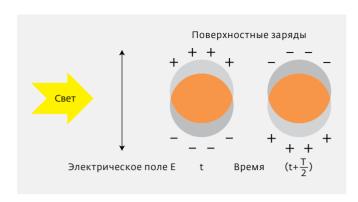
ОПТИЧЕСКИЕ ЭФФЕКТЫ В МЕТАЛЛИЧЕСКИХ НАНОКОЛЛОИДАХ

С.Карпов, д.ф.-м.н., Институт физики им. Л.В.Киренского СО РАН, Красноярск, karpov@iph.krasn.ru

Коллоидные системы - яркий пример того, как фрагментирование вещества до частиц нанометровых размеров приводит к появлению у него качественно новых физических свойств. Появление интенсивной окраски золей благородных металлов и причины ее резкой изменчивости постоянно находятся в поле зрения как коллоидной химии, так и оптики золей. Какова природа резонансного оптического поглощения металлических наночастиц? Со времен классических трактатов Фарадея, посвященных свойствам золей металлов, и до наших дней эти вопросы еще не получили статуса окончательно решенных.


вет золей благородных металлов, с одной стороны, обусловливается истинным поглощением света частицами, с другой - на него влияет и рассеяние света. Для низкоконцентрированных золей последний фактор играет незначительную роль, однако в них также наблюдаются все основные закономерности, связанные с резкими изменениями окраски [1-3]. Действительно, какова природа резонансного оптического поглощения металлических наночастиц? Коллоидные системы являются ярким примером того, как фрагментирование вещества до размеров нанометровых частиц приводит к появлению у него качественно новых физических свойств. Наиболее ярким примером кардинального изменения свойств вещества в условиях уменьшения размеров образцов является изменение оптических характеристик малых металлических частиц. Характеристики частиц могут очень сильно отклоняться от поведения материала, из которого они состоят. Такие частицы способны поглощать электромагнитное излучение в тех спектральных диапазонах, где микрообразцы того же самого вещества вообще не поглощают излучения. Именно эти особенности являются причиной появления уникальной цветовой гаммы у коллоидного серебра в жидкостях или диэлектрических матрицах при полном отсутствии цветовых оттенков у макрообразцов. Аналогичные свойства обнаруживаются

и у коллоидов золота, и у некоторых других благородных металлов.

Подобные эффекты с участием малых частиц являются объектом активных исследований и находят многочисленные применения как в научных, так и в практических целях. Спектры поглощения малых металлических частиц в большинстве случаев характеризуются важной отличительной особенностью - интенсивной полосой, лежащей в УФ- или видимом диапазоне спектра, отсутствующей у макрообразцов. Происхождение этой полосы связано с коллективным движением электронов частицы в поле электромагнитной волны, ограниченном поверхностью. Это выражается в появлении так называемого поверхностного плазмонного резонанса. Природа плазмонного поглощения связана с тем, что под действием электрического поля падающей электромагнитной волны электроны проводимости в малой частице смещаются относительно положительно заряженного ионного остова (рис.1). Это смещение носит коллективный характер, при котором движение электронов оказывается согласованным по фазе. Однако коллективным движение электронов становится лишь в отсутствие затухания - в том случае, если средняя длина свободного пробега электронов в металле превышает размер частицы. Поскольку в электрическом поле электроны проводимости в малой

ОПТИЧЕСКИЕ ИЗМЕРЕНИЯ

Рис. 1. Распределение зарядов на поверхности малой металлической частицы в электрическом поле световой волны в разные моменты времени (Т – период колебаний)

частице стремятся сконцентрироваться вблизи ее поверхности, то такая поверхностная волна электронной плотности перераспределяется с одного полюса частицы на другой с частотой внешнего поля (см.рис.1).

