УДК 538.913

А. С. Крылов, С. Н. Софронова, Е. М. Колесникова, С. В. Горяйнов, А. Г. Кочарова

ИССЛЕДОВАНИЕ СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ В ОКСИФТОРИДЕ К₃WO₃F₃*

Проводилось исследование колебательных спектров оксифторида $K_3WO_3F_3$ методом комбинационного рассеяния света при различных температурах и в условиях высокого гидростатического давления, а также был выполнен неэмпирический расчет динамики решетки в рамках обобщенной модели Гордона–Кима. Исследования показали, что в криолите $K_3WO_3F_3$ в результате фазовых переходов при $T_1 = 452$ K и $T_2 = 414$ K сегнетоэлектрическая фаза реализуется за счет смещения атомов калия из положения равновесия, а не за счет упорядочения анионов в октаэдре $[WO_3F_3]^{3^2}$.

Ключевые слова: динамика решетки, оксифториды, комбинационное рассеяние света.

Перовскитоподобные соединения – это соединения, в структурах которых содержится важнейшие черты перовскита: каркасы, слои или квадратные сетки из связанных вершинами октаэдров MX_6 . Это свойство сохраняется, например, в эльпасолитах, так называемых упорядоченных перовскитах, $A_2A'BX_6$, где октаэдры $A'X_6$ и BX_6 чередуются во всех трех измерениях, а также в криолитах A_3BX_6 , где катион A занимает две позиции с $Z_A = 12$ и $Z_A = 6$, а каркас построен из октаэдров $A'X_6$ и BX_6 [1].

Оксифториды с общей формулой A2A'MOxF6-х $(A, A' = NH_4, Na, K, Rb, Cs; M = W, Mo, Ti, Nb, Ta;$ х = 1, 2, 3 и зависит от валентности центрального атома М) являются перовскитоподобными кристаллами и принадлежат к типу криолита (А = А') либо к типу эльпасолита (A \neq A'), для x = 1, 3. Все октаэдры $O_x F_{6-x}$, за исключением trans- $MO_2 F_4$ (D_{4h}), не обладают центром симметрии. Интересен тот факт, что по данным рентгеноструктурных исследований, оксифториды с x = 1, 3 в высокотемпературной фазе обладают кубической симметрией с пространственной группой Fm3m (O_{5h}) (Z = 4) [2]. При охлаждении представители семейства оксифторидов испытывают один или несколько фазовых переходов с понижением симметрии сегнетоэлектрической или сегнетоэластической природы.

Объектом исследования настоящей работы является оксифторид $K_3WO_3F_3$, который принадлежит к вышеупомянутому классу кристаллов эльпасолитов-криолитов $A_2A'MO_3F_3$ (A, A' = Na, K, Rb, Cs; M = W, Mo).

Как известно из литературных источников [3–6], в криолите $K_3WO_3F_3$ реализуется два последовательных фазовых перехода при $T_1 = 452$ К и $T_2 = 414$ К сегнетоэлектрической и сегнетоэластической природы соответственно. Структура высокотемпературной фазы, как и у большинства представителей данного семейства, кубическая, с симметрией $Fm\overline{3}m$ [3], несмотря на низкую симметрию анионного октаэдра [WO₃F₃]³⁻ (тег-состояние с ромбической симметрией C_{2v} , либо fac-состояние с тригональной симметрией C_{3v} , в зависимости от расположения атомов F/O в октаэдре). Кубическая симметрия кристалла в высокотемпературной фазе макроскопически реализуется за счет разупорядочения атомов анионов F/O по всему кристаллу.

В работе [7] исследовались структурные изменения при фазовых переходах в кристалле криолита K₃WO₃F₃. Была установлена следующая последовательность структурных изменений:

$$Fm\overline{3}m \xrightarrow{(\eta_1,0,0)} I4mm \xrightarrow{(\eta_1,\eta_2,0)} Cm$$

Авторы работы [7] предположили, что фазовые переходы в криолите K₃WO₃F₃ реализуются за счет упорядочения атомов анионов в октаэдре. Поэтому на основании полученных данных о симметрии фаз, с использованием теоретико-группового анализа, была построена модель упорядочения атомов F/O [7]. Необходимо отметить, что в результате фазовых переходов наблюдаются заметные смещения атомов К из положения равновесия, причем сверхструктурных рефлексов обнаружено не было, т. е. нет увеличения объема элементарной ячейки [7]. В работе [6] были исследованы термодинамические свойства исследуемого в настоящей работе криолита. Было обнаружено, что фазовые переходы при T = 452 K и T = 414 K сопровождаются малым изменением энтропии $(\Delta S_1 = 0.52R, \Delta S_2 = 0.35R)$. Согласно авторам данной работы, структурные искажения в криолите K₃WO₃F₃ связаны с малым смещением атомов.

