#### УДК 538.913

### А. С. Крылов, С. Н. Софронова, Е. М. Колесникова, Л. И. Исаенко

# ИССЛЕДОВАНИЕ ДИНАМИКИ РЕШЕТКИ ОКСИФТОРИДА Rb2KM0O3F3\*

Получены полные спектры КР оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> в температурном диапазоне 7–260 К. При температуре T ≈ 185 К был обнаружен структурный фазовый переход, рассчитана динамика решетки «разупорядоченного» кристалла Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub>, в спектре которого присутствуют «мягкие» моды колебаний.

Ключевые слова: динамика решетки, оксифториды, комбинационное рассеяние света.

Эльпасолит Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> принадлежит к большому классу кристаллов эльпасолитов-криолитов с общей формулой  $A_2BMO_3F_3$  (A, B = NH<sub>4</sub>, Na, K, Rb, Cs; M = Mo, W). В зависимости от отношения ионных радиусов  $R_A$  и  $R_B$ , а также от атома M, высокотемпературная кубическая фаза  $Fm\overline{3}m$  данных соединений может оставаться стабильной вплоть до температуры жидкого гелия [1-6] или искажаться в результате одного [1-5; 7] или двух фазовых переходов [1-6; 8-10]. Например, несмотря на близкие значения ионных радиусов атомов (R<sub>Mo</sub> = 0,073 nm) и W (R<sub>W</sub> = 0,074 nm), эльпасолит Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> испытывает фазовый переход [11], а эльпасолит Rb<sub>2</sub>KWO<sub>3</sub>F<sub>3</sub> не испытывает никаких фазовых превращений и остается кубическим вплоть до температуры жидкого гелия [12]. Необходимо отметить, что высокотемпературная кубическая фаза в данных соединениях реализуется благодаря разупорядочению атомов F/O по кристаллу. В зависимости от расположения атомов анионов F/O, локальная симметрия анионного октаэдра [MO<sub>3</sub>F<sub>3</sub>]<sup>3</sup> может быть либо mer- (симметрия  $C_{2\nu}$ ), либо fac-(симметрия  $C_{3v}$ ) конфигурации. Авторами работы [13] было показано, что анионный октаэдр находится в fac- конфигурации.

Недавно выяснилось [11], что оксифторид  $Rb_2KMoO_3F_3$  испытывает структурный фазовый переход типа порядок-беспорядок при T = 195 K, далекий от трикритической точки в режиме нагрева образца. Однако структуру низкотемпературной фазы решить не удалось ввиду двойникования образцов ниже температуры фазового перехода.

Целью настоящей работы является представление результатов экспериментальных и теоретических исследований динамики решетки эльпассолита Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> с помощью метода комбинационного рассеяния света и в рамках обобщенной модели Гордона–Кима для того, чтобы попытаться описать механизм фазового перехода в данном кристалле.

Исследование спектров КР оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub>. Спектры КР неориентированного кристалла оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> были получены с помощью КР-спектрометра Horiba Jobin Yvon T64000. В эксперименте был использован образец 1,5×1,5×1,5×1,5 мм  $\mathbb{N}_{2}$  7, описанный в работе [11]. В качестве источника возбуждения применялось излучение  $\mathrm{Ar}^{+}$  лазера с длиной волны  $\lambda = 514,5$  нм. Мощность на образце составляла 7 мВт.

Для того чтобы извлечь количественную информацию о спектральных параметрах из экспериментальных данных, спектры были разложены на отдельные линии. В диапазоне низких частот (< 150 см<sup>-1</sup>) в качестве модельной формы линии была использована модель затухающего гармонического осциллятора [14]. Выше 150 см<sup>-1</sup> был использован контур Лоренца [15] (рис. 1).



Рис. 1. Спектр КР оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> при комнатной температуре (*T* = 300 K) и при *T* = 10 K: *а* – диапазон решеточных колебаний; *б* – диапазон колебаний O–Mo–F; *в* – диапазон колебаний O–Mo–O; *г* – диапазон валентных колебаний Mo–F; *е* – диапазон валентных колебаний Mo–O [1])

Ранее [16] высокочастотная часть спектра, содержащая полносимметричные колебания связи Мо-О анионного октаэдра, была получена с низким разрешением (2 cm<sup>-1</sup>), и аппроксимирована только одним контуром Лоренца.

