} - 10^{-11} \, (\Omega \cdot cm)^{-1}$ , что затрудняет исследование диэлектрических свойств [3,4]. Отсюда, в частности, проистекает и существенная неоднозначность в величинах константы Кюри-Вейсса и поляризации насыщения, значения которых по данным разных исследований колеблются в интервалах  $C_{C-W} = (1.1-7.9) \cdot 10^5 \, \mathrm{K}$  и  $P_s = (40-80)\,\mu{
m C}\cdot{
m cm}^{-2}$  [3,4]. По этой же причине до сих пор нет сведений о пьезоэлектрических параметpax PtTiO<sub>3</sub> [5].

Сравнительно недавно было обнаружено, что при добавлении титаната свинца к релаксорным системам полученные материалы, например твердые растворы  $x Pb(Me_{1/3}Nb_{2/3})O_3 - (1-x)PbTiO_3$  (Me = Mg, Zn), обла-

дают рядом замечательных свойств. Во-первых, оказалось, что твердые растворы характеризуются очень высокими значениями пьезоэлектрических коэффициентов [6]. Во-вторых, не менее замечательным является наличие в них сегнетоэлектрических фазовых переходов при температурах, существенно более низких по сравнению с T<sub>0</sub> в PbTiO<sub>3</sub>. И, в-третьих, установлено, что указанным твердым растворам свойственны в области превращений довольно значительные величины интенсивного электрокалорического эффекта (ЭКЭ)  $\Delta T_{\mathrm{AD}}^{\mathrm{ECE}}$  [7–9]. Можно предположить, что природа последнего явления обусловлена высокой электрокалорической эффективностью титаната свинца. Однако до сих пор, насколько нам известно, информация об ЭКЭ в PbTiO<sub>3</sub> отсутствует. Вполне вероятно, что это обстоятельство связано с затруднениями прямых экспериментальных исследований, обусловленных, во-первых, упоминавшейся выше высокой проводимостью как керамических, так и кристаллических образцов (затрудняющей, как показано в [10], определение интенсивного ЭКЭ) и, во-вторых, высокой температурой фазового перехода. В этом случае весьма плодотворным может оказаться подход, развитый недавно в [11]. На примере ряда сегнетоэлектриков нами показана возможность надежного определения интенсивного и экстенсивного ЭКЭ на основе анализа калориметрических и диэлектрических данных в рамках электрического уравнения состояния.

Исторически сложилось отнесение сегнетоэлектрического фазового перехода в PbTiO<sub>3</sub> к превращения ям типа смещения [12]. И это несмотря на довольно значительную величину соответствующего изменения энтропии  $\Delta S_0 \approx 0.8R > R \ln 2$  (R — газовая постоянная), обнаруженную буквально в первых поисковых калориметрических исследованиях [13]. Вполне вероятно, не последнюю роль здесь сыграл подход к классификации

механизмов структурных искажений в сегнетоэлектриках на основе величины константы Кюри-Вейсса, значения которой оказались довольно близкими для PbTiO<sub>3</sub> (170 000 K) и ВаТіО<sub>3</sub> (150 000 K) [12]. Структурные исследования титаната бария показали, что появление дипольного момента действительно связано с небольшими смещениями атомов титана и кислорода. И найденное изменение энтропии  $\Delta S_0 \approx 0.06R \ll R \ln 2$  [12], связанное со структурными искажениями, соответствовало характеризации фазового перехода в ВаТіО3 как превращения типа смещения. Что касается титаната свинца, то в ряде работ обнаружено позиционное разупорядочение атомов свинца в кубической фазе, которые частично или полностью упорядочиваются в фазе Р4тт [14,15]. Определеннные из калориметрических данных величины энтропии перехода  $\Delta S_0 \approx (5.8-7.3) \text{ J/mol} \cdot \text{K} > R \ln 2$  подтверждают наличие в РbTiO<sub>3</sub> перехода порядок-беспорядок [13,16,17].