Основной задачей данной работы является определение роли различных структурных элементов кристалла $K_3WO_3F_3$ в реализации фазовых переходов, имеющих место в данном соединении. Необходимо определить, за счет чего в кристалле в низкотемпературной фазе реализуется макроскопический дипольный момент: за счет упорядочения атомов F/O либо за счет смещения атомов из положений равновесия (такая ситуация наблюдается в классическом сегнетоэлектрике BaTiO₃ [8; 9]).

Исследование спектров КР. Спектры КР поликристаллического образца $K_3WO_3F_3$ были получены с помощью КР спектрометра Horiba Jobin Yvon T64000 и Фурье-раман спектрометра Brucker RFS100/S в спектральном диапазоне 20–1 200 см⁻¹ и 110–3 500 см⁻¹, соответственно, в геометрии рассеяния назад.

^{*}Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 12-02-31205 мол_а, № 11-02-98002, № 12-02-00056), Министерства образования и науки Российской Федерации, соглашение № 8379.

Спектральное разрешение: 0,3 см⁻¹ и 1 см⁻¹. В качестве источника возбуждения использовалось излучение Ar⁺ лазера с длиной волны $\lambda = 514,5$ nm и мощностью 20 mW T64000; излучение Nd:YAG лазера с длиной волны 1,06 мкм и мощностью 250 mW для RFS100/S.

Эксперимент при высоком гидростатическом давлении (до 8,5 ГПа) был проведен при комнатной температуре в ячейке высокого давления с алмазными наковальнями [10]; диаметр отсека для образца равен 0,25 мм, толщина – 0,1 мм. Давление измерялось с точностью до 0,05 ГПа по смещению линий люминесценции рубидия. Неориентированный микрокристалл рубидия был помещен в ячейку рядом с образцом $K_3WO_3F_3$ размером 70... 80 мкм. Высокообезвоженная смесь этанол/метанол спиртов была использована как давление и как передаточная среда. Спектры КР были получены в геометрии рассеяния назад на спектрометре Horiba Jobin Yvon T64000 под микроскопом (рис. 1).

Количественная информация о параметрах спектральных линий была получена с помощью разложения экспериментальных спектров по контурам с использованием контура Фойгхта и дисперсионных контуров для индивидуальных линий.

Рис. 1. Спектр КР оксифторида $K_3WO_3F_3$ при температуре T = 300 К

В диапазоне 750–1 000 см⁻¹ (III) спектр содержит валентные колебания W–O октаэдра $[WO_3F_3]^{3-}$. Для того чтобы проинтерпретировать данные результаты, мы использовали результаты квантово-химического анализа для двух возможных конфигураций октаэдра $[WO_3F_3]^{3-}$ с симметрией C_{3v} (fac-) и C_{2v} (mer-) [11].

Линии КР спектра, которые наблюдаются ниже 500 см⁻¹ (I и II), связаны с валентными колебаниями W–F, и с деформационными колебаниями ионов WO₃. Экспериментальные частоты колебаний хорошо согласуются с расчетными данными [11] для fac-конфигурации (C_{3v}). В спектре присутствуют все предсказанные интенсивные линии, расчетный спектр отличается от экспериментального только небольшим сдвигом каждой линии в низкочастотную область в среднем на 40 см⁻¹. Поэтому можно сделать вывод,

что октаэдр [WO₃F₃]³⁻ в кристалле преимущественно находится в fac-конфигурации.

Рис. 2. Температурная трансформация низкочастотной части спектра КР

К сожалению, нам не удалось зарегистрировать низкочастотную часть спектра, так как регион ниже 100 см⁻¹ не доступен для КР-Фурье спектрометра RFS100/S, а в случае КР спектрометра T64000, данная область спектра содержит ротационные колебания воздуха, которые налагаются на спектр образца. Несмотря на это (рис. 2) отчетливо видно, что при T > 414 К в спектре КР криолита K₃WO₃F₃ наблюдается центральный пик, который характерен как для фазовых переходов типа порядок-беспорядок, так и для фазовых переходов типа смещения [12]. Характер спектральных изменений, происходящих при обоих фазовых переходах, указывает на то, что оба обнаруженных фазовых перехода являются переходами второго рода, что согласуется с работой [6].