<sup>\*</sup>Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 12-02-31205 мол\_а, № 11-02-98002, № 12-02-00056), Министерства образования и науки Российской Федерации, соглашение № 8379.

В данной работе эта часть спектра была прописана с лучшим разрешением  $(0,7 \text{ cm}^{-1})$ , и анализ данной области спектра показал, что в этом диапазоне, в кубической высокотемпературной фазе присутствует две линии (рис. 2), хотя это колебание в кубической фазе не вырождено.



Рис. 2. Часть спектра, содержащая полносимметричное колебание Мо-О, разложенная на два контура Лоренца (на вставке – температурная зависимость относительной интенсивности данных линий)

При температуре  $T \approx 185$  К происходит фазовый переход кристалла  $Rb_2KMoO_3F_3$  (рис. 3). Исходя из существенных изменений спектральных параметров, данный фазовый переход является переходом первого рода. Основные изменения происходят в области полносимметричных колебаний Мо–О и Мо–F, а также в области решеточных колебаний, где число линий удваивается, указывая на увеличение объема элементарной ячейки, как минимум, в два раза.



Рис. 3. Температурная трансформация спектра КР оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub>

Хорошо виден резкий скачок в поведении частот в окрестности фазового перехода (рис. 4). Причем частота колебания Мо-О увеличивается ниже температуры фазового перехода (рис. 4, *a*), а частота колебания Мо–F, наоборот, уменьшается (рис. 4,  $\delta$ ). Данные зависимости были аппроксимированы с учетом трех- и четырех-фононного взаимодействий, которые возникают вследствие ангармонизма решетки в отсутствия фазовых превращений [17]. Согласно [18], сдвиг частоты  $\Delta \omega$  полносимметричного высокочастотного колебания (разница экспериментальных и теоретических значений) пропорциональна квадрату параметра порядка. Полученная зависимость (рис. 4, *в*) демонстрирует типичное поведение параметра порядка при фазовом переходе первого рода, далеком от трикритической точки.



Рис. 4. Температурные зависимости частот полносимметричных колебаний Мо–F и Мо–O: *а*, *б* – теоретические аппроксимации; *в* – разница между экспериментальной частотой колебания Мо–O и теоретической

Ширины полносимметричных колебаний Мо-О и Мо-F также испытывают аномалии в окрестности фазового перехода (рис. 5). Полученные температурные зависимости ширин линий не характерны для тела. Наблюдается ярковыраженное твердого аномальное λ-образное поведение ширины линии полносимметричного колебания Мо-О и, в меньшей степени, полносимметричного колебания Мо-F. Такие аномальные зависимости указывают на то, что обнаруженный фазовый переход является фазовым переходом типа порядок-беспорядок, и отражают критические флуктуации параметра порядка в окрестности точки фазового перехода [19].

В упорядоченных эльпасолитах при гелиевых температурах ширины полносимметричных колебаний анионного октаэдра стремятся к значениям ~1–3 см<sup>-1</sup> [20–22]. Полносимметричное колебание 908 см<sup>-1</sup> в данном случае является параметром, связанным со степенью упорядочения октаэдра  $[MoO_3F_3]^{3-}$ .