Как показал анализ зависимостей полной энтропии от температуры и давления S(T, p) для случая переходов порядок-беспорядок [11], сравнительно большие величины энтропии фазового перехода позволяют предполагать наличие в материале и значительного барокалорического эффекта (БКЭ). Правда, при этом немалую роль играет и величина барического коэффициента dT/dp, характеризующего восприимчивость температуры перехода к гидростатическому давлению. Информация о последнем параметре для PbTiO3 носит неоднозначный характер. Величины определенных в работах [18-21] коэффициентов dT/dp варьируются в широких пределах  $-(4 \div 18)$  K/kbar. Надежно установленным можно считать только, что барический коэффициент является нелинейной функцией давления. Но какова его величина при начальных условиях p = 0, достоверно не известно. Однако сведения такого рода можно получить из сопоставления температурных зависимостей теплоемкости и коэффициента теплового расширения в области фазового превращения в рамках соотношения Пиппарда [22].

Из сказанного выше ясно, что исследования теплофизических свойств, на которые не оказывает влияния величина проводимости образца, позволяют выполнить хоть и косвенные, но надежные оценки электрокалорической и барокалорической эффективности материалов. Безусловно, наиболее достоверная информация может быть получена при анализе данных о разных свойствах, исследованных на одном и том же образце.

В настоящей работе с целью определения интенсивных и экстенсивных параметров ЭКЭ и БКЭ в области сегнетоэлектрического фазового перехода выполнены исследования теплоемкости и теплового расширения PbTiO<sub>3</sub> в широком интервале температур.

# 2. Синтез, характеризация образцов, методы исследований

Образцы PbTiO<sub>3</sub> приготовлены по традиционной керамической технологии. В качестве исходных реактивов

использовались PbO и TiO2 квалификации ОСЧ, которые смешивались в стехиометрической пропорции 1:1. Из полученной гомогенной смеси были спрессованы таблетки, на которых проводился твердофазный синтез в воздушной атмосфере при 800°C в течение 24 h. Приготовленные образцы перетирались в агатовой ступке, и полученный порошок был паспортизован с помощью рентгеновского порошкового дифрактометра ДРОН-2 при комнатной температуре. Рентгенограмма соответствовала тетрагональной симметрии с параметрами ячейки a = 3.90061(7) Å, c = 4.1522(1) Å и величиной спонтанной деформации c/a = 1.0645, которые удовлетворительно соответствуют параметрам, определенным ранее на монокристаллических образцах [16]: a = 3.901(1) Å, c = 4.153(2) Å, c/a = 1.0646. Посторонних фаз в синтезированном образце PbTiO<sub>3</sub> не обнаружено

Высокотемпературные измерения теплоемкости  $C_p(T)$  РbTiO<sub>3</sub> от 360 до 970 К проведены на синхронном термоанализаторе STA 449 С Jupiter фирмы NETZSCH. Эксперименты выполнялись в потоке аргона с расходом 35 ml/min на нескольких образцах с массами 0.014–0.120 g в режимах нагрева и охлаждения со скоростью  $dT/d\tau = 5$  К/min. Калибровка калориметра проводилась с использованием стандратных эталонов (In, Ag<sub>2</sub>SO<sub>4</sub>, BaCO<sub>3</sub>, K<sub>2</sub>CrO<sub>4</sub>, KClO<sub>4</sub>). Точность определения теплоемкости оказалась в пределах, не превышающих 4–5% во всем интервале исследованных температур.

Измерения  $C_p(T)$  в низкзотемпературной области (80–300 K) были выполнены с помощью адиабатического калориметра на образце массой 0.0926 g в режимах дискрестных и непрерывных нагревов. Погрешность определения теплоемкости не превышала 0.5%. Более подробно методические особенности эксперимента описаны в [23].

Тепловое расширение исследовалось на дилатометре DIL-402C фирмы NETZSCH в температурном диапазоне 100—960 К в динамическом режиме со скоростями изменения температуры от 3 до 5 К/тпіп. Для калибровки и учета расширения измерительной системы использовались эталоны из корунда. Измерения проводились в режимах нагрева и охлаждения, что позволяло исследовать гистерезисные явления. Образцы для дилатометрических экспериментов были приготовлены в виде таблеток диаметром 4 mm и высотой  $\sim 4.8$  mm, спрессованных под давлением  $\sim 10$  kbar и подвергнутых спеканию в воздушной атмосфере при 800°C в течение 4 h.

# 3. Результаты исследований

3.1. Теплоемкость. Результаты измерений на синхронном термоанализаторе температурных зависимостей теплового потока Q(T) через образец PbTiO<sub>3</sub> представлены на рис. 1, *а*. Видно, что аномалии, связанные



**Рис. 1.** Зависимость теплового потока Q от температуры в режимах нагрева и охлаждения (a). Температурная зависимость молярной (b) и относительной аномальной (c) теплоемкости PbTiO<sub>3</sub>. Штриховая линия — решеточная теплоемкость.

