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We present stable symmetry breaking solutions in a nonlinear optical cavity with dipole eigenmodes embedded
into the propagation band of a directional photonic crystal waveguide for symmetric injecting condition. We
demonstrate how this phenomenon can be exploited for all-optical switching of light transmission from the
one side of the waveguide to another by application of input pulses. When the light injected to both sides of
the waveguide has equal intensities but different phases, we reveal a wealth of new solutions. © 2012 Optical
Society of America
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1. INTRODUCTION
Symmetry breaking (SB) is a counterintuitive physical effect
that describes the appearance of asymmetric states while the
structure under study, and its excitation, is completely sym-
metric. Different nonlinearities can instigate the breaking,
but we employ the instantaneous Kerr nonlinearity, where
the index depends on the intensity of the local electric field.
That field being expanded over the appropriate eigenmodes
leads to the coupling of the modes. Therefore, it is possible
that the symmetric situation is no longer stable at a certain
input power. Then the system will drift to a situation where
even and oddmodes are excited, and thus an asymmetric state
arises. That mechanism of the SB was studied in nonlinear
optics [1,2], in particular in a system of two nonlinear optical
cavities [3–7] and in a nonlinear dual-core directional fiber
[8–10]. In the present paper we consider SB in the directional
photonic crystal (PhC) waveguide with a single nonlinear de-
fect made of Kerr media when the defect is presented by two
dipole modes. The SB allows access to both dipole modes that
are not readily accessible in symmetric configurations. Thus, a
symmetrical injecting condition can end with asymmetrical
steady state, and these systems could provide key functions,
such as flip-flop operations [4,7] in all-optical systems.

The single linear cavity with two degenerated dipole modes
has been already considered in the cross waveguide in a semi-
nal paper by Johnson et al. [11]. They demonstrated funda-
mental role of the symmetry selection rules for cross talk.
Yanik et al. [12] considered a nonlinear cavity of elliptic shape
with two dipole modes at the center of the cross PhC wave-
guide. They have shown that, due to nonlinearity of the cavity,
the transmission over the x direction can be reversibly
switched on/off by a control power over the y direction to
realize an all-optical transistor in the x-shaped waveguide.
Recently it was shown that the nonlinear cavity with two
degenerated dipole modes positioned at the center of the

directional waveguide can operate in two regimes [13]. In the
first conventional regime, the ingoing wave excites only that
dipole mode whose parity coincides with the parity of the
wave. In the second regime, both modes with opposite parities
are resonantly excited due to a Kerr effect. That results in a
giant vortex for the Poynting vector. In the present paper we
explore this property of the nonlinear dipole cavity to spon-
taneously excite both dipole modes to give rise to SB for the
symmetric injecting condition.

2. COUPLED-MODE THEORY
The one-dimensional linear PhC waveguide formed by re-
moval of the single row of dielectric rods is shown in Fig. 1.
The waveguide supports a single band of guided TM mode
spanning from the bottom band edge 0.315 to the upper
one 0.41 in terms of 2πc∕a with the electric field directed
along the rods [6]. By choice of dielectric constant ϵ0 or radius
of the defect rod, one can fit two dipole eigenfrequencies of
the defect cavity into the propagation band of the waveguide
[14] while other modes remain beyond. The corresponding di-
pole modes E1�x� and E2�x� obtained by numerical solution of
the Maxwell equations are shown in Fig. 1 where the first
mode is even and the second mode is odd relative to the mir-
ror reflection left/right. Henceforth, we call such a defect cav-
ity as a dipole defect. Furthermore, we remove two rows of
the rods shown in Fig. 1 by open dashed circles. That forms
the directional waveguide. However, we leave two rods
around the defect rod to decrease the coupling of the dipole
eigenmodes with continua of the waveguide [12]. As the re-
sult, the dipole states become the extended resonant ones.

Following [3–5], we apply light to both ends of the
waveguide with the same amplitude Ein, however with
different phases. In the resonant approximation, we can
write the electric field within the dipole cavity as
E�x; y� ≈ A1E1�x; y� � A2E2�x; y�. Let us take for a while that
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the dipole cavity is linear. Then one can write the following
coupled-mode theory (CMT) equations for the amplitudes
Am, m � 1, 2 [15]:

i _A1 � �ω1 − iγ1�A1 � i
�����
γ1

p
Eine−iωt�1� eiθ�;

i _A2 � �ω2 − iγ2�A2 � i
�����
γ2

p
Eine−iωt�1 − eiθ�; (1)

where Ein is the amplitude of the injected light with the fre-
quency ω, θ the phase difference between waves ingoing to
the left and to the right ends of the waveguide. Here the cou-
pling matrix of the dipole modes with ingoing waves takes the

form
� ����

γ1
p����
γ1

p
����
γ2

p
−

����
γ2

p
�

and the decay matrix Γ � �γ10 0
γ2
� [15]. For

symmetrical position of the defect at the center line of the
waveguide, we have γ1 � 0 and the first dipole mode could
not be excited. If θ � 0, the second dipole mode is not excited
for the symmetrical injecting condition. Thus, the dipole de-
fect positioned symmetrically in the waveguide is completely
invisible for light injected from both sides with equaled
phases. In what follows we consider the dipole defect shifted
relative to the center line of the waveguide with γ1 ≠ 0.