Если **качественно** описывать коллективное движение электронов в частице под действием

периодической вынуждающей силы в рамках осцилляторной модели Лорентца, то мы придем к выводу о наличии собственной, резонансной частоты таких коллективных колебаний электронов в частице. Резонансная частота $\omega_{\rm pl} = \sqrt{K_{\rm t}/m_{\rm e}}$ определяется эффективной массой электронов $m_{\rm e}$ и коэффициентом упругости $K_{\rm t}$, характеризующим связь электронов проводимости с ионным остовом.

Одиночные сферические Ag-частицы имеют резонансную полосу поглощения на длине волны возбуждения поверхностных плазмонов – $\lambda_{\rm pl} \approx 400$ нм (при диэлектрической проницаемости окружающей среды $\epsilon_{\rm h} = 1,78$ в случае воды) – см. кривые на рис.2а. Отметим важное преимущество серебра перед другими металлами – его плазмонный резонанс изолирован и лежит в стороне от полосы межзонного поглощения (λ <340 нм). Это позволяет использовать Ag-коллоиды в качестве удобной модельной среды и выявлять с их помощью основные спектральные закономерности, сопровождающие структурообразование в коллоидных системах.

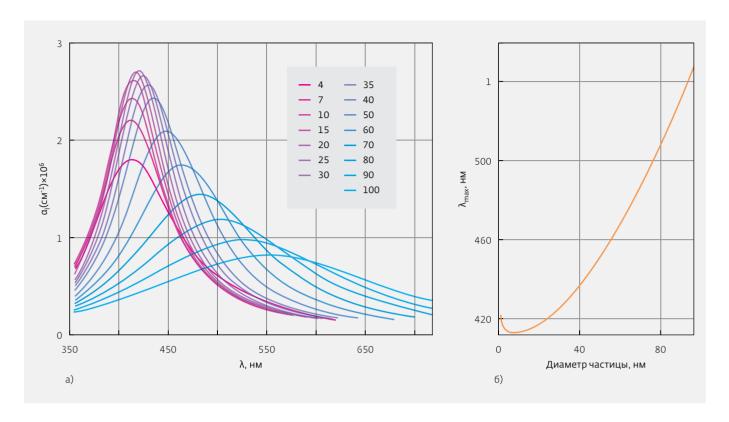
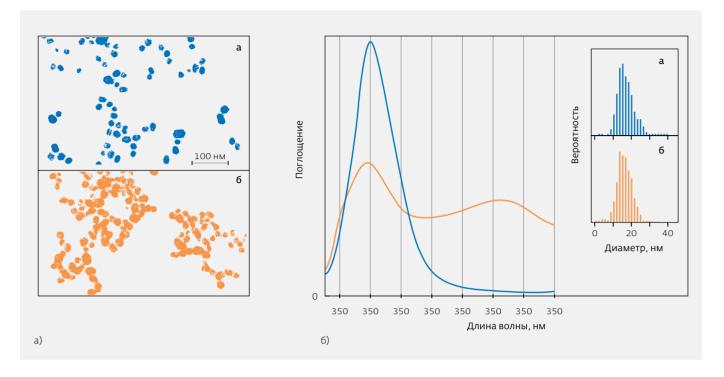


Рис.2. Зависимость положения максимума спектра экстинкции монодисперсного Ад-золя от размера частиц в нанометрах


Наиболее распространенная точка зрения на проблему цветовой изменчивости коллоидных систем с момента появления известной работы Ми [4] (см. также [2]) была основана на идее спектральной селективности рассеяния и поглощения, которая определяется размером частиц. Согласно этой идее, изменение спектров экстинкции коллоидов благородных металлов связано с зависимостью положения максимума полосы поглощения (или рассеяния) от размера частиц. Появление же в спектре поглощения длинноволнового крыла является результатом произвольного увеличения первоначальных размеров частиц, находящихся в коллоиде.