| Атом | Координаты          | «мягкие» моды и соответствующие сооственные векторы |                  |                  |                  |                 |                  |                  |                 |
|------|---------------------|-----------------------------------------------------|------------------|------------------|------------------|-----------------|------------------|------------------|-----------------|
|      | (a; b; c)           | 141 <i>i</i> (2)                                    | 141 <i>i</i> (2) | 139 <i>i</i> (2) | 98 <i>i</i> (2)  | 60 <i>i</i> (2) | 59 <i>i</i> (2)  | 44 <i>i</i> (2)  | 33 <i>i</i> (2) |
| Rb   | (0,25; 0,25; 0,.25) | (x;-y;0)                                            | (-x;-y;0)        | (0;0;z)          | ( <i>x</i> ;0;0) | (0;0;z)         | ( <i>x</i> ;0;0) | (-x;0;0)         | (0;0;0)         |
| Rb   | (0,25; 0,25; 0,75)  | (x;-y;0)                                            | (-x;-y;0)        | (0;0;-z)         | (x;0;0)          | (0;0;-z)        | (x;0;0)          | (x;0;0)          | (0;0;0)         |
| Rb   | (0,25; 0,75; 0,25)  | (-x;y;0)                                            | (x;y;0)          | (0;0;z)          | (x;0;0)          | (0;0;-z)        | (-x;0;0)         | (-x;0;0)         | (0;0;0)         |
| Rb   | (0,25; 0,75; 0,75)  | (-x;y;0)                                            | (x;y;0)          | (0;0;-z)         | (x;0;0)          | (0;0;z)         | (-x;0;0)         | (x;0;0)          | (0;0;0)         |
| Rb   | (0,75; 0,25; 0,25)  | (-x;y;0)                                            | (x;y;0)          | (0;0;-z)         | ( <i>x</i> ;0;0) | (0;0;z)         | (-x;0;0)         | ( <i>x</i> ;0;0) | (0;0;0)         |
| Rb   | (0,75; 0,25; 0,75)  | (-x;y;0)                                            | (x;y;0)          | (0;0;z)          | ( <i>x</i> ;0;0) | (0;0;-z)        | (-x;0;0)         | (-x;0;0)         | (0;0;0)         |
| Rb   | (0,75; 0,75; 0,25)  | (x;-y;0)                                            | (-x;-y;0)        | (0;0;-z)         | ( <i>x</i> ;0;0) | (0;0;-z)        | (x;0;0)          | (x;0;0)          | (0;0;0)         |
| Rb   | (0,75; 0,75; 0,75)  | (x;-y;0)                                            | (-x;-y;0)        | (0;0;z)          | (x;0;0)          | (0;0;z)         | (x;0;0)          | (-x;0;0)         | (0;0;0)         |
| Κ    | (0,5;0,5;0,5)       | (-x;y;-z)                                           | (-x;-y;z)        | (0;0;z)          | ( <i>x</i> ;0;0) | (0;y;0)         | (0;y;0)          | (0;0;z)          | (-x;0;0)        |
| K    | (0; 0; 0,5)         | (-x;y;z)                                            | (-x;-y;-z)       | (0;0;-z)         | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;-z)         | (x;0;0)         |
| K    | (0; 0,5; 0)         | (x;-y;z)                                            | (x;y;-z)         | (0;0;z)          | ( <i>x</i> ;0;0) | (0;-y;0)        | (0;-y;0)         | (0;0;z)          | (x;0;0)         |
| K    | (0,5; 0; 0)         | (x;-y;-z)                                           | (x;y;z)          | (0;0;-z)         | ( <i>x</i> ;0;0) | (0;y;0)         | (0;-y;0)         | (0;0;-z)         | (-x;0;0)        |
| Mo   | (0; 0; 0)           | (-x;y;-z)                                           | (-x;-y;z)        | ( <i>x</i> ;0;0) | ( <i>x</i> ;0;0) | (0;y;0)         | (0;y;0)          | (0;0;-z)         | (x;0;0)         |
| Mo   | (0,5; 0,5; 0)       | (-x;y;z)                                            | (-x;-y;-z)       | (-x;0;0)         | ( <i>x</i> ;0;0) | (0;-y;0)        | (0;y;0)          | (0;0;z)          | (-x;0;0)        |
| Mo   | (0,5; 0; 0,5)       | (x;-y;z)                                            | (x;y;-z)         | (x;0;0)          | ( <i>x</i> ;0;0) | (0;-y;0)        | (0;-y;0)         | (0;0;-z)         | (-x;0;0)        |
| Mo   | (0; 0,5; 0,5)       | (x;-y;-z)                                           | (x;y;z)          | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;z)          | (x;0;0)         |
| O/F  | (0,208; 0; 0)       | (x;-y;z)                                            | (x;y;-z)         | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;y;0)          | (0;0;-z)         | (-x;0;0)        |
| O/F  | (0; 0,208; 0)       | (x;-y;z)                                            | (x;y;-z)         | (-x;0;0)         | ( <i>x</i> ;0;0) | (0;-y;0)        | (0;-y;0)         | (0;0;-z)         | (x;0;0)         |