с сегнетоэлектрическим фазовым переходом, являются весьма значительными, и поведение Q(T) характеризуется большой величиной температурного гистерезиса, составившего ~ 15 К.

Из данных о тепловом потоке, полученных в режиме нагрева, была рассчитана молярная изобарная теплоемкость титаната свинца. Температура  $T_0 = 763$  K, соответствующая максимальному значению теплоемкости и принятая за температуру перехода между сегнето- и параэлектрической фазами в PbTiO<sub>3</sub>, вполне удовлетворительно совпадает с температурами, определенными ранее как для кристаллических, так и для керамических образцов [13,16,17].

В результате низкотемпературных исследований  $C_p(T)$  на адиабатическом калориметре аномалий теплоемкости не обнаружено. Объединение низко- и высокотемпературных данных выполнено с использованием полиноминальной функции; общий вид теплоемкости показан на рис. 1, *b*.

Для определения интегральных характеристик фазового перехода выполнено разделение молярной теплоемкости PbTiO<sub>3</sub> на регулярную составляющую (решеточную теплоемкость)  $C_L$  и аномальный вклад  $\Delta C_p$ , связанный с возникновением поляризации ниже Т<sub>0</sub>. С этой целью экспериментальные данные  $C_p(T)$  вдали от  $T_0$ , а именно ниже 300 К и выше 850 К, аппроксимировались уравнением, содержащим функции Дебая и Эйнштейна ( $T_D = 332 \,\mathrm{K}$  и  $T_E = 850 \,\mathrm{K}$ ) и полином второй степени, учитывающий разность С<sub>p</sub>-V<sub>v</sub>. Зависимость  $C_L(T)$  показана штриховой линией на рис. 1, b. Аномальная теплоемкость, определенная как разность  $\Delta C_p = C_p - C_L$ , присутствует в широких интервалах температур кубической и тетрагональной фаз. Путем интегрирования функции  $\Delta C_p(T)$  во всем интервале ее сущестования (280-850) К определено изменение энтальпии  $\Delta H_0 = 5450 \pm 450$  J/mol. Эта величина оказалась ближе к  $\Delta H_0 = 4900$  J/mol, установленной в [17], и существенно превысила значение  $\Delta H_0 = 4150 \text{ J/mol}$ , определенное в [16]. Так как в дальнейшем при анализе экспериментальных данных нас будет интересовать главным образом величина  $\Delta C_p/T$ , то на рис. 1, *с* показана ее температурная зависимость. Связанное с фазовым переходом изменение энтропии составило  $\Delta S_0 = \int (\Delta C_p(T)/T) dT = 8.3 \pm 0.6 \text{ J/mol} \cdot \text{K}.$ 

3.2. Тепловое расширение. Температурные зависимости линейной деформации  $\Delta L/L_0$  и коэффициента линейного теплового расширения  $\alpha$  PbTiO<sub>3</sub>, измеренные в режимах нагрева и охлаждения, показаны на рис. 2. Наблюдалось удовлетворительное согласие результатов, полученных в нескольких сериях измерений. Видно, что для  $\Delta L/L_0$  и  $\alpha$  характерно аномальное поведение в широкой области температур, как и для теплоемкости (рис. 1, b). В тетрагональной фазе PbTiO<sub>3</sub> наблюдается уменьшение линейных, и, таким образом, объемных размеров с ростом температуры. Именно поэтому, в соответствии с уравнением Клапейрона-Клаузиуса  $dT/dp = \delta V/\delta S$ , температура фазового перехода в этом сегнетоэлектрике должна понижаться с ростом давления, что и обнаружено в работах [18-21]. Температура минимума коэффициента расширения  $T_{\min} = 767.5 \text{ K},$ принятая за температуру фазового перехода, и величина температурного гистерезиса  $\delta T_0 = 15 \,\mathrm{K}$  удовлетворительно согласуются с параметрами, определенными в калориметрических измерениях. Аномальный вклад в  $\alpha(T)$  присутствует в широкой области температур сегнетоэлектрической фазы (рис. 2, а).