Пример расчетов с помощью теории Ми спектров экстинкции для сферических частиц серебра определенного диаметра с учетом первого порядка электрической компоненты парциальных волн, описывающих рассеянное электромагнитное поле, приведен на рис. За (цифры над каждой кривой означают диаметр частиц в нанометрах), расчет выполнен в [5]. На рис. 3б показана зависимость положения спектрального максимума полосы экстинкции от размера частиц. Как видно из рисунка, в диапазоне наиболее характерных значений

размеров (5-30 нм) эта зависимость выражена слабо.

Ограничения, накладываемые на рассмотрение эффекта эволюции спектров экстинкции коллоидов вследствие изменения размеров частиц, сводились, главным образом, к условию сохранения частицами сферической формы. Классическая теория Ми чаще всего привлекалась для интерпретации спектров экстинкции золей металлов (напр., [5, 6]), однако в этом случае основная трудность состояла в том, что достижение относительного соответствия расчетных и экспериментальных данных требовало существования в золе частиц, попадающих в слишком широкий диапазон размеров. При этом максимальный размер частиц должен существенно превышать характерные для типичных золей металлов значения (до 100 нм и более), при которых коллоидная система может потерять седиментационную устойчивость* (см. рис.2а).

^{*} Седиментационная устойчивость - способность системы противостоять действию силы тяжести, является функцией размеров частиц дисперсной фазы, понижается с укрупнением коллоидных частиц. - Прим.ред.

Рис.3. Взаимосвязь степени агрегации дисперсной фазы гидрозоля серебра и его спектров плазмонного поглощения: а) микроизображения дисперсной фазы на разных этапах агрегации; б) соответствующие им спектры плазмонного поглощения. На врезке – функции распределения частиц по размерам [7]

СТЕПЕНЬ АГРЕГАЦИИ КОЛЛОИДНОЙ СИСТЕМЫ И СПЕКТРЫ ЭКСТИНКЦИИ. МОДЕЛИ И МЕТОДЫ РАСЧЕТА СПЕКТРОВ ЭКСТИНКЦИИ

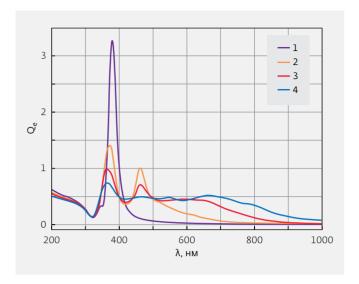
Разногласия с интерпретациями спектров экстинкции гидрозолей, которые базируются на теории Ми, обнаружились, в частности, и в наших наблюдениях. Когда мы наблюдали за изменением этих спектров у нескольких типов гидрозолей серебра, содержащих сферические частицы с диаметром порядка 5-25 нм, то заметили, что в одном из них размеры частиц изменялись, в другом - сохранялись стабильными [3]. Несмотря на это, в обоих случаях спектральные изменения в гидрозолях носили сходный характер. На те же противоречия обращают внимание авторы работы [7]. Они целенаправленно контролировали с помощью электронного микроскопа статистическую функцию распределения частиц по размерам в гидрозолях золота и серебра в процессе резкого уширения спектров поглощения. Авторы показали, что в этом процессе функция распределения частиц по размерам, ограниченная диапазоном размеров 5-25 нм, практически не изменяется (см. рис.2). То есть и в данной работе роль фактора изменения размера

частиц в исследованном диапазоне признана несущественной.

Подробный обзор работ по вопросу размерной зависимости частоты резонансного поглощения металлических наночастиц можно найти, в частности, в [1, 8]. Авторы этих обзоров отмечали взаимную противоречивость многих теоретических и экспериментальных результатов. Это подтверждает отсутствие адекватных теорий.

На фоне накопившихся противоречий был предпринят новый подход к описанию оптических свойств коллоидных систем [9-12]. В этих работах изложены основы метода связанных диполей (СД) в различных его вариантах. Метод СД базируется на учете фактора электродинамического взаимодействия частиц, входящих в состав коллоидных агрегатов. В соответствии с этой теорией, основной причиной уширения спектров золей является агрегация частиц. Как уже упоминалось, к точно такому же закономерному выводу о роли агрегации уже более полувека назад приходили авторы многих работ. Эта же точка зрения разделяется и авторами вышеупомянутой работы [7], и лишь отсутствие теоретической базы не позволило им обоснованно подойти к объяснению полученных результатов.

