ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2012, том 57, № 2, с. 293–296

ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 541.49:548.737

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ТЕТРАБРОМИДОЦИНКАТА ПЕФЛОКСАЦИНДИУМА $C_{17}H_{22}FN_3O_3^{2+}\cdot ZnBr_4^{2-}$

© 2012 г. А. Д. Васильев*, **, Н. Н. Головнев**

*Институт физики им. Л.В. Киренского СО РАН, Красноярск **Сибирский федеральный университет, Красноярск Поступила в редакцию 12.10.2010 г.

Синтезировано новое соединение тетрабромидоцинкат(II) пефлоксациндиума $C_{17}H_{22}FN_3O_3^{2+}$ ·

· ZnBr₄²⁻, где C₁₇H₂₀FN₃O₃ – 1-этил-N-метил-6-фтор-1,4-дигидро-4-оксо-7-(4-метил-1-пиперазинил)-3-хинолин карбоновая кислота (PefH, пефлоксацин), и определена его кристаллическая и молекулярная структура. В нем содержатся ионы PefH₃²⁺ и ZnBr₄²⁻. Последний представляет собой слабоискаженный тетраэдр. Проанализирована супрамолекулярная архитектура кристалла.

Фторхинолоны (FxH) – одна из лучших групп синтетических антибиотиков. Широкое применение пефлоксацина (PefH, C₁₇H₂₀FN₃O₃, 1-этил-6-фтор-1,4-дигидро-4-оксо-7-(4-метил-1-пиперазинил)-3-хинолинкарбоновая кислота) в медицине [1] обусловливает его всестороннее изучение. Синтез и исследование физико-химических характеристик металлсодержащих соединений PefH могут привести к получению более эффективных лекарственных форм и разработке новых способов очистки субстанции. В целом анализ различных взаимодействий в соединениях фторхинолонов важен для понимания их воздействия на организм. Предполагается, что включение гидрофильных частиц в их каналы имеет большое медико-биологическое значение [2].

Сравнительно мало изучены структуры ионных соединений, содержащих катион FxH_3^{2+} , причем в качестве противоионов использованы только хлоридные комплексы металлов [3–5]. С целью систематического исследования влияния природы галогенидного лиганда на способ упаковки кристаллической решетки и структурные мотивы синтезировано новое соединение $C_{17}H_{22}Br_4FN_3O_3Zn$ (PefH₃[ZnBr₄], тетрабромоцинкат пефлоксациндиума), определена его кристаллическая и молекулярная структура.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

РеfH получали согласно следующей методике. 2 г дигидрата метансульфоната пефлоксацина PefHCH₃SO₃H · 2H₂O (фирма Nakoda Chemicals Limited, Индия) при непродолжительном нагревании растворяли в 50 мл 20%-ного водного раствора аммиака (pH 11–12). Полученный раствор нагревали или хранили на воздухе до pH 8 для удаления аммиака. Образовавшийся белый кристаллический осадок PefH отфильтровывали, промывали большим количеством воды и сушили на воздухе до постоянной массы.

Синтез $C_{17}H_{22}FN_3O_3^{2+}$ · ZnBr₄²⁻ (I). 0.30 г пефлоксацина растворяли в 3 мл 6 М HBr (х.ч.), затем к полученному раствору постепенно добавляли ZnO (х.ч.) до достижения молярного соотношении ZnO : PefH = 2 : 1. Кристаллы I выделялись при испарении раствора, выход 83%.

Результаты химического анализа:

	С	Н	Ν	Zn
Найдено, %:	28.03;	2.87;	5.66;	8.89.
Для C ₁₇ H ₂₂ Br ₄ FN	$_{3}O_{3}Zn$			
вычислено, %:	28.34;	3.08;	5.48;	9.08.

Для структурного исследования был отобран бесцветный кристалл размером 0.45 × 0.30 × × 0.22 мм. Интенсивности отражений измерены с помощью рентгеновского монокристального дифрактометра SMART APEX II с CCD-детектором (Bruker AXS), Мо K_{α} -излучение. Экспериментальные поправки на поглощение введены по 8281 отражению, измеренному более одного раза. Модель структуры установлена прямыми методами (SHELXS [6]) и уточнена с помощью комплекса программ SHELXTL [7]. Из разностных синтезов электронной плотности определены положения атомов водорода, которые затем были идеализированы и уточнены в связанной с основными атомами форме. В табл. 1 приведены параметры эксперимента и результаты уточнения структуры.

Кристаллографические данные депонированы в Кембриджском банке структурных данных: ССDС № 775005.