Частота наиболее интенсивной линии (921 см⁻¹) в экспериментальном спектре КР при комнатной температуре практически совпадает с расчетной частотой (915 см⁻¹) полносимметричного колебания связи W-O для fac-конфигурации октаэдра $[WO_3F_3]^3$ (рис. 3). Едва заметное расщепление линий происходит после фазового перехода $T_1 = 452$ К. Данное колебание в кубической фазе не вырождено, следовательно, в результате первого фазового перехода в кристалле появляется два различных типа связи W-O. Это явление можно проинтерпретировать по-разному: либо увеличился объем элементарной ячейки, по крайней мере в два раза, либо имеет место искажение F/O октаэдра. Но так как по данным рентгеноструктурных исследований, увеличения объема элементарной ячейки не происходит, мы придерживаемся гипотезы об искажении анионного октаэдра. При фазовом переходе $T_2 = 414$ К наблюдаются более сильные изменения в спектре. При дальнейшем охлаждении образца в спектре, полученном с помощью RFS100/S, появляется новая линия на 935 см⁻¹, хотя в спектре, полученном на T64000, данной линии обнаружено не было (рис. 4).

Рис. 3. Температурная трансформация спектра КР в диапазоне колебаний связи W–O

Рис. 4. Спектр КР при T = 300 К: a - RFS100/S; b - T64000

Дальнейшие исследования, вплоть до температуры 100 К, не выявили никаких аномалий в спектре.

В упорядоченных эльпасолитах при гелиевых температурах ширины линий полносимметричных колебаний анионного октаэдра стремятся к величинам ~1...3 сm⁻¹ [13–15]. Полносимметричное колебание 921 сm⁻¹ существует во всех фазах исследуемого кристалла, поэтому исследование поведения ширины линии данного колебания с температурой может служить параметром, связанным со степенью упорядочения октаэдров $[WO_3F_3]^{3-}$. Поскольку при гелиевых температурах ширина линии колебания W–O, равная $\approx 6 \text{ см}^{-1}$, в кристалле $K_3WO_3F_3$ в несколько раз превосходит ширину линий полностью упорядоченных эльпасолитов, то полного упорядочения октаэдра не происходит (рис. 5).

Путем линейной экстраполяции было найдено давление 3,2 ГПа, при котором происходит фазовый переход в новую фазу высокого давления. При более высоких давления также были найдены некоторые аномалии (рис. 6), но мы не располагаем достаточным количеством экспериментальных точек для того, чтобы обозначить в точности вторую критическую точку; возможно, она должна быть в диапазоне от 6 до 8 ГПа. Необходимо отметить, что наблюдается значительное уширение высокочастотной линии. Эта величина составляет примерно 10 см⁻¹. При декомпрессии кристалл переходит в исходное состояние через ту же последовательность фазовых переходов. Все изменения КР спектра, которые мы наблюдали до 8,5 ГПа, обратимы и могут быть воспроизведены на различных образцах одной и той же кристаллизации в пределах экспериментальной ошибки (≈ 0-05 ГПа). Расчет динамики решетки в рамках обобщенного метода Гордона-Кима. Ранее [16] был проведен расчет динамики решетки в рамках обобщенного метода Гордона-Кима [17] полностью упорядоченного криолита К₃WO₃F₃ в fac- и mer- конфигурациях. Расчет показал, что состояние с fac-ориентацией октаэдра более выгодно, чем mer-ориентацией.

Расчет динамики решетки в рамках обобщенного метода Гордона-Кима [17], представленный в данной работе, был проведен на минимальных параметрах решетки и атомных смещений, полученных из условия минимума полной энергии в работе [16] (табл. 1).

Таблица 1

Расчетные структурные параметры оксифторида К₃WO₃F₃ в кубической фазе

1 11 7	Fm3m
	$a_0 = 8,76024$
Координаты атомов, [a, b, c]	$ \begin{array}{c} \hline W & [0; 0; 0] \\ \hline W & [0; 0; 0] \\ \hline W & [0, 5; 0.5; 0.5] \\ \hline g & [0.25; 0.25; 0.25] \\ O/F & [0.292; 0] \\ O/F & [0; 0.292; 0] \\ \hline O/F & [0; 0; 0.292] \\ \hline O/F & [0; 0, 708; 0] \\ \hline O/F & [0; 0.708; 0] \\ \hline O/F & [0; 0.708; 0] \\ \hline \end{array} $

Вследствие разупорядочения каждый октаэдр в элементарной ячейке может находиться в 20 равновероятных состояниях (8 состояний с тригональной симметрией C_{3v} , и 12 состояний с ромбической C_{2v}). Авторами работ [18] экспериментально было показано, что анионный октаэдр [WO₃F₃]³⁻ преимущественно обладает тригональной симметрией (fac-состояние). На основании этого в расчете, для удобства, будут учитываться только fac-состояния.