ОПТИЧЕСКИЕ ИЗМЕРЕНИЯ

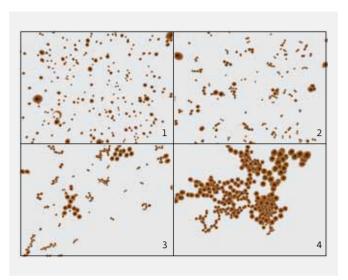

В [11,12], в частности, подтверждено, что в спектрах любых частиц, входящих в состав коллоидных агрегатов, обнаруживаются признаки сильного влияния соседних частиц. приводит к существенному сдвигу частоты собственных плазмонных резонансов частиц (ω_{nl}) . Причина сдвигов резонансных частот, как уже отмечалось, связана с дипольдипольным (а в общем случае с мультипольным) взаимодействием частиц (при доминирующем влиянии ближайшей частицы). При этом оптические дипольные возбуждения в агрегатах локализуются в отдельных частицах, а разные участки агрегата (разные частицы) поглощают свет независимо. Данная особенность лежит в основе эффекта оптической памяти неупорядоченных плазмонно-резонансных коллоидных структур.

Известно, что коагуляция частиц в коллоидах сопровождается образованием неупорядоченных коллоидных структур фрактального типа, в которые объединяется в процессе эволюции золя большинство первоначально изолированных частиц. Это происходит под вандерваальсова притяжения, а также противостоящих ему сил упругости деформируемых полимерных адсорбционных слоев частиц, а также электростатических сил, возникающих при перекрытии двойных электрических слоев частиц [13]. Причем эти взаимодействия проявляются в условиях действия диссипативных сил вязкого и касательного трения, а также случайной гидродинамической силы.

В упрощенном приближении метода СД (с учетом влияния лишь ближайших соседних частиц), позволяющем объяснить суть основной идеи наиболее наглядно, величина частотного сдвига собственного резонанса і-й частицы под влиянием частицы j составляет $\Delta\omega_{\rm pl} \propto r_{\rm ii}^{-3}$, где $r_{\rm ij}$ – расстояния между геометрическими центрами частиц. Именно расстояния между частицами являются одним из критически важных параметров.

Можно показать, что наблюдаемые особенности спектров экстинкции коллоидов серебра, так

Рис.4. Спектры плазмонного поглощения ансамбля (N = 500) коагулирующих в объеме Ag-частиц диаметром 12 нм, межчастичный зазор 0,6 нм; кривые 1 – 4 соответствуют эволюции спектра в процессе объединения частиц в один агрегат (этапы 1–4, рис.5)


же как и причины формирования их длинноволнового крыла, находят объяснение на основе метода СД.

ОСНОВНЫЕ УРАВНЕНИЯ МЕТОДА РАСЧЕТА СПЕКТРОВ ЭКСТИНКЦИИ АГРЕГАТОВ НАНОЧАСТИЦ

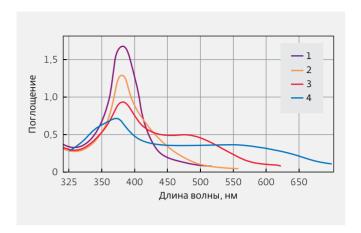
К числу непрямых методов контроля процесса агрегации коллоидных систем можно отнести наблюдение эволюции их спектров экстинкции. Приведем основные уравнения метода СД, позволяющие установить взаимосвязь межу спектрами экстинкции и процессом агрегации [11].

При расчетах спектров экстинкции учитывается структура агрегата, состоящего из частиц, а также взаимодействие между ними, что достаточно адекватно описывается в рамках метода СД для набора из N поляризуемых внешним полем частиц.