Next, let the dipole defect rod be made from a Kerr media.
Then we have to modify the CMT Eq. (1) to account for the
nonlinear contributions. That could be done by the use of the
remarkable analogy between electrodynamics in dielectric
media and quantum mechanics [14]. We consider that the in-
stantaneous Kerr change of the dielectric constant,

δϵ�r⃗� � n0cn2jE�r⃗�j2
4π

≈

n0cn2jA1E1�r⃗� � A2E2�r⃗�j2
4π

; (2)

is small compared to the linear dielectric constant ϵ0 � n2
0.

Here n0 and n2 are the linear and nonlinear refractive indexes
of the dipole defect, respectively; c is the light velocity. Then
we can use the perturbation theory developed in [6] and mod-
ify the CMT Eq. (1) as follows:

i _A1 � �ω1 � V 11 − iγ1�A1 � V12A2 � i
�����
γ1

p
Eine−iωt�1� eiθ�;

i _A1 � �ω2 � V 22 − iγ2�A2 � V21A1 � i
�����
γ2

p
Eine−iωt�1 − eiθ�; (3)

where

hmjV jni � −

�ωm � ωn�
4Nm

Z
d2r⃗δϵ�r⃗�Em�r⃗�En�r⃗�; (4)

Nm �
Z

d2r⃗ϵ�r⃗�E2
m�r⃗� �

a2

cn2
; (5)

is the normalization constant of the eigenmodes with ϵ�r⃗� as
the dielectric constant of whole defectless PhC. After substi-
tution of Eqs. (4) and (5) and Am � Ame−iωt, we write the sta-
tionary CMT Eq. (3) in the dimensionless form,

�ω − ω1 � λ11I1 � λ12I2 � iγ1�A1 � 2λ12 Re�A�
1A2�A2

� i
�����
γ1

p
Ein�1� eiθ�;

2λ12 Re�A�
1A2�A1 � �ω − ω2 � λ22I2 � λ12I1 � iγ2�A2

� i
�����
γ2

p
Ein�1 − eiθ�; (6)

where we introduced Im � jAmj2 as the intensities of the di-
pole modes and dimensionless constants of nonlinearity

λmn � �ωm � ωn�n0c2n2
2

16πa2

Z
σ
E2
m�x; y�E2

n�x; y�d2r⃗;

with σ as the cross section of the defect rod. Respectively, the
transmission amplitude from the left to the right and from the
right to the left equal [15]:

tL � �����
γ1

p
A1 �

�����
γ2

p
A2 − Ein;

tR � �����
γ1

p
A1 −

�����
γ2

p
A2 − Eineiθ; (7)

respectively.

3. NUMERICAL RESULTS
We take the Kerr nonlinear refractive index for the defect rod
n2 � 2 × 10−13 cm2∕W. Other material parameters are listed
in the caption of Fig. 1. Substituting numerically calculated
eigen dipole modes shown in Fig. 1 into Eqs. (2) and (4)
and taking into account Eq. (5), we obtained λ11 �
1.163 × 10−3, λ22 � 1.24 · 10−3, λ12 � 4.25 · 10−4. The resonant
widths γm were obtained directly from resonant transmission
in PhC waveguide with a linear dipole defect. The transmis-
sion was calculated by use of the Maxwell equations
for the TM mode propagation. As a result we obtained
γ1 � 3.6 · 10−4, γ2 � 1.8 · 10−3.

First, we present the self-consistent solutions of Eqs. (6)
and (7) for the symmetric injected condition θ � 0, which
are shown in Fig. 2. There are two types of solutions. In the
first, the symmetry-preserving solution, the even dipole mode
E1 is excited only. The intensity of excitation shown in
Fig. 2(a) by the dashed lines has resonance frequency beha-
vior typical for the single nonlinear mode [14,16]. The trans-
mission amplitudes given by Eq. (7) would have the same
resonance behavior if the input power were applied to only
one side of the waveguide. However, for the symmetrical in-
jecting condition, we have the equal transmissions TL � TR as
seen from Eq. (7). We normalized the transmissions as
TL � TR � 1, where TL � jtLj2∕E2

in, TR � jtRj2∕E2
in. There-

fore, for the symmetry-preserving solution TL � TR � 0.5
as shown in Figs. 2(b) and 2(c) by the dashed line.