Таблица	1. Кристаллогра	фические	данные и	парамет-
ры уточн	нения структуры	Ι		

Брутто-формула	$C_{17}H_{22}Br_4FN_3O_3Zn$
<i>Т</i> , К	298
Пр. гр.	$P2_{1}/c$
Ζ	4
20 _{max} , град	52
<i>a</i> , <i>b</i> , <i>c</i> , Å	14.261(2), 12.354(2), 13.495(2)
β, град	90.230(2)
$V, Å^3$	2377.6(6)
ρ, г/см ³	2.013
μ, мм ⁻¹	7.79
Всего измерено отражений	18548
Независимых отражений	4678
Число отражений с <i>F</i> > > 4σ(<i>F</i>)	3218
Пределы по <i>h</i> , <i>k</i> , <i>l</i>	$-17 \le h \le 17;$
	$-15 \le k \le 15; -16 \le l \le 16$
Уточнение по F^2	$w = [\sigma^2(F_0^2) + (0.0238P)^2 +$
	+ 0.12P] ⁻¹ , где $P =$
	$= [Max(F_o^2, 0) + 2F_c^2]/3$
Число уточняемых пара-	268
метров	
$R1 [F_{o} > 4\sigma(F_{o})]$	0.0336
wR2	0.0663
GOOF	1.012
$(\Delta \rho)_{\text{max}}, e/Å^3$	0.47
$(\Delta \rho)_{\rm min}, e/Å^3$	-0.42
$(\Delta/\sigma)_{\rm max}$	0.001

Таблица 2. Основные межатомные расстояния d и углы ω в структуре I

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
C(1)–O(2)	1.210(5)	C(4)–O(1)	1.316(4)
C(1)–O(3)	1.307(5)	F-C(6)	1.360(4)
Zn–Br(1)	2.4522(7)	Zn–Br(2)	2.4058(7)
Zn–Br(3)	2.4221(7)	Zn–Br(4)	2.3779(7)
Угол	ω, град	Угол	ω, град
O(2)C(1)O(3)	124.9(4)	O(2)C(1)C(3)	122.2(4)
O(3)C(1)C(3)	112.8(4)	C(10)C(4)O(1)	117.1(4)
C(3)C(4)O(1)	123.2(4)	FC(6)C(5)	119.3(4)
FC(6)C(7)	117.4(3)	C(17)N(2)C(14)	110.3(3)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В кристалле I содержатся ионы $PefH_3^{2+}$ и $ZnBr_4^{2-}$. Их строение и нумерация атомов приведены на рис. 1. Длины связей С–О, С–N, С–F и С–С и соответствующие валентные углы в I близки к найденным в $(PefH_2^+)_2PtCl_4^{2-} \cdot 2H_2O$, $(PefH_2^+)CH_3SO_3^- \cdot 2H_2O$, $(PefH_2^+)CH_3SO_3^- \cdot 0.1H_2O$, $Ag(H_2O)Pef \cdot 3H_2O$ [3] и $(PefH_3^{2+})CuCl_4^{2-}$ [4]. При сравнении I с последней структурой можно заметить, что для них характерны подобные способы упаковки кристаллической решетки и структурные мотивы.

Расстояния Zn–Br (табл. 2) немного превышают среднее значение 2.35(15) Å по 17 соединениям, имеющим такую связь [8], а валентные углы BrZnBr изменяются от 106.74(2)° до 113.18(2)°.

Молекулярный ион $C_{17}H_{22}FN_3O_3^{2+}$ (рис. 1) представляет собой плоскую группу из двух гексациклов, соединенных общей стороной С(9)-C(10), и атомов F, N(2), C(11), C(12), C(1), O(1), О(2), О(3) (максимальное отклонение от плоскости 0.097(3) Å, среднеквадратичное -0.041(3) Å), гексацикла N(2)-C(14)-C(15)-N(3)-C(16)-C(17) с конформацией "кресло" (Q = 0.572(4) Å; $\theta = 5.8(4)^{\circ}; \phi = 21(4)^{\circ})$ и двух метильных групп с атомами углерода С(12) и С(13). Кислород О(1) гидроксильной группы образует внутримолекулярную водородную связь с карбонильным атомом O(2). Вторая, более слабая внутримолекулярная связь С-Н… F формирует, как и первая, шестичленный цикл. В кристалле присутствуют и межмолекулярные водородные связи N(3)-H…Br и O(3)-H…Br, которые являются основой образования зигзагообразных цепочек (рис. 2) с ориентацией вдоль направления [2, 0, -1]. Плоскости зигзагов перпендикулярны плоскости ас элементарной ячейки. Параметры водородных связей представлены в табл. 3. В структуре имеются также пять укороченных межмолекулярных контактов С-Н…Вг с расстояниями С-Вг от 3.634 до 3.814 Å, H…Br от 2.77 до 2.88 Å и углами CHBr от 143° до 175°, по своей геометрии близких к водородным связям.