В данном методе рассматривается взаимодействие плоской электромагнитной волны $\vec{E}(\vec{r},t)=\vec{E}^{(0)}\exp(i\vec{k}\cdot\vec{r}-i\omega t)$ с агрегатом из N сферических наночастиц, расположенных в точках $\vec{r}_1,\vec{r}_2,...\vec{r}_N$ и взаимодействующих друг с другом и внешним полем через поля, создаваемые дипольными моментами. Светоиндуцированные дипольные моменты, наводимые на частицах, имеют вид $\vec{d}_i=\vec{\chi}_0\vec{E}_i$, где \vec{E}_i – локальное поле, действующее на частицу

Puc.5. Этапы агрегации ансамбля частиц, рассчитанные методом молекулярной динамики

с изотропной поляризуемостью $\vec{\lambda}_0$. Размеры частиц предполагаются много меньше длины волны излучения.


Выражение для дипольной поляризуемости сферической частицы радиуса R_i с учетом самовоздействия осциллирующего диполя имеет вид

$$\chi_0 = R_i^3 \frac{\epsilon(R_i) - \epsilon_h}{\epsilon(R_i) + 2\epsilon_h - i(2/3)(k \cdot R_i)^3 \left[\epsilon(R_i) - \epsilon_h\right]},$$

где $\varepsilon=\varepsilon'+\varepsilon''$ – диэлектрическая проницаемость материала частицы, $\varepsilon_{\rm h}$ – диэлектрическая проницаемость окружающей среды, k – волновое число. Зависящая от размера металлической частицы диэлектрическая проницаемость $\varepsilon(R_{\rm i})$ модифицируется в соответствии с выражением

$$\epsilon(R_{_{i}})\!=\!\epsilon_{_{tab}}\!+\!\omega_{_{D}}^{2}/\!\left[\omega(\omega\!+\!i\gamma_{_{bulk}})\right]\!-\!\omega_{_{D}}^{2}/\!\left[\omega(\omega\!+\!i\gamma(R_{_{i}})\right]\!,$$

где ε_{tab} – табулированные данные по спектральной зависимости диэлектрической проницаемости макрообразца металла, ω_{p} – плазменная частота металла, γ_{bulk} – константа релаксации для макрообразца, значение которой определяется рассеянием электронов на дефектах кристаллической решетки, на фононах и электронах. При значениях диаметра частиц $2R_{\text{i}}$ менее 10 нм однородная ширина спектра поверхностного плазмона $\gamma(R_{\text{i}})$ начинает возрастать относительно γ_{bulk} вследствие релаксационных эффектов на границах частицы и появления

Puc.6. Изменение спектра поглощения гидрозоля серебра с увеличением степени агрегации (экспериментальные данные)

дискретного спектра электронных состояний. В простейшем случае для оценки этих эффектов можно воспользоваться следующим выражением для константы релаксации:

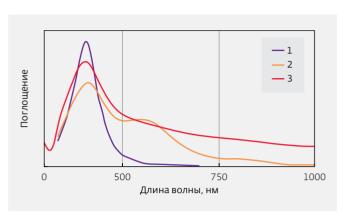
$$\gamma(R_i) = \gamma_{\text{bulk}} + A \frac{V_F}{R_i},$$

где $v_{\rm F}$ – скорость электронов у поверхности Ферми. Значение константы A лежит в диапазоне 0,7 – 1, и чаще всего в расчетах ее принимают равной 1.

Дипольный момент i-й частицы агрегата взаимодействует с внешним полем и с самосогласованным полем, создаваемым всеми другими (j-ми) частицами агрегата, подчиняясь уравнениям метода связанных диполей:

$$d_{i\alpha} = \chi_0 \left[E_{\alpha}^{(0)} \exp(i\vec{k} \cdot \vec{r}_i) + \sum_{j=1, j \neq i}^{N} G_{\alpha\beta}(\vec{r}_{ij}) d_{j\beta} \right]. \tag{1}$$

Здесь χ_0 – поляризуемость частиц, $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$, а также подразумевается суммирование по дважды повторяющимся греческим индексам.