| O/F  | (0; 0; 0,208)       | (x;-y;z)                                            | (x;y;-z)         | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;y;0)          | (0;0;z)          | (x;0;0)         |
| O/F  | (0,708; 0,5; 0)     | (x;-y;-z)                                           | (x;y;z)          | (x;0;0)          | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;z)          | (x;0;0)         |
| O/F  | (0,5; 0,708; 0)     | (x;-y;-z)                                           | (x;y;z)          | (x;0;0)          | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;z)          | (-x;0;0)        |
| O/F  | (0,5; 0,5 ;0,208)   | (x;-y;-z)                                           | (x;y;z)          | (x;0;0)          | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;-z)         | (-x;0;0)        |
| O/F  | (0,708; 0; 0,5)     | (-x;y;-z)                                           | (-x;-y;z)        | (-x;0;0)         | (x;0;0)          | (0;-y;0)        | (0;-y;0)         | (0;0;-z)         | (x;0;0)         |
| O/F  | (0,5; 0,208; 0,5)   | (-x;y;-z)                                           | (-x;-y;z)        | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;y;0)          | (0;0;-z)         | (-x;0;0)        |
| O/F  | (0,5; 0; 0,708)     | (-x;y;-z)                                           | (-x;-y;z)        | (-x;0;0)         | (x;0;0)          | (0;-y;0)        | (0;-y;0)         | (0;0;z)          | (-x;0;0)        |
| O/F  | (0,208; 0,5; 0,5)   | (-x;y;z)                                            | (-x;-y;-z)       | (x;0;0)          | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;z)          | (-x;0;0)        |
| O/F  | (0; 0,708; 0,5)     | (-x;y;z)                                            | (-x;-y;-z)       | (x;0;0)          | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;z)          | (x;0;0)         |
| O/F  | (0; 0,5; 0,708)     | (-x;y;z)                                            | (-x;-y;-z)       | (x;0;0)          | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;-z)         | (x;0;0)         |
| O/F  | (0,792; 0; 0)       | (x;-y;z)                                            | (x;y;-z)         | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;y;0)          | (0;0;-z)         | (-x;0;0)        |
| O/F  | (0; 0,792; 0)       | (x;-y;z)                                            | (x;y;-z)         | (-x;0;0)         | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;-z)         | (x;0;0)         |
| O/F  | (0; 0; 0,792)       | (x;-y;z)                                            | (x;y;-z)         | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;y;0)          | (0;0;-z)         | (x;0;0)         |
| O/F  | (0,292; 0,5; 0)     | (x;-y;-z)                                           | (x;y;z)          | (x;0;0)          | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;z)          | (x;0;0)         |
| O/F  | (0,5; 0,292; 0)     | (x;-y;-z)                                           | (x;y;z)          | (x;0;0)          | (x;0;0)          | (0;y;0)         | (0;y;0)          | (0;0;z)          | (-x;0;0)        |
| O/F  | (0,5; 0,5; 0,792)   | (x;-y;-z)                                           | (x;y;z)          | (x;0;0)          | (x;0;0)          | (0;-y;0)        | (0;y;0)          | (0;0;z)          | (-x;0;0)        |
| O/F  | (0,292; 0; 0,5)     | (-x;y;-z)                                           | (-x;-y;z)        | (-x;0;0)         | (x;0;0)          | (0;-y;0)        | (0;-y;0)         | (0;0;-z)         | (x;0;0)         |
| O/F  | (0,5; 0,792; 0,5)   | (-x;y;-z)                                           | (-x;-y;z)        | (-x;0;0)         | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;-z)         | (-x;0;0)        |
| O/F  | (0,5; 0; 0,292)     | (-x;y;-z)                                           | (-x;-y;z)        | (-x;0;0)         | (x;0;0)          | (0;-y;0)        | (0;-y;0)         | (0;0;-z)         | (-x;0;0)        |
| O/F  | (0,792; 0,5; 0,5)   | (-x;y;z)                                            | (-x;-y;-z)       | (x;0;0)          | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;z)          | (-x;0;0)        |
| O/F  | (0; 0,292; 0,5)     | (-x;y;z)                                            | (-x;-y;-z)       | (x;0;0)          | (x;0;0)          | (0;-y;0)        | (0;-y;0)         | (0;0;z)          | (x;0;0)         |
| O/F  | (0; 0,5; 0,292)     | (-x;y;z)                                            | (-x;-y;-z)       | (x;0;0)          | (x;0;0)          | (0;y;0)         | (0;-y;0)         | (0;0;z)          | (x;0;0)         |