Рис. 5. Трансформация спектра в диапазоне колебаний связи W–O в условиях высокого гидростатического давления (*T* = 300 K)

	Таблица 2
Нестабильные моды спектра колебаний атомог	в криоли-
та K ₃ WO ₃ F ₃ кубической и искаженной фаз	

№ моды	$Fm\overline{3}m$ (Z = 4)	Искаженная фаза (Z = 4)
ω_1	85i(2)	68i(2)
ω ₂	84i(2)	68i(2)
ω ₃	84i(2)	68i(2)
ω_4	69i(2)	51i(2)
ω ₅	24i(2)	22i(2)
ω ₆	23i(2)	21i(2)
ω ₇	23i(2)	21i(2)

Как уже было сказано, в высокотемпературной кубической фазе атомы анионов F/O разупорядочены по кристаллу. Чтобы смоделировать аналогичную ситуацию в теории, была выбрана кубическая элементарная ячейка типа эльпасолита-криолита, содержащая четыре формульные единицы (Z = 4).

Чтобы смоделировать «усреднение» в кубической фазе $Fm\overline{3}m$, мы вычисляли динамические матрицы (собственные значения которых и являются частотами колебаний) 4096 структур, в которых перебирались все возможные ориентации октаэдра в fac- состоянии (4 октаэдра в элементарной ячейке, и каждый может находиться в 8 равновероятных ориентациях). Затем мы усредняли динамические матрицы и определяли частоты колебания (табл. 2).

Рис. 6. Зависимость положений центров линий от давления в диапазоне колебаний связи W–O (*T* = 300 K)

Спектр частот колебаний атомов содержит нестабильные «мягкие» моды колебаний. Согласно работе [7], фазовые переходы, реализующиеся в оксифториде $K_3WO_3F_3$, происходят без увеличения объема элементарной ячейки. В рассчитанном спектре кубической фазы такой ситуации соответствует «мягкая» мода ω_4 . Собственный вектор данной «мягкой» моды хорошо согласуется с экспериментальными атомными смещениями, полученными в [7]. Затем мы сместили атомы по собственному вектору полученной «мягкой» моды и выполнили расчет динамики решетки. Результаты данного расчета представлены в табл. 2.

Согласно полученным данным видим, что после смещения атомов по собственному вектору «мягкой» моды кристалл остался нестабильным, несмотря на небольшое «ужесточение», что может свидетельствовать о существовании других фазовых переходов, связанных как с центром зоны Бриллуэна, так и с граничными точками.

Исследования показали, что в криолите $K_3WO_3F_3$ в результате фазовых переходов при $T_1 = 452$ К и $T_2 = 414$ К упорядочения атомов F/O в анионных октаэдрах $[WO_3F_3]^{3-}$ не происходит. Данный вывод авторы сделали на основании результатов, полученных из КР спектров, и результатов неэмпирического расчета динамики решетки, проведенного в настоящей работе. Наиболее вероятен тот факт, что сегнетоэлектрическая фаза в криолите $K_3WO_3F_3$ реализуется за счет смещения атомов калия из положения равно-

весия. При температуре фазового перехода $T_2 = 414$ К в спектрах КР исследуемого соединения был обнаружен центральный пик. Характер спектральных изменений свидетельствует о том, что данный фазовый переход является фазовым переходом второго рода.

Библиографические ссылки

1. Aleksandrov K. S., Beznosikov B. V. Hierarchies of perovskite-like crystals // Physics of the Solid State. 1997. Vol. 39. P. 695–715.

2. Phase transitions in elpasolites (ordered perovskites) / I. N. Flerov, M. V. Gorev, K. S. Aleksand-rov et al. // Materials science and engineering. 1998. Vol. 24. P. 81–151.

3. Dehnicke Von K., Pausewang G., Rüdorff W. Die IR-Spectren der Oxofluorokomplexe TiOF₅³⁻, VOF₅³⁻, NbO₂F₄³⁻, MoO₃F₃³⁻ und WO₃F₃³⁻ // Zeitschrift für anorganische und allgemeine Chemie. 1969. Vol. 366. Nº 1–2. P. 64–72.

4. Study of phase transitions in $A_3MO_3F_3$ compounds (A = K, Rb, Cs; M = Mo, W) / G. Péraudeau, J. Ravez, P. Haggenmuller, H. Arend // Solid State Comn. 1978. Vol. 27. P. 591–593.