Тензор межчастичного взаимодействия $G_{\alpha\beta}$ с учетом того, что размер агрегата наночастиц может превышать длину волны излучения, определяется выражением

$$G_{\alpha\beta}(\vec{r}) = k^{3} \left(A(kr + \delta_{\alpha\beta} + B(kr) \frac{r_{\alpha}r_{\beta}}{r^{2}} \right),$$

$$A(x) = (x^{-1} - 3ix^{-2} + 3x^{-3}) \exp(ix),$$

$$B(x) = (-x^{-1} - 3ix^{-2} + 3x^{-3}) \exp(ix),$$

где α и β означают декартовы компоненты вектора.

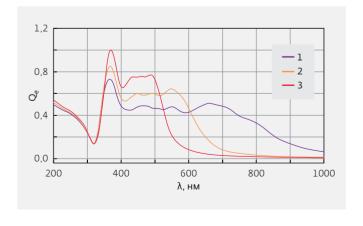


Рис.7. Спектры экстинкции гидрозолей серебра с полимерной (2) и электростатической (3) стабилизацией [3] (при начальной стадии агрегации (1) спектры совпадают)

3N-мерная система уравнений (1) представляет собой систему алгебраических уравнений относительно декартовых компонент векторов дипольных моментов. Решением этой системы является набор комплексных векторов $\bar{d}_i(1 \le i \le N)$, который может быть использован для расчета оптических характеристик агрегата наночастиц. Методы решения системы уравнений (1) описаны во многих работах, в частности, в [11, 12].

Для вычисления оптических сечений экстинкции, рассеяния и поглощения $\sigma_e, \sigma_s, \sigma_a$ важное значение имеет амплитуда рассеяния $f(\vec{k}')$ в направлении произвольного единичного вектора $\vec{k}' \left(|\vec{k}'| = |\vec{k}| = 2\pi/\lambda \right)$:

$$f(\vec{k}') = k^2 \sum_{i=1}^{N} \left[\vec{d}_i - (\vec{d}_i \cdot \vec{k}') \vec{k}' / k^2 \right] exp(-i\vec{k}' \cdot r_i).$$

Puc.8. Зависимость спектров экстинкции одного и того же Ag-агрегата (N = 500) от межчастичного зазора h: 1) h = 0,6 μ ; 2) h = 1,0 μ ; 3) h = 1,5 μ

Для дифференциального сечения рассеяния имеет место соотношение

$$d\sigma_{s}/d\Omega = |f(\vec{k})^{2}|, \qquad (2)$$

где $d\Omega$ – элемент телесного угла в направлении рассеяния. Полное сечение рассеяния при известной поляризуемости получается интегрированием (2):

$$\sigma_{s} = \int \left| f(\vec{k})^{2} \right| d\Omega. \tag{3}$$

Производя интегрирование (2), получим выражения для сечений экстинкции и поглощения:

$$\sigma_{e} = (4\pi/k) \text{Im} \left[f(\vec{k}) \cdot \vec{E}^{(0)^{*}} \right] / \left| \vec{E}^{(0)} \right|^{2} =$$

$$(4\pi/k) \text{Im} \sum_{i=1}^{N} \vec{d}_{i} \cdot \vec{E}^{*}(\vec{r}_{i}) / \left| E^{(0)} \right|^{2},$$
(4)

$$\sigma_{a} = (4\pi/k)y_{a} \sum_{i=1}^{N} \left| \vec{d}_{i} \right|^{2} / \left| \vec{E}^{(0)} \right|^{2},$$

$$y_{a} = -Im \left(\frac{1}{\chi_{0}} \right) - \frac{2k^{3}}{3} \ge 0,$$
(5)

для которых выполняется соотношение $\sigma_a = \sigma_e - \sigma_s$. Эффективность экстинкции определяется выражением:

$$Q_e = \frac{\sigma_e}{N\pi R_i^2}.$$

Аналогичные выражения существуют для Q_a и Q_a .