Собственные вектора «мягких» мод колебаний (Z = 4)

Ширина линии данного колебания  $\approx 6 \text{ см}^{-1}$  при гелиевых температурах. Так как это значение в несколько раз превышает значения ширин линий полностью упорядоченных эльпасолитов, можо предположить, что полного упорядочения анионных октаэдров в исследуемом соединении не происходит даже при гелиевых температурах.

Расчет динамики решетки в рамках обобщенной модели Гордона–Кима. Для расчета динамики решетки эльпасолита Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> был использован обобщенный метод Гордона–Кима [23].

В высокотемпературной кубической фазе атомы F/O разупорядочены по всему кристаллу. Вследствие этого беспорядка, каждый октаэдр может равновероятно находиться в 20 различных состояниях (8 состояний с тригональной симметрией и 12 состояний с орторомбической симметрией  $C_{2\nu}$ ).



Таблица 1

Рис. 5. Температурные зависимости частоты и ширины полносимметричного колебания Мо-О (белые кружки – ширина; черные кружки – частота)

В работе [13] было показано, что октаэдр  $[MoO_3F_3]^{3-}$  преимущественно обладает тригональной симметрией (fac-конфигура-ция), поэтому в дальнейшем мы будем рассматривать только fac-конфигурации октаэдра.

Как уже было сказано, атомы анионов F/O разупорядочены по кристаллу в высокотемпературной кубической фазе. Для моделирования аналогичной ситуации в теории, была выбрана кубическая элементарная ячейка типа эльпасолита-криолита, содержащая четыре формульные единицы (Z = 4).

Чтобы смоделировать «усреднение» в кубической фазе  $Fm\overline{3}m$ , мы вычисляли динамические матрицы (собственные значения которых и являются частотами колебаний) 4096 структур, в которых перебирались все возможные ориентации октаэдра в fac- состоянии (4 октаэдра в элементарной ячейке, и каждый может находиться в 8 равновероятных ориентациях). Затем мы усредняли динамические матрицы и определяли частоты колебания.

Параметр решетки сохранялся кубическим, и определялся из условия минимума полной энергии ( $a_{cub}$ = 8,427 Å). Расчетный спектр «мягких» мод содержит частоты, принадлежащие как центру зоны Бриллуэна, так и ее граничным точкам. Поэтому в исследуемом кристалле возможны фазовые переходы с увеличением объема элементарной ячейки. Смещения атомов, соответствующие собственным векторам «мягких» мод представлены в табл. 1.

эльпасолита Таким образом, В кристалле Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> был обнаружен фазовый переход типа порядок-беспорядок при температуре  $T \approx 185 \text{ K}$ в режиме охлаждения образца. Исходя их теоретических и экспериментальных результатов, можно предположить, что данный фазовый переход связан с изменениями в молекулярном октаэдре  $[MoO_3F_3]^{3-1}$ и может сопровождаться увеличением объема элементарной ячейки. В настоящее время вопрос об упорядочении F/O октаэдров и их роли при структурном фазовом переходе остается открытым. Необходимы дальнейшие исследования для определения симметрии низкотемпературной фазы и для понимания природы обнаруженного фазового превращения.

#### Библиографические ссылки

1. Raman scattering in ferroelectric materials with composition  $A_2BMO_3F_3$  (A, B = K, Rb, Cs for  $r_{A^+} \geq r_{B^+}$  and M = Mo, W) / M. Couzi, V. Rodriquez, J. P. Chaminade et al. // Ferroelectrics. 1988. Vol. 80. P. 109–112.

2. Effect of cationic substitution on ferroelectric and ferroelastic phase transitions in oxyfluorides  $A_2A'WO_3F_3$  (A, A': K, NH<sub>4</sub>, Cs) / V. D. Fokina, I. N. Flerov, M. V. Gorev et al. // Ferroelectrics. 2007. Vol. 347. P. 60–64.

3. Study of phase transitions in  $A_3MO_3F_3$  compounds (A = K, Rb, Cs; M = Mo, W) / G. Péraudeau, J. Ravez, P. Haggenmuller, H. Arend // Solid State Comn. 1978. Vol. 27. P. 591–593.

4. A new family of ferroelectric materials with composition  $A_2BMO_3F_3$  (A, B = K, Rb, Cs for  $r_{A+}\ge r_{B+}$  and M = Mo, W) / J. Ravez, G. Péraudeau, H. Arend et al. // Ferroelectrics. 1980. Vol. 26. P. 767–769.