Благодаря π – π -взаимодействию ароматических шестичленных колец типа "голова–хвост" в структуре кристалла имеет место супрамолекулярное спаривание ионов PefH₃²⁺. На рис. 3 изображена проекция структуры параллельно плоскостям ионов, где видно, что они группируются парами в параллельном расположении. Численные характеристики этого взаимодействия, вычисленные согласно [9], приведены в табл. 4. Межплоскостные расстояния 3.4–3.5 Å между плоскопараллельными ароматическими фрагментами являются оптимальными для таких контактов [2].

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 57 № 2 2012

Рис. 1. Ионы PefH₃²⁺ и ZnBr₄²⁻ с нумерацией атомов. Пунктиром изображены внутримолекулярные водородные связи. Размеры эллипсоидов тепловых колебаний отвечают 50%-ной вероятности.

Рис. 2. Цепочка молекулярных ионов $\operatorname{PefH}_3^{2+}$ и $[\operatorname{ZnBr}_4]^{2-}$ в кристалле І. Водородные связи обозначены пунктиром. Атомы водорода, не участвующие в водородных связях, не показаны.

Рис. 3. Пары молекулярных ионов $\operatorname{PefH}_{3}^{2+}$, связанные $\pi - \pi$ -взаимодействием, в кристалле I. Ионы $[\operatorname{ZnBr}_{4}]^{2-}$ и атомы водорода не показаны.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 57 № 2 2012

295

ВАСИЛЬЕВ, ГОЛОВНЕВ

Преобразования D-H d(D-H)d(H...A) ∠DHA d(D...A) A для атома А O(1) - H(1)0.82 1.88 144 2.593(4) O(2) C(14) - H(14B)0.97 2.21 2.850(5) 122 F O(3)-H(3) 0.82 2.38 179 3.200(3) Br(3) 1 - x, -y, 1 - z0.87 2.53 175 3.395(3) Br(1) 2-x, 0.5+y, 0.5-zN(3) - H(N(3))

Таблица 3. Геометрические характеристики водородных связей D–H...А (длины связей *d*, Å; углы, град) в структуре I

Таблица 4. Параметры $\pi - \pi$ -взаимодействия в кристалле I

Cg _i -Cg _j	<i>d</i> , Å	α, град	β, град	$Cg_{i}p, Å$	Сдвиг, Å
Cg ₁ –Cg ₁	3.983(2)	0	30.1	3.446(2)	1.998
Cg_1-Cg_2	3.615(2)	1.39(2)	15.9	3.460(2)	-
Cg ₂ -Cg ₁	3.616(2)	1.39(2)	16.9	3.477(2)	—

Примечание. Взаимодействующие ионы связаны центром симметрии. Cg_1 – гексацикл N(1)-C(2)-C(3)-C(4)-C(10)-C(9); Cg_2 – гексацикл C(5)-C(6)-C(7)-C(8)-C(9)-C(10); d – расстояние между центроидами циклов; $Cg_{i_2}p$ – расстояние от плоскости цикла Cg_i до плоскости цикла Cg_j ; Сдвиг – расстояние между центроидом Cg_i и перпендикулярной проекцией центроида Cg_j на плоскость Cg_i .

В І они примерно на 0.04 Å больше, чем в (PefH₃²⁺)CuCl₄²⁻ [4], что можно, с учетом близости ван-дер-ваальсовых радиусов ионов Zn^{2+} и Cu²⁺, объяснить бо́льшими размерами бромид-иона. Сравниваемые соединения имеют подобные способы упаковки кристаллической решетки и структурные мотивы, они состоят из слоев, образуемых ионами PefH₃²⁺, между которыми находятся анионы тетрагалогенидометаллатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Падейская Е.Н., Яковлев В.П. Антимикробные препараты группы фторхинолонов в клинической практике. М.: Биоинформ, 1998. 252 с.
- Prasanna M.D., Row T.N.G. // J. Mol. Struct. 2001. V. 559. P. 255.

- 3. Allen F.H. // Acta Crystallogr. 2002. V. B58. P. 380.
- 4. Васильев А.Д., Головнев Н.Н. // Журн. структурн. химии. 2010. Т. 51. № 1. С. 183.
- 5. Герасименко А.В., Полищук А.В., Карасева Э.Т. и др. // Коорд. химия. 2008. Т. 34. № 9. С. 657.
- 6. *Sheldrick G.M.* SHELX-97. A Software Package for the Solutions and Refinement of X-ray Data. Göttingen (Germany): Univ. of Göttingen, 1997.
- 7. *Sheldrick G.M.* SHELXTL. Version 6.10. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- International Tables for Crystallography. v.C. Mathematical, Physical and Chemical Tables / Ed. Prince E. Dordrecht–Boston–London: Kluwer Academic Publishers, 2004. Table 9.4.1.3. P. 782.
- 9. PLATON A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands (2008).