В низкотемпературной области обнаружены аномалии  $\Delta L/L_0(T)$  и  $\alpha(T)$  при ~ 250 K и ~ 380 K (рис. 3, *a*), связанные соответственно с увеличением и уменьшением объема образца. Однако в результате рентгеновских исследований на температурных зависимостях параметров решетки аномального поведения при указанных



**Рис. 2.** Температурные зависимости коэффициента линейного теплового расширения (*a*) и деформации (*b*), измеренные в режимах нагрева (*1*) и охлаждения (*2*), в области сегнетоэлектрического фазового перехода. Штриховая линия — решеточный вклад.



**Рис. 3.** Результаты низкотемпературных измерений  $\Delta L/L_0(T)$  и  $\alpha(T)$  (*a*) и параметров тетрагональной ячейки (*b*).

температурах не наблюдалось (рис. 3, *b*). Не обнаружено также каких-либо аномалий и при исследовании диэлектрической проницаемости.

## 4. Анализ и обсуждение результатов

Вопрос о низкотемпературных фазовых переходах в PbTiO<sub>3</sub> обсуждался многими исследователями, и до сих пор нет единого мнения о возможности их существования. Аномальное поведение в тетрагональной фазе наблюдалось на температурных зависимостях поляризации и диэлектричкеской проницаемости [24], двупреломления [25] и теплового расширения [2]. Однако при этом соответстующие температуры аномалий сильно отличались, что наводило на мысль о связи наблюдаемых явлений с индивидуальными особенностями образцев. Однако данные, полученные нами на одном образце, показали аномальное поведение  $\Delta L/L_0(T)$  и  $\alpha(T)$  и отсутствие его в  $C_p(T)$ , a(T) и c(T).

4.1. О механизме фазового перехода  $Pm-3m \rightarrow P4mm$ . Определенная нами энтропия фазового перехода в PbTiO<sub>3</sub>  $\Delta S_0 = 8.3 \text{ J/mol} \cdot \text{K}$  удовлетворительно согласуется с данными  $\Delta S_0 = (7.7-8.6) \text{ J/mol} \cdot \text{K}$ , полученными в [17,26]. Очевидно, что столь значитель-

ные величины  $\Delta S_0 \approx R(\ln 2.5 - \ln 2.8)$  не соответствуют фазовым переходам типа смещения в перовскитоподобных кристаллах, для которых экспериментально установлены весьма небольшие изменения  $\Delta S_0 \leq 0.2R$  [27]. Известно, что величина энтропии пропорциональна параметру ангармоничности колебаний критических атомов  $\delta \approx \langle x^2 \rangle / a_0^2$  (где  $\langle x^2 \rangle$  — амплитуда среднеквардатичного смещения атомов) [12]. Предельному случаю ангармонизма соответствует позиционное (ориентационное) разупорядочение атомов (ионных групп) по нескольким эквивалентным кристаллографическим позициям N<sub>0</sub>. Упорядочение структурных элементов в результате понижения симметрии при фазовом переходе приводят к уменьшению числа эквивалентных позиций N<sub>1</sub>. Соответствующее изменение энтропии должно составить  $\Delta S = R \ln N_0 / N_1$ .

По результатам нейтронных и рентгеновских экспериментов предложена структурная модель PbTiO<sub>3</sub>, в которой атомы Pb разупорядочены в фазе Pm-3m, занимая равновероятно одну из шести позиций, связанных со смещением из положения (0, 0, 0) на ~ 0.2 Å в направлении  $\langle 001 \rangle$  [14,15]. В фазе P4mm происходит упорядочение атомов свинца в одном положении. При этом изменение энтропии должно составить  $\Delta S = R \ln 6$ . Экспериментально установленная нами величина оказалось меньше  $\Delta S_0 = R \ln 2.8$ . Таким образом, можно предположить, что атомы Pb при  $T < T_0$  остаются разупорядоченными.

4.2. Электрокалорический эффект. Выше упоминалось, что ЭКЭ может быть довольно надежно определен с использованием электрического уравнения состояния. Полученные данные об аномальной теплоем-кости PbTiO<sub>3</sub> (рис. 1, *b*) позволяют проверить применимость феноменологической теории к описанию фазового перехода  $Pm-3m \rightarrow P4mm$  путем анализа термодинамического потенциала [28]

$$\Delta \Phi = A_T (T - T_c) P^2 + B P^4 + C P^6.$$
(1)

В соответствии с одним из следствий теории [29] соотношения между коэффициентами (1) могут быть определены из данных об избыточной теплоемкости при  $T < T_0$ 

$$\left(\frac{\Delta C_p}{T}\right)^{-2} = \left(\frac{2\sqrt{B^2 - 3A_T C}}{A_T^2}\right)^2 + \frac{12C}{A_T^3} (T_0 - T).$$
 (2)