5. Péraudeau G., Ravez J., Arend H. Etude des transitions de phases des composes  $Rb_2KMO_3F_3$ ,  $Cs_2KMO_3F_3$  et  $Cs_2RbMO_3F_3$  (M = Mo, W) // Solid State Comn. 1978. Vol. 27. P. 515–518.

6. Raman spectroscopic study of the phase transitions in the  $Cs_2NH_4WO_3F_3$  oxyfluoride / A. S. Krylov, A. N. Vtyurin, V. D. Fokina et al. // Physics of the Solid State. 2006. Vol. 48. No 6. P. 1064–1066.

7. Raman scattering study of temperature and hydrostatic pressure phase transitions in  $Rb_2KTiOF_5$  crystal / A. S. Krylov, S. V. Goryainov, A. N. Vtyurin et al. // J. Raman Spectrosc. 2011. Vol. 43. No. 4. P. 577–582.

8. Exploration on anion ordering, optical properties and electronic structure in  $K_3WO_3F_3$  elpasolite / V. V. Atuchin, L. I. Isaenko, V. G. Kesler et al. // J. of solid state chemistry. 2012. Vol. 187. P. 159–164.

9. Vibrational spectroscopy studies of temperature phase transitions in  $K_3WO_3F_3$  / A. A. Ekimov, A. S. Krylov, A. N. Vtyurin et al. // Ferroelectrics. 2010. Vol. 401. P. 168–172.

10. Les transitions de phase de l'oxyfluorure  $Rb_3MoO_3F_3$  / G. Péraudeau, J. Ravez, A. Tressaud et al. // Solid State Comn. 1977. Vol. 23. P. 543–546.

11. Термодинамические свойства и структура оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> и K<sub>2</sub>NaMoO<sub>3</sub>F<sub>3</sub> / Е. И. Погорельцев, Е. В. Богданов, М. С. Молокеев и др. // Физика твердого тела. 2011. Т. 53. № 6. С. 1136–1145.

12. Heat capacity and structure of  $Rb_2KMeO_3F_3$  (Me: Mo, W) elpasolites / A. V. Kartashev, M. S. Molokeev, L. I. Isaenko et al. // Solid state science. 2012. Vol. 14. P. 166–170.

13. Udovenko A. A., Laptash N. M. Orientational disorder in crystals of  $(NH_4)_3MoO_3F_3$  and  $(NH_4)_3WO_3F_3$  // Acta crystallographica. 2008. B64. P. 305–311.

14. Temperature-dependent Raman scattering study of multiferroic  $MnWO_4$  / L. H. Hoang, N. T. M. Hien, W. S. Choi et al. // Raman Spectrosc. 2009. Vol. 41. P. 1005–1010.

15. Малиновский В. К., Пугачев А. М., Суровцев Н. В. Исследование сегнетоэлектрического фазового перехода в кристалле DKDP методом низкочастотно-го комбинационного рассеяния света // Физика твердого тела. 2008. Т. 50. № 6. С. 1090–1095.

16. Исследование динамики решетки оксифторида Rb<sub>2</sub>KMoO<sub>3</sub>F<sub>3</sub> методом комбинационного рассеяния света / А. С. Крылов, Е. М. Меркушова, А. Н. Втюрин, Л. И. Исаенко // Физика твердого тела. 2012. Т. 54. № 6. С. 1191–1196.

17. Ramkumar C., Jain K. P., Abbi S. C. Raman scattering probe of anharmonic effects due to temperature and compositional disorder in III-V binary and ternary alloy semiconductors // Phys. Rev. B: Condens. Matter. 1996. Vol. 53. № 20. P. 13672–13681.

18. Petzelt J., Dvořák V. Changes of infrared and Raman spectra induced by structural phase transitions: I. General considerations // J. Phys. C: Solid State Phys. 1976. Vol. 9. P. 1571–1586.

19. Isotropic Raman line shapes near gas–liquid critical points: The shift, width, and asymmetry of coupled and uncoupled states of fluid nitrogen / M. Musso, F. Matthai, D. Keutel, K.–L. Oehme // J. Chem. Phys. 2002. Vol. 116. № 18. P. 8015–8027.

20. Baldinozzi G., Sciau Ph., Bulou A. Analysis of the phase transition sequence of the elpasolite (ordered perovskite)  $Pb_2MgTeO_6$  // J.Phys.: Condens.Matter. 1997. Vol. 9. P. 10531–10544.