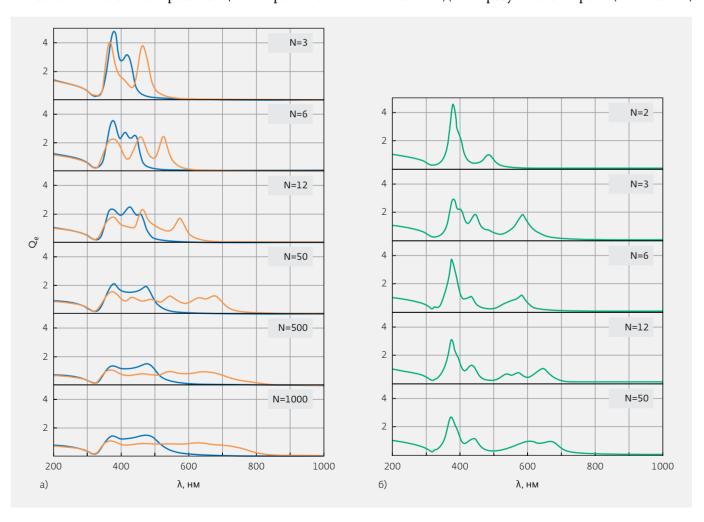
Формулы (3-5) и система уравнений (1) являются основой численных расчетов спектров экстинкции агрегатов наночастиц.

Для демонстрации возможностей метода СД на рис.4 представлены расчеты спектров экстинкции коллоидной системы из плазмонно-резонансных

наночастиц серебра на различных этапах ее агрегации (рис.5), которая сопровождается уширением спектра плазмонного поглощения. На рис.6 представлены аналогичные экспериментальные спектры Ад-гидрозолей в процессе агрегации, на которых видна та же тенденция постепенного уширения спектра и качественное сходство кривых 1–4 (см.рис.4, 5). Обращает на себя внимание также и то, что величина уширения в рассчитанных зависимостях достигает экспериментальных значений лишь тогда, когда большинство частиц включены в агрегаты (см. рис.5).

На рис.7 кривые 2 и 3 описывают свойства различных типов гидрозолей - с протяженным полимерным адсорбционным слоем (2) и с тонким двойным электрическим слоем (3) при сходстве контуров поглощения в начальной стадии агрегации (кривая 1). В случае (3) спектр характеризуется монотонным затуханием с величиной межчастичных зазоров менее 0,5 нм. Цвет таких гидрозолей имеет серый оттенок. В длинноволновом крыле спектра полимерсодержащих гидрозолей появляется дополнительный максимум, положением которого определяется селективное поглощение золя и его цвет, который может приобретать все цвета радуги. Происхождение второго максимума связано с увеличением плотности плазмонных резонансов в этой области спектра, которая определяется типом локального окружения частиц и величиной межчастичных зазоров. Рис.8 иллюстрирует уширение спектров с уменьшением межчастичных зазоров из-за усиления взаимодействия соседних частиц.

Недостатком метода СД, игнорирующего взаимодействие на малых расстояниях высших мультиполей, является неадекватно малая в сравнении с экспериментальными данными (применительно к серебру) протяженность


длинноволнового крыла рассчитанного спектра плазмонного поглощения. Это, однако, компенсируется введением параметра перенормировки ($\xi = (R_i + R_j + h)/r_{ij}$, где h – межчастичный зазор), с помощью которого в расчеты на основе уравнений (1) закладываются меньшие в 1,3–1,7 раза межцентровые расстояния (r_{ij}/ξ), чем минимально допустимые, ограниченные условием геометрического касания сфер (значение коэффициента определяется по сходству результатов расчета с экспериментальными спектрами). В частности, спектры на рис.4 рассчитаны при ξ =1,3. Однако данная процедура не компенсирует неадекватно низкую экстинкцию в области резонанса изолированной частицы (для серебра – около 400 нм).