Анализ применимости уравнения (2) для описания данных, приведенных на рис. 1, *c*, проводился путем варьирования в широких пределах рассматриваемых интервалов температур. На рис. 4 представлены оптимальные результаты аппроксимации. Квадрат обратной относительной избыточной теплоемкости оказался линейной функцией температуры в весьма широком интервале  $\Delta T_L = (600-750)$  К. Отклонения данных от зависимости (2) по мере приближения к  $T_0$  связаны с размытием скрытой теплоты перехода, которое в керамическом образце неизбежно.

Из зависимости  $(\Delta C_p/T)^{-2}(T)$  были получены сведения о соотношениях коэффициентов потенци-ала (1):  $B/(A_T)^2 = -9(J/\text{mol} \cdot \text{K}^2)^{-1}$  и  $C/(A_T)^3 = 2.5(J/\text{mol} \cdot \text{K}^{3/2})^{-2}$ . Для определения непосредственно величин коэффициентов не хватает данных о температурной зависимости диэлектрической проницаемости, из которой рассчитывается константа Кюри-Вейсса СС-W и связанный с ней коэффициент  $A_T = 2\pi/C_{C-W}$ . Как отмечено выше, в соответствии с данными разных исследователей, величины C<sub>C-W</sub> для PbTiO<sub>3</sub> варьируются в очень широких пределах [3,4]. Это обстоятельство, безусловно, в немалой степени определяется включаемым в анализ интервалом температур. Например, в [16] было показано, что для одного и того же образца могут быть выбраны значения  $C_{C-W}$ , отличающиеся почти в два раза. В то же время константа СС-W является размерной характеристикой близости фазового перехода к трикритической точке, так как связана с разностью между температурами фазового перехода



**Рис. 4.** Поведение аномальной теплоемкости  $PbTiO_3$  в фазе *Р4mm* в соответствии с уравнением (2).



**Рис. 5.** Термодинамическая поверхность *P*-*E*-*T* сегнетоэлектрика PbTiO<sub>3</sub>.



**Рис. 6.** Температурная зависимость интенсивного ЭКЭ для PbTiO<sub>3</sub> в электрическом поле E = 1.5 kV/cm (*a*). Влияние электрического поля на  $(\Delta T_{AD}^{ECE})_{MAX}$  (*b*).

первого рода  $T_0$  и Кюри–Вейсса  $T_C$ . С использованием найденных соотношений коэффициентов (1) и уравнения  $T_0-T_C = B^2/4A_TC$  [29] мы определили искомую разность  $T_0-T_c = 8.1$  К. В соответствии с этой величиной выбрана  $C_{C-W} = 5.7 \cdot 10^5$  К. В результате величины коэффициентов оказались равны:  $A_T = 1.1 \cdot 10^{-5}$  K<sup>-1</sup>,  $B = -2.9 \cdot 10^{-8}$  (J/mol)<sup>-1</sup>,  $C = 4.6 \cdot 10^{-13}$  (J/mol)<sup>-2</sup>.

Анализ электрического уравнения состояния  $-E = 2A_T(T - T_c)P + 4BP^3 + 6CP^5$  позволил построить термодинамическую поверхность P - E - T (рис. 5). Рассчитанная величина поляризации  $P_s = 46\,\mu\text{C}\cdot\text{cm}^{-2}$  при комнатной температуре и E = 0 вписывается в интервал значений  $P_s = (40 - 80)\,\mu\text{C}\cdot\text{cm}^{-2}$ , полученных разными авторами [3]. При расчетах мы предполагали, что небольшие электрические поля практически не влияют на коэффициенты термодинамического потенциала. Основанием для такого допущения послужили результаты наших исследований кристаллов семейства гидросульфата аммония [11], которые свидетельствуют об удовлетворительном согласии экспериментальных и рассчитанных температурных зависимостей ЭКЭ.