21. Lattice dynamics and Raman scattering spectrum of elpasolite Rb<sub>2</sub>KScF<sub>6</sub>: Comparative analysis /

S. N. Krylova, A. N. Vtyurin, A. Bulou et al. // Physics of the Solid State. 2004. Vol. 46. P. 1311–1319.

22. Raman spectra and phase transitions in  $Rb_2KInF_6$  elpasolite / A. S. Krylov, S. N. Krylova, A. N. Vtyurin et al. // Crystallography Reports. 2011. Vol. 56. P. 18–23.

23. Lattice dynamics calculation of the ionic crystals with ion dipole and quadrupole deformations: perovskite structure oxides / N. G. Zamkova, V. I. Zinenko, O. V. Ivanov et al. // Ferroelectrics. 2003. Vol. 283. P. 49–60.

# A. S. Krylov, S. N. Sofronova, E. M. Kolesnikova, L. I. Isaenko

## INVESTIGATION OF LATTICE DYNAMICS OF OXYFLUORIDE Rb2KM0O3F3

In the work the complete Raman spectra of oxyfluoride  $Rb_2KMoO_3F_3$  in the temperature range 7–260 K were obtained. The structural phase transition at  $T \approx 185$  K was found. The lattice dynamics of disordered crystal was simulated, the calculated spectra contain the «soft» modes of oscillations.

Keywords: lattice dynamics, oxyfluorides, Raman scattering.

© Крылов А. С., Софронова С. Н., Колесникова Е. М., Исаенко Л. И., 2012

УДК 621.791

Р. А. Мейстер, В. В. Богданов, С. А. Готовко, А. Р. Мейстер

## ВЛИЯНИЕ КОНДЕНСАТОРНОГО УМНОЖИТЕЛЯ НАПРЯЖЕНИЯ НА УСТОЙЧИВОСТЬ ГОРЕНИЯ ДУГИ В УГЛЕКИСЛОМ ГАЗЕ

При сварке на прямой и обратной полярности в углекислом газе проволоками диаметром 1,2 мм обеспечивается формирование швов при силе тока 12 A и более. На минимальных напряжениях разбрызгивание не наблюдается. При токах 12–20 A визуально фиксируется перенос металла в дуге без взрывных явлений.

Ключевые слова: минимальный ток, углекислый газ, плавящийся электрод, прямая и обратная полярность, осциллографирование, видеосъемка, перенос металла в дуге.

Получили распространение однофазные выпрямители с конденсаторным умножителем напряжения, которые применяются для ручной дуговой сварки и сварки в защитных газах [1]. Данные выпрямители чаще применяют в условиях малых предприятий, при ремонте автомобилей, сантехнических устройств и др. Ограничения, которые накладываются действующими стандартами на величину максимального тока из питаюшей сети напряжением 220 В в бытовых условиях (15 А) вынуждают уменьшать сварочный ток до 140 А [2]. Данные выпрямители просты по устройству, легко ремонтируются и, в сравнении с инверторными, обеспечивают уменьшение высших гармоник в питающей сети [3]. При сварке проволоками диаметром 0,8 и 1,2 мм в углекислом газе дуга горит устойчиво при силе тока 12-20 А, что позволяет сваривать сталь толщиной 0,5 мм и более [4].

Для однофазных выпрямителей рекомендуют разнообразные схемотехнические решения [2], при этом отмечается положительное влияние конденсаторов на перенос металла в дуге [5]. Но сведений об оптимальных схемотехнических решениях и сварочнотехнологических свойствах выпрямителей с конденсаторным умножителем напряжения мало [5]. Успешно работающие выпрямители ВС-600 российского и украинского производства являются простейшими по устройству, но эти источники не обеспечивают формирование швов при токе менее 50 А, и зажигание осуществляется с нескольких касаний изделия вылетом.

В данной работе сравнивались сварочные свойства выпрямителя ВС-600 (г. Каховка) и двухфазного выпрямителя. Для умножения напряжения применялись электролитические конденсаторы емкостью 2 000 мкФ. Индуктивность дросселя со ступенчатым регулированием составляла 0,5–1,2 мГн. При питании выпрямителя с конденсаторным умножителем напряжением 380 В от двух фаз возможно увеличение сварочного тока до 300–400 А без перегрузки питающей сети, но напряжение холостого хода в сравнении с однофазным питанием увеличивается не в 2,82, а в 2 раза [1].