Для преодоления этих разногласий с экспериментальными данными используется метод связанных мультиполей (СМ) [14]. Однако его практическая численная реализация ограничена

пока числом частиц в агрегатах N=100-200 из-за недостаточной производительности современных компьютеров (рис.9б). Методом СД можно выполнять расчеты при значении N до 10000, что позволяет получать более сглаженную спектральную кривую (см. рис.9а). Помимо этого, для расчетов спектров экстинкции коллоидов используются и другие методы, в частности обобщенная теория Ми, метод Т-матриц, метод дискретных диполей.

Влияние полидисперсности частиц агрегированного коллоида на спектры экстинкции на примере серебра исследовано в работе [15]. В ней показано, что этот фактор может приводить как к сокращению протяженности длинноволнового крыла спектра, так и к его уширению в зависимости от числа частиц в агрегате.

Какие новые физические свойства приобретают наноколлоиды в результате агрегации частиц

Рис.9. Расчеты изменения спектров экстинкции коллоидных Ад-агрегатов в зависимости от числа (N) входящих в них частиц: a) метод СД (сплошные кривые – расчет с коэффициентом ξ =1,3; пунктирные – ξ =1); б) метод СМ (число учтенных мультиполей L=40, радиусы частиц 6 нм, межчастичный зазор 0,2 нм)

ОПТИЧЕСКИЕ ИЗМЕРЕНИЯ

дисперсной фазы, например, способность проявлять эффект оптической памяти, мы обсудим в отдельной статье.

Исследования выполнялись при поддержке грантов: Президиума РАН №29 и №31, ОФН РАН III.9.5, ИП СО РАН №43, ИП СО РАН (и СФУ) №101.

ЛИТЕРАТУРА

- 1. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. - Berlin: Springer-Verlag, 1995.
- 2. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами/ Пер. с англ. -М.:Мир, 1986.
- 3. Карпов С.В., Слабко В.В. Оптические и фотофизические свойства фрактальноструктурированных золей металлов. - Новосибирск: Изд-во СО РАН, 2003.
- 4. Mie G. Ann. Phys., 1908, Bd.25, S.377.
- 5. Skillman D.C., Berry C.R. JOSA, 1973, v.63, №6, p.707.
- 6. Skillman D.C., Berry C.R. J. Chem.

- Phys., 1968, v.48, №7, p.3297.
- 7. Heard S.M., Griezer F., Barrachlough C.G., Sanders J.V. - J. Coll. Interf. Sci., 1983, v.93, №2, p.545.
- 8. Нагаев Э.Л. УФН, 1992, т. 162, № 9, с. 49.
- Purcell E.M., Pennypacker C.R. Astrophys. J., 1973, v.186, № 2, c. 705.
- 10. Шалаев В.М., Штокман М.И. ЖЭТФ, 1987, т.92, №2, с.509.
- 11. Markel V.A., Shalaev V.M., Stechel E.V. et al. -Phys. Rev. B., 1996-1, v.53, №5, p.2425.
- 12. Маркель В.А., Муратов Л.С., Штокман М.И. - ЖЭТФ, 1990, т.92, с.81.
- 13. Карпов С.В., Исаев И.Л., Гаврилюк А.П. **и др.** - Коллоидный журнал, 2009, т.71, №3, c. 314.
- 14. Markel V.A., Pustovit V.N., Karpov S.V. et al. - Phys. Rev. B, 2004, v.70, p. 054202.
- 15. Ershov A.E., Isaev I.L., Semina P.N., Markel V.A., Karpov S.V. - Phys. Rev. B., 2012, v. 85, p. 045421-1.