Изменение температуры сегнетоэлектрика под влиянием внешнего электрического поля в адиабатных условиях представляет собой интенсивный  $\Delta T_{AD}^{ECE}$  ЭКЭ. Этот параметр можно определить путем анализа поверхности P-E-T в соответствии с уравнением  $\Delta T_{AD}^{ECCE} = -(T/C_{p,E}) \int (\partial P/\partial T)_{p,E} dE$  [2]

Из рис. 6, *а* следует, что величина интенсивного ЭКЭ  $\Delta T_{AD}^{ECE}$  в PbTiO<sub>3</sub> даже в полях ~ 1.5 kV/cm оказывается значительной и превосходит соответствующие величины в известных сегнетоэлектриках [10,11]. Однако максимальная величина ( $\Delta T_{AD}^{ECE}$ )<sub>МАХ</sub> нелинейно зависит от напряженности электрического поля и стремится к насыщению (рис. 6, *b*).

4.3. Барокалорический эффект. Для оценки барокалорической эффективности PbTiO<sub>3</sub> использован подход, предложенный в [11] и основанный на анализе



**Рис. 7.** Соотношение теплоемкости и коэффициента объемного теплового расширения PbTiO<sub>3</sub> при  $T < T_0$  (*a*) и  $T > T_0$  (*b*).

диаграммы энтропия-температура-давление *S*-*T*-*p*. Температурное поведение полной энтропии, являющейся суммой решеточного и аномального вкладов  $S = S_L$  $+\Delta S_0$ , было определено из данных о теплоемкости  $S = \int (C_p/T) dT$ , полученных в настоящей работе. Исследования влияния гидростатического давления на диэлектрическую проницаемость титана свинца показали [19,30], что при  $p \le 1$  kbar константа Кюри уменьшается с ростом давления незначительно  $dC_{C-W}/dp \approx -4.5 \cdot 10^3$  K/kbar, то есть для нашего образца ( $C_{C-W} = 5.7 \cdot 10^5 \,\text{K}$ ) это изменение не превышает 1%. Таким образом, коэффициент  $A_T$  в (1) и, соответственно, энтропия фазового перехода, определяемая как  $\Delta S = A_T P^2$  [29], мало чувствительны к изменению давления. Сравнительно небольшие давления, безусловно, не окажут существенного влияния и на решеточную энтропию.

Как было указано ранее, сведения о  $(dT_0/dp)_{p=0}$  для PbTiO<sub>3</sub> неоднозначны и не всегда достаточно надежны. Так например, в [19] (-8.4 K/kbar) авторы, во-первых, не определяли значение  $T_0$  при p = 0, а использовали

данные [30]. И, во-вторых, зависимость  $T_0(p)$  исследована для p > 13 kbar с дальнейшей экстраполяцией на область давлений 0–13 kbar.

Располагая сведениями о зависимостях  $C_p(T)$  и  $\alpha(T)$ , можно оценить начальный наклон линии фазового перехода  $Pm-3m \rightarrow P4mm$  на диаграмме T-p, характеризуемый барическим коэффициентом  $(dT_0/dp)_{p=0}$ , используя уравнение Пиппарда [22]. Соотношение между  $C_p(T)$  и  $\beta(T)$  описывается линейной зависимостью

$$C_p = \beta V T_0 / (dT_0/dp)_{p=0} + \text{const.}$$
(3)

Здесь  $\beta = 3\alpha$  — коэффициент объемного теплового расширения.

На рис. 7 экспериментальные данные для сегнето- и параэлектрической фаз представлены в соответствии с уравнением (3).

Видимо, что ожидаемая линейная зависимость между  $C_p$  и  $\beta$  выполняется при  $T < T_0$  и  $T > T_0$  соответственно в интервалах температур 750.6–761.5 К и 764.3–767.8 К. Величины барического коэффициента  $(dT_0/dp)_{p=0}$  для обеих фаз оказались равны в пределах точности их опредения  $(-14.0 \pm 1.4)$  K/kbar.

Полученные в работе данные о S(T) и  $(dT_0/dp)_{p=0}$  позволяют оценить интенсивный и экстенсивный БКЭ,