Fig. 1. (Color online) Two cavity dipole TM eigenmodes (space
profiles of the electric field directed parallel to the rods) with the ei-
genfrequencies ω1a∕2πc � 0.371 and ω2a∕2πc � 0.367 in the two-
dimensional square lattice PhC consisting of GaAs dielectric rods with
radius 0.18a and dielectric constant ϵ � 11.56, where a � 0.5 μm is
the lattice unit. These rods are shown by black open circles. The de-
fect shown by open white circle has the radius 0.288a and ϵ0 � 12. It is
shifted relative to the waveguide center line by the distance 0.2a.
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One of our main results is that the off-diagonal nonlinear
terms in Eq. (6) can provoke excitement of the second odd
dipole mode spontaneously in some finite frequency region
provided that the input power exceeds the threshold as shown
in Fig. 2 by solid lines. Then a participation of the odd mode in
the light transmission breaks the symmetry of light transmis-
sion as shown in Figs. 2(b) and 2(c). Moreover, for the
frequency aω∕2πc � 0.361, the light output to the right is com-
pletely blocked, while the output to the left is fully opened as
seen from Fig. 2(b). Figure 2(c) shows that the SB exists only
above of critical value of the input amplitude Ein, which de-
pends on frequency. There is also the equivalent stable SB so-
lution where the left and the right are inverted. That solution is
not shown in Fig. 2. Also, we do not show unstable solutions in
Figs. 2(b) and 2(c).

Maes et al. [4] have demonstrated the switching phenomen-
on through SB in coupled nonlinear microcavities by adding
pulses to the side with lower output power. We employ that
approach to demonstrate full light switching of outputs from
the left to the right. Applying two ultrashort light impulses of
length over a decades of periods of light oscillations enough
separated in time, we manage to switch the light outputs as
shown from Fig. 2(d).

Figure 3 illustrates SB. The optical streamlines computed
by use of the stream function [17] show vortical structure
for the SB solution as was found in [13].

Second, let us consider the light outputs as dependent on
the phase difference θ of the inputs. For the linear case, we
would have obviously found that the transmissions follow the
sin θ as, indeed, Figs. 4(a) and 4(b) demonstrate by the dashed
lines. For the nonlinear case, we reveal a wealth of new solu-
tions with periodical phase behavior crucially different from
the linear case as shown in Fig. 4. The first type of solutions
shown by the dotted—dashed lines in Fig. 4(b) are located
near θ � �π. The second type of solution shown in Fig. 4(c)
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Fig. 2. (Color online) Frequency behavior of (a) intensities of dipole modes and (b) transmissions to the left TL and to the right TR for light
injection with Ein � 0.08, θ � 0 onto both sides of the waveguide. In (a), blue lines show the intensity of even dipole mode I1 � jA1j2, while
red lines show the intensity of odd dipole mode I2 � jA2j2. The parameters are given in the beginning of Section 3. In (b) and (c), red lines show
TR, blue solid lines show TL. (c) Transmissions as dependent on the input amplitude Ein for ω � 0.361. In (a)–(c), dashed lines show the symmetry-
preserving solution, while solid lines show the SB solution. The thicker lines mark stable solutions. (d) Time dependence of the transmissions to the
left (blue lines) and to the right (red lines), which follow the impulses of the input light. The first and second impulses have amplitudes 2 and 5 and
durations 150 and 200, respectively (are not shown). In (b) and (c), only stable solutions are presented.

Fig. 3. (Color online) Absolute value of light amplitude (electric
field) and optical streamlines (white lines) in the PhC waveguide with
single nonlinear defect shown by gray open circle for ωa∕2πc � 0.36,
P � 10 W∕a, θ � 0.
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has the symmetrical points θ � 0, �π where the SB solutions
substitute each other TL↔TR. More generally, there is the
following symmetry: for θ → −θ, I1�θ� � I2�−θ�, TL�θ� �
TR�−θ�. These stable solutions are remarkable because they
can reach almost unity or zero to pave the path for all-optical
switching in some vicinity of symmetrical points. Beyond this
vicinity, we lose this possibility. Finally, in Fig. 4 we show the
evolution of the maximal value of the Poynting vector power
current in the interior of the dipole defect with the phase for
all three types of the solution. One can see a drastic difference
between the symmetry-preserving and SB solutions.

4. CONCLUSIONS
The eigenstates of two defects might be classified as even and
odd (symmetric and antisymmetric) states [6] with respect to
inversion of the waveguide axis. Therefore, in view of the sym-
metries of the resonant states, the system of two defects is
similar to the present system with the single dipole defect
in the directional waveguide. However, in the former system
of two defects aligned along the waveguide, the symmetry is
breaking irrespectively to the position of the defects relative
to the center line of waveguide [4,5], while in the present sys-
tem, the symmetry is breaking only for the shifted position of
the dipole defect. Dipole modes are located prevailingly in the
vicinity of the defect. For the SB solution, both modes are
excited with different phases. That results in a giant optical
vortex of the Poynting vector of the power current [13] around
the defect as seen in Fig. 3. The dynamical behavior of the
dipole modes is extremely sensitive to the phases of ingoing
waves even for symmetrical injecting conditions. Respec-
tively, we obtained a mass of new solutions shown in Fig. 4
dependent on the phase difference. That opens a wide spec-
trum of possibilities to manipulate light propagation in the

PhC waveguides. It is remarkable that this variety of phase
features might be observed in the wave outputs as shown
in Figs. 4(b) and 4(c).
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