5. Raman scattering in ferroelectric materials with composition $A_2BMO_3F_3$ (A, B = K, Rb, Cs for $r_{A+}\ge r_{B+}$ and M = Mo, W) / M. Couzi, V. Rodriquez, J. P. Chaminade et al. // Ferroelectrics. 1988. Vol. 80. P. 109–112.

6. Effect of cationic substitution on ferroelectric and ferroelastic phase transitions in oxyfluorides $A_2A'WO_3F_3$ (A, A': K, NH₄, Cs) / V. D. Fokina, I. N. Flerov, M. V. Gorev et al. // Ferroelectrics. 2007. Vol. 347. P. 60–64.

7. Структурные изменения при фазовых переходах в оксифториде K₃WO₃F₃ / М. С. Молокеев, С. В. Миссюль, В. Д. Фокина и др. // ФТТ. 2011. Т. 53. № 4. С. 778–783.

8. Струков Б. А., Леванюк А. П. Физические основы сегнетоэлектрических явлений в кристаллах. М. : Наука, 1983. 9. Фазовые переходы в кристаллах галоидных соединений ABX₃ / Александров К. С., Анистратов А. Т., Безносиков Б. В., Федосеева Н. В. Новосибирск : Наука, 1981.

10. Goryainov S. V., Belitsky I. A. Raman spectroscopy of water tracer diffusion in zeolite singlecrystals // Phys. Chem. Minerals. 1995. Vol. 22 P. 443.

11. Dynamic disorder in ammonium oxofluorotungstates $(NH_4)_2WO_2F_4$ and $(NH_4)_3WO_3F_3$ / E. I. Voit, A. V. Voit, A. A. Mashkovskii et al. // Journal of structural chemistry. 2006. Vol. 47. No 4 P. 642–650.

12. Малиновский В. К., Пугачев А. М., Суровцев Н. В. Центральный пик в кристалле титаната стронция в окрестности фазового перехода из тетрагональной в кубическую фазу // ФТТ. 2012. Т. 54. С. 871–873.

13. Baldinozzi G., Sciau Ph., Bulou A. Analysis of the phase transition sequence of the elpasolite (ordered perovskite) Pb_2MgTeO_6 // J. Phys.: Condens. Matter. 1997. Vol. 9. P. 10531–10544.

14. Lattice dynamics and Raman scattering spectrum of elpasolite Rb₂KScF₆: Comparative analysis / S. N. Krylova, A. N. Vtyurin, A. Bulou et al. // Physics of the Solid State. 2004. Vol. 46. P. 1311–1319.

15. Raman spectra and phase transitions in Rb_2KInF_6 elpasolite / A. S.Krylov, S. N.Krylova, A. N.Vtyurin et al. // Crystallography Reports. 2011. Vol. 56. P. 18–23.

16. Sofronova S. N., Kolesnikova E. M. Nonempirical calculations of $K_3WO_3F_3$ cryolite lattice dynamics // Ferroelectrics. 2011. Vol. 416. P. 85–89.

17. Lattice dynamics calculation of the ionic crystals with ion dipole and quadrupole deformations: perovskite structure oxides / N. G. Zamkova, V. I. Zinenko, O. V. Ivanov et al. // Ferroelectrics. 2003. Vol. 283. P. 49–60.

18. A Raman scattering study of the phase transition in the $(NH_4)_3WO_3F_3$ oxyfluoride / A. S. Krylov, Yu. V. Gerasimova, A. N. Vtyurin et al. // Physics of the Solid State. 2006. Vol. 48. P. 1356–1362.

A. S. Krylov, S. N. Sofronova, E. M. Kolesnikova, S. V. Goryaynov, A. G. Kocharova

INVESTIGATION OF STRUCTURE PHASE TRANSITIONS IN OXYFLUORIDE K₃WO₃F₃

The article presents investigation of vibrational spectra of oxyfluoride $K_3WO_3F_3$ by Raman technique at different temperatures and under high hydrostatic pressure; the nonempirical lattice dynamics calculation was carried out in framework of generalized Gordon–Kim model. It was shown, that ferroelectric phase in cryolite $K_3WO_3F_3$ is realized due to displacements of potassium atoms from equilibrium state, as a result of phase transitions at $T_1 = 452$ K and $T_2 = 414$ K, but is not due to ordering of anions atoms in octahedron $[WO_3F_3]^3$.

Keywords: lattice dynamics, oxyfluorides, Raman scattering.

© Крылов А. С., Софронова С. Н., Колесникова Е. М., Горяйнов С. В., Кочарова А. Г., 2012