**Рис. 8.** Температурные зависимости интенсивного (a) и экстенсивного (b) БКЭ при p = 0.1 (1); 0.2 (2); 0.3 (3) kbar.

| Сегнетоэлектрик                                             | $T_0, K$   | <i>E</i> ,<br>kV/cm | $\Delta T_{ m AD}^{ m ECE},$<br>K | $\Delta S^{ m ECE}$ ,<br>J/kg · K | <i>p</i> , kbar | $\Delta T_{ m AD}^{ m BCE}$ ,<br>K | $\Delta S^{ m BCE}$ ,<br>J/kg · K | Литературная<br>ссылка |
|-------------------------------------------------------------|------------|---------------------|-----------------------------------|-----------------------------------|-----------------|------------------------------------|-----------------------------------|------------------------|
| PbTiO <sub>3</sub>                                          | 763        | 1.5                 | 1.9                               | -2.2                              | 0.260           | -1.9                               | 2.7                               |                        |
| NH <sub>4</sub> HSO <sub>4</sub><br>0.85PMN-0.15PT          | 160<br>293 | 16                  | 1.6                               |                                   | 0.030           | 1.9                                | -80                               | [11]<br>[8]            |
| (керамика – 11111)<br>0.93PMN – 0.07PT<br>(пленка – 210 mm) | 298        | 210                 | 2                                 |                                   |                 |                                    |                                   | [9]                    |

Параметры калорических эффектов в области фазовых переходов в ряде сегнетоэлектриков

представляющие собой изменение температуры  $\Delta T_{AD}^{BCE}$  (при S = const) и энтропии  $\Delta S^{BCE}$  (при T = const) под влиянием гидростатического давления. Положение аномальной энтропии  $\Delta S_0$  на зависимости S(T) (относительно шкалы температур) определяется барическим коэффициентом

$$S(T, p) = S_L(T) + \Delta S_0 \left( T + \frac{dT_0}{dp} \cdot p \right).$$
(4)

Величина экстенсивного БКЭ может быть определена как разность полных энтропий под давлением и без давления  $\Delta S^{\text{BCE}}(T, p) = S(T, p \neq 0) - S(T, p = 0).$ 

давления  $\Delta S^{BCE}(T, p) = S(T, p \neq 0) - S(T, p = 0)$ . Связь между  $\Delta S^{BCE}$  и  $\Delta T_{AD}^{BCE}$  устанавливается соотношением  $\Delta T_{AD}^{BCE} = -(T/C_p)\Delta S^{BCE}$  [31]. В соответствии со знаком  $dT_0/dp$  БКЭ в РbTiO<sub>3</sub> является обратным — с ростом давления температура понижается, а энтропия растет. Величины интенсивного и экстенсивного БКЭ даже при сравнительно невысоких давлениях оказались весьма большими (рис. 8, *a*, *b*).

Представляет интерес определение величин электрического поля и давления, необходимых для реализации одних и тех же значений  $\Delta T_{AD}$  и  $\Delta S$ , связанных с ЭКЭ и БКЭ в одном материале. В случае PbTiO<sub>3</sub> для получения одинаковых по модулю величин  $\Delta T_{AD}^{ECE}$  и  $\Delta T_{AD}^{BCE}$  напряженность электрического поля и гидростатическое давление оказываются весьма низкими (см. таблицу). Из таблицы также видно, что по барокалорической эффективности титанат свинца уступает NH<sub>4</sub>HSO<sub>4</sub> вследствие его гигантского барического коэффициента dT/dp = 76.5 K/kbar [11]. С другой стороны, ЭКЭ в твердых растворах на основе релаксоров оказывается более энергозатратным по сравнению с PbTiO<sub>3</sub>.

# Заключение

Поведение аномальной теплоемкости PbTiO<sub>3</sub> в широкой области температур удовлетворительно описывается в рамках феноменологической теории фазовых переходов, что позволило надежно определить коэффициенты термодинамического потенциала. Величина энтропии фазового перехода согласуется с моделью разупорядочения атомов свинца в фазе Pm-3m, упорядочивающихся в тетрагональной фазе. Анализ электрического уравнения состояния P(T, E) показал, что PbTiO<sub>3</sub> обладает значительными величинами интенсивного и экстенсивного ЭКЭ. Установлена связь между теплоемкостью и тепловым расширением в рамках уравнения Пиппарда и определен барический коэффициент  $(dT_0/dp)_{p=0}$ . Путем анализа диаграммы S(T, p) исследована барокалорическая эффективность. Показано, что значительные величины ЭКЭ и БКЭ в титанате свинца могут быть реализованы при сравнительно небольших значениях электрического поля и гидростатического давления.

Авторы признательны Е.И. Погорельцеву за результаты измерений диэлектрической проницаемости.

# Список литературы

- Ф. Иона, Д. Ширане. Сегнетоэлектрические кристаллы. Мир, М. (1965). 556 с.
- [2] Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, М.С. Шур. Сегнетоэлектрики и антисегнетоэлектрики. Наука, М. (1971). 476 с.
- [3] Е.Г. Фесенко, В.Г. Гавриляченко, Е.В. Зароченцев. Изв. АН СССР. Сер. физ. 34, 2541 (1970).
- [4] В.Г. Гавриляченко, Р.И. Спинко, М.А. Мартыненко, Е.Г. Фесенко. ФТТ 5, 1532 (1970).
- [5] К.С. Александров, Б.П. Сорокин, С.И. Бурков. Эффективные пьезоэлектрические кристаллы для акустоэлектроники, пьезотехники и сенсоров. СО РАН, Новосибирск (2007). Т. 1. 501 с.
- [6] S.E. Park, T.R. Shrout. J. Appl. Phys. 82, 1804 (1997).
- [7] M. Valant, L.J. Dunne, A.K. Axelsson, N.M. Alford, G. Manos, J. Perantie, J. Hagberg, H. Jantunen, A. Dabkowski. Phys. Rev. B 81, 214110 (2010).
- [8] L. Shaobo, L. Yanqiu. Mater. Sci. Eng. B 113, 46 (2004).
- [9] T.M. Correia, J.S. Young, R.W. Whatmore, J.F. Scott, N.D. Mathur, Q. Zhang. Appl. Phys. Lett. 95, 182904 (2009).
- [10] И.Н. Флеров, Е.А. Михалева. ФТТ 50, 461 (2008).
- [11] Е.А. Михалева, И.Н. Флеров, В.С. Бондарев, М.В. Горев, А.Д. Васильев, Т.Н. Давыдова. ФТТ 53, 478 (2011).
- [12] В.Г. Вакс. Введение в микроскопическую теорию сегнетоэлектриков. Наука, М. (1973) 328 с.
- [13] G. Shirane, S. Hoshino. J. Phys. Soc. 6, 265 (1951).
- [14] R.J. Nelmes, R.O. Piltz, W.F. Kuhs, Z. Tun, R. Restori. Ferroelectrics 108, 165 (1990).
- [15] J. Kwapuliński, J. Kusz, H. Böhm, J. Dec. J. Phys.: Cond. Matter 17, 1825 (2005).
- [16] G.A. Rossetti Jr, N. Maffei. J. Phys.: Cond. Matter 17, 3953 (2005).

- [17] T. Yoshida, Y. Moriya, T. Tojo, H. Kawaji, T. Atake, Y. Kuroiwa. J. of Thermal Analysis and Calorimetry 95, 675 (2009).
- [18] С.С. Кабалкина, Д.Ф. Верещагин. ДАН СССР **143**, 818 (1962).
- [19] G.A. Samara. Ferroelectrics 2, 277 (1971).
- [20] A. Sani, M. Hanfland, D. Levy. J. Solid State Chem. 167, 446 (2002).
- [21] С.Г. Джабаров, Д.П. Козленко, С.Е. Кичанов, А.В. Белушкин. Б.Н. Савенко, Р.З. Мехтиева, К. Лате. ФТТ 53, 2185 (2011).
- [22] Н. Парсонидж, Л. Стейвли. Беспорядок в кристаллах. Мир, М. (1982) 436 с.
- [23] В.С. Бондарев, А.В. Карташев, А.Г. Козлов, И.Я. Макиевский, И.Н. Флеров, М.В. Горев. Автоматизация калориметрических установок. Препринт ИФ СО РАН № 829Ф. Красноярск (2005). 40 с.
- [24] Sh. Nomura, J. Kobayashi. J. Phys. Soc. Jpn. 13, 114 (1958).
- [25] J. Kobayashi, Y. Uesu, Y. Sakemi. Phys. Rev. B 28, 3866 (1983).
- [26] V.G. Bhide, M.S. Hegde, K.G. Deshmukh. J. Am. Ceram. Soc. 51, 565 (1968).
- [27] I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi. Mater. Sci. Eng. R24, 81 (1998).
- [28] Л.Д. Ландау, Е.М. Лившиц. Статистическая физика. Наука, М. (1964) 568 с.
- [29] К.С. Александров, И.Н. Флеров. ФТТ 21, 327 (1979).
- [30] J.P. Remeika, A.M. Glass. Mater. Res. Bull. 5, 37 (1970).
- [31] И.Н. Флеров, М.В. Горев, А. Трессо, Н.М. Лапташ. Кристаллография **56**, 13